
A Learning-Based Approach to Address
Complexity-Reliability Tradeoff in OS Decoders

Baptiste Cavarec, Hasan Basri Celebi, Mats Bengtsson, and Mikael Skoglund
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract—In this paper, we study the tradeoffs between com-
plexity and reliability for decoding large linear block codes. We
show that using artificial neural networks to predict the required
order of an ordered statistics based decoder helps in reducing
the average complexity and hence the latency of the decoder.
We numerically validate the approach through Monte Carlo
simulations.

Index Terms—Channel coding, order statistics decoder, learn-
ing, neural networks.

I. INTRODUCTION

With the exponential increase of number of connected
devices and hence of traffic in communications systems, there
is more and more concern regarding the tradeoff between
decoding complexity and reliability. To this end, Order Statis-
tics (OS) based decoders have been introduced in [1] as a
variable complexity decoder for linear block codes, in the
sense that one can decide on the order and hence the associated
complexity. However, since the complexity of the OS decoder
grows exponentially with the desired order, it is then ill
suited for complexity constrained scenarios when the order is
large [2]. On the other hand, although selecting a higher order
yields higher reliability, it may often yield wasting resources
when the received noisy codeword can be decoded with lower
order [3].

The idea of using neural networks (NNs) to decode linear
codes is not new. Decoding with NNs was popular since the
late 80s’ and beginning of 90s’ [4], [5], [6], [7]. However, it is
long time avoided due to the lack of available off-line training
capacities. In recent days, [8], [9], [10], [11] addressed the
problem of decoding linear codes by the means of a NN. There
have been mostly two ways presented in the context of NN
based decoders. One way is to learn the optimal weights of a
Tanner Graph in order to aid the traditional belief propagation
algorithm as presented in [10]. The other type of methods use
a NN to decode the codeword based on the received signal
[9], [11]. The second kind approach, in particular the one
presented in [9], seems structurally inspired by the structure
of OS decoders, while struggling to approach the performance
of an OS decoder, of order 2, for large codes.

The major challenge with NN based decoders is training
the network with very large number of codewords which is
exponential in K, denoting the number of information bits
encoded in a single codeword. Hence, in this paper, to improve
the mean performance of OS decoders we present a learning-
based method, in a grey box approach, to predict the order of

the decoder in a signal adaptive manner. This method allows us
to significantly decrease the mean complexity of the decoder
without sacrificing the reliability. Such a method additionally
allows to detect signals that may need a higher decoding order
than the one a complexity constrained decoder allows and
therefore prevents wasting resources.

Notation: Vectors and matrices are denoted by bold face
lower and upper case letters or symbols, respectively. Matrix
IK stands for the K×K identity matrix. Superscript ∗ denotes
the conjugate of a complex number. Norm-2 of a vector x
is denoted by ||x||2 and CN (0, σ2) represents the circularly
symmetric complex additive white Gaussian noise (AWGN)
with zero mean and σ2 variance. All logarithms in this paper
are to based 2 and �, ⊗, and ⊕ represent the element-
wise multiplication, binary multiplication and binary addition,
respectively.

II. SYSTEM MODEL

A. Channel model

We assume the transmission of a length−N codeword which
is an output of a binary linear block encoder over a binary-
input AWGN (Bi-AWGN) channel. The linear binary block
code is denoted by C(N,K, dmin) where dmin represents the
minimum Hamming distance between any two codewords.

A codeword c ∈ FN2 is obtained from the K number of
information bits u ∈ FK2 using the generator matrix G as

c = u⊗G. (1)

The codeword is mapped to an antipodal vector x through the
following mapping in R,

xi = 2ci − 1, (2)

where xi ∈ {−1,+1} and ci ∈ {0, 1} are the ith elements of
x and c sequences, respectively. The signal at the output of
the channel is obtained as

y = x+w (3)

where w is the AWGN noise at the receiver where wi ∼
N (0, σ2). The average transmitted signal power is E = 1 and
the signal-to-noise ratio (SNR) at the receiver is equal to 1/σ2.

ar
X

iv
:2

10
3.

03
86

0v
1

 [
cs

.I
T

]
 5

 M
ar

 2
02

1

The received noisy sequence y is then decoded to find the
original information bits. The optimum Maximum Likelihood
decoder in such a scenario is given by

cML = argmin
c∈C, x=2c−1

‖y − x‖2 (4)

= argmax
c∈C, x=2c−1

Re {〈y,x〉} . (5)

However, the complexity of this decoder is of size 2K which
becomes computationally impractical even for low values of
K.

As introduced in [1], OS decoders help in reducing the
complexity by making soft decisions on a restrained set of
codewords. OS decoder provides a universal soft-decision
decoder for linear block codes and it can provide near optimal
performance. OS decoders can be implemented as follows:
• Define the reliability of each received symbol by |ri| =
|yi|, and re-arrange r into r′ such that |r′1| > |r′2| > · · · >
|r′N |.

• Such arrangement induces a permutation function λ1[·],
that also permutes the columns of the code generator
matrix by G1 = λ1 [G].

• From G1, we can create an equivalent matrix G2 for
which the first K columns are independent. This creates
a second permutation λ2 and an equivalent sequence z =
λ2[λ1[y]]. This construction can be made while ensuring
that |z1| > |z2| > · · · > |zK | and |zK+1| > · · · > |zN |.

• Moreover, with Gauss-Jordan elimination, G2 can be
converted in systematic form leading to the equivalent
generator matrix

Gsys = [IK P] (6)

and the associated code Csys for which codewords csys,
∃c ∈ C such that csys = λ2[λ1[c]].

B. Hard Decoding (0th Order Statistics based decoder)

Given z, defined by the above construction, one can obtain
the 0th order decoded codeword c0 as the following. Hard
decode the most reliable K bits of z

zbi =
sign(zi) + 1

2
, for 0 < i < K, (7)

and create the new systematic codeword a0 as follows

a0 = zb ⊗Gsys. (8)

Then the output of the 0th order OSD is

c0 = λ−11

[
λ−12 [a0]

]
. (9)

C. Order-l reprocessing

Based on the decreasing error probability with decreasing
indices, [1] introduces the concept of order−l reprocessing.
Set the list of test error patterns (TEPs), denoted by V , such
that it includes all possible length−k binary sequences with
Hamming distance less than or equal to l and search over the

list to find the error sequence that maximizes the likelihood
of the systematic codeword to z. This can be formulated as

al = argmax
{a: a=(zb⊕v)⊗Gsys, v∈V }

P(a|z) (10)

= argmin
{a: a=(zb⊕v)⊗Gsys, v∈V }

‖z− a‖2 (11)

where h̃i = |hλ2◦λ1(i)|2. The output of the order−l decoder
is

cOSD = λ−11

[
λ−12 [al]

]
(12)

Note that (11) in turn yields to comparing all the binary
flips of up to l bits of zb and obtaining a systematic codeword
a to compute the Euclidean distance to z and selecting the
one that minimizes the distance.

The cardinality of TEP for an order−l OS decoder is

|V | =
l∑
i=0

(
K

i

)
. (13)

If l = K, then |V | = 2K and all possible codeword
comparisons will be taken into account and hence performance
and complexity of the OS decoder will be identical to ML
decoder. It is shown in [1] that if

l ≥ min

{⌈
dmin

4
− 1

⌉
, k

}
, (14)

an order−l OS decoder is asymptotically optimum and near
ML performance can be achieved. Thus, 2K −

∑l
i=0

(
K
i

)
number of unnecessary codeword comparisons are saved.

III. COMPLEXITY-PERFORMANCE TRADE-OFF

For a fixed order−l OS decoder, one needs to compute Gsys,∑I
i=1

(
N
i

)
number of new systematic codewords and their

subsequent distances. Such procedure increases the complexity
exponentially with the desired order while decreasing the error
rate of the decoder. The underlying complexity of building
Gsys and order−l reprocessing, which are the two main com-
putation intensive operations, are O

(
N min{K,N −K}2

)
and O

(
NKl+1

)
, respectively [2]. Therefore, for l ≤ 2 the

computational complexity is dominated by the formation of
Gsys, otherwise order−l reprocessing dominates the com-
plexity. Therefore, order−l selection allows a complexity-
performance trade-off since a direct relation between com-
plexity and performance is expected for a decoder.

Order−l selection allows the complexity-reliability tradeoff
since a direct relation between complexity and reliability is ex-
pected. Given a latency constraint, the corresponding optimal
order would be the maximum possible l such that decoding
finishes within the time limit, denoted as lm. However, the
following two scenarios yield waste of resource/latency on
decoding: if (i) lm < lr (no successful decoding) or (ii)
lm > lr (successful decoding but still wasting resources),
where lr represents the required order−l for decoding z.

Hence, the question that arises in such a scenario is then:
Given a linear code C(N,K, dmin) transmitted over an AWGN
channel, is there a way to find the optimal decoding order of
the OS decoder for a given received signal y?

DemodulatorEncoder &
Modulator

0th order OS
decoder

Channel

Input

Output

u

G

x y

a0, z

Order-l
reprocessing

a0, z, y cOSD

Figure 1: Illustration of the proposed method.

A. Baseline: Bound-Based Approach

When Eb/N0 is known, one may use the tight and relatively
simple to compute bounds of [3] in order to obtain a guaran-
teed code error rate for a specific Eb/N0 and order l. Thus
by computing such bounds we are able to select the minimum
order l guaranteeing the desired performance. This approach
has the advantage of providing a fast way of obtaining a
guaranteed mean performance with a complexity reduction as
Eb/N0 increases. However, this method does not apply when
the SNR is unknown, one has to estimate the SNR at the
receiver in order to be able to use it.

It is to be noted that recently, [12] proposed an approxima-
tion for the probability of error of decoding with a given order
l based on the knowledge of the received signal and the weight
enumerators of the code. They derived decoders according to
their approximations, see [12, Section VII], however due to the
amount of integrals to compute offline, their results could not
be reproduced in this paper. The NN based methods presented
in the next subsection avoids these computations by directly
estimating the probability of success of a given order.

B. Learning-Based Approach

We aim at estimating lr to successfully decode the code-
word. Such task can be seen either as a classification task
or a prediction task for a variable representing the success
of the order−l OS decoder. The first option is to use a NN
as a classifier, that tries to find the class in the sense "what
is the minimal order−l that allows to successfully decode
the message at the input", by minimizing the cross entropy
between the output and the vector representing the class (that
has a 1 at position l and 0s elsewhere). The classifier will then
tend to output the probability that order i is the exact required
order to decode the message at the input, without indicating if
the considered order will still yield in a successful decoding,
i.e. it outputs P ("optimal decoding order" = i).

To address the mentioned problem of finding
P ("successfully decoding at order i"), the second option
is to have constructions similar to the ones of [13], [14],
that may provide guarantees by fixing a threshold on the
estimated probability of success such that the predicted
order is obtained as in the following. The idea behind such

structures is that by minimizing the cross-entropy between
the output of the network and the vector of successes (i.e.
the vector that has a 1 at index i if the order−l decoding of
the message is successful and 0 otherwise) the NN output
will approximate the likelihood of successfully decoding with
order-l for the given input. Further explanations and in depth
derivations can be found in [13]. Then, to use this network
as an order predictor, set a threshold τ ∈ [0, 1], given the
output of the NN fi(z,a

0) for i ∈ {0, 1, . . . , lm} trained
to approximate the probability of success of OS decoder of
order i. The estimated decoding order is obtained by

l̂ = arg min
i∈{0,1,...,lm}

{i|fi(z,a0) ≥ τ}. (15)

The appropriate threshold will be determined by the desired
codeword error level for the system.

Beyond the scope of this paper, one can envision using an
OS decoder in combination with a NN as presented in here for
fading channels other than AWGN, with a slight modification
of the OS decoder1 and get similar performance whereas the
methods of [3], [12] would require computing new integrals
for each channel realization.

IV. NUMERICAL VALIDATION

In this paper, we built a fully connected feed-forward NN,
made of 3 layers of size [N,K, lm+1] where lm denotes the
maximum allowed order (due to the constraints), to estimate
the order, between 0 and lm, necessary to decode the given
received signal z and the hard decoded codeword a0. A visual
illustration of the proposed model is depicted in Fig. 1. Note
that from [12], one can infer that inputting the ordered list
of reliabilities |zi| would be sufficient but we obtained worse
performance with such structure.

The networks were trained with categorical cross entropy
loss for the classification procedure and the mean of each
of the output to target cross entropies for the second type
of constructions. Since the scope of this paper is a proof
of concept rather than finding the optimal neural network,
optimization was conducted using the Adam optimizer [15]
with a learning rate of 0.01.

1Namely using the reliabilities ri = |h∗
i yi| instead of ri = |yi|

0 1 2 3 4 5 6 7
Eb/N0

0

500

1000

1500

2000

Nu
m

be
r o

f e
va

lu
at

ed
 T

EP

Figure 2: Comparison of the number of evaluated TEPs (i.e re-
configurations) for N = 128 and K = 64 (eBCH(128,64,22)),
between the bound based baseline when Eb/N0 is known
(red), bound based baseline when Eb/N0 is estimated (green),
and learning-based classifier NN approach (blue) and learning-
based threshold approach (orange). Reference lines (dashed
black) represent the number of evaluated TEPs of the regular
OS decoder (orders from 0 to 2).

The training data consisted in 80000 points, that is the pair
(input,output) where the input is the combination (z,a0) and
the output either the associated optimal decoder order l∗ for
the classification task or the vector of successes for the success
prediction task. Such a small number of training point is what
allows this grey-box approach to work for a relatively large
code size when other methods such as [9], [10] fail because
they require 2K or 2N−K , here 1.844×1019, data points to be
trained on. The training data was generated across 8 different
SNRs ranging from −3 dB to 4 dB. The impact of the training
size and which SNR points to pick were not part of the study.

Figures 2 and 3 illustrate that for a given latency budget,
when the SNR is known the baseline based on the bounds
of [3] (set with a CER target of 10−2) provides an optimal
complexity performance tradeoff. However, when the SNR is
unknown at the receiver (or rather estimated at the receiver),
the classifier based NN based approach outperforms the bound
based approach, providing a better code error rate with sim-
ilar latency performance, while the threshold based approach
mimics the bound based approach with known SNR while
performing better than mere SNR estimation.

V. CONCLUSIONS

We have shown that neural networks can be used as an order
predictor for OS decoders when properly trained. The impact
on the neural network size, the choice of the training points
and the size of the datasets to train on were not studied in
this paper but represent a potential area of refinment of this
work, It is left to study whether these techniques can extend
to channels beyond AWGN.

0 1 2 3 4 5 6 7
Eb/N0

10 4

10 3

10 2

10 1

100

CE
R

Figure 3: Comparison of the code error rates for N = 128
and K = 64 (eBCH(128,64,22)). Please refer to figure 2 for
the information on color codes.

REFERENCES

[1] M. P. C. Fossorier and Shu Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Transactions on Information
Theory, vol. 41, no. 5, pp. 1379–1396, Sep. 1995.

[2] H. B. Celebi, A. Pitarokoilis, and M. Skoglund, “Low-latency communi-
cation with computational complexity constraints,” in ISWCS, Aug 2019,
pp. 384–388.

[3] P. Dhakal, R. Garello, S. K. Sharma, S. Chatzinotas, and B. Ottersten,
“On the error performance bound of ordered statistics decoding of linear
block codes,” in ICC, May 2016, pp. 1–6.

[4] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and
polynomials over the binary n-cube,” IEEE Transactions on Information
Theory, vol. 35, no. 5, pp. 976–987, Sep. 1989.

[5] L. G. Tallini and P. Cull, “Neural nets for decoding error-correcting
codes,” in Northcon. Conference Record, Oct 1995, pp. 89–.

[6] W. R. Caid and R. W. Means, “Neural network error correcting decoders
for block and convolutional codes,” in GLOBECOM, Dec 1990, pp.
1028–1031 vol.2.

[7] A. Di Stefano, O. Mirabella, G. Di Cataldo, and G. Palumbo, “On the
use of neural networks for hamming coding,” in IEEE International
Sympoisum on Circuits and Systems, June 1991, pp. 1601–1604 vol.3.

[8] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode
linear codes using deep learning,” 2016. [Online]. Available: http:
//arxiv.org/abs/1607.04793

[9] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for
decoding of linear codes - A syndrome-based approach,” 2018.
[Online]. Available: http://arxiv.org/abs/1802.04741

[10] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On
deep learning-based channel decoding,” 2017. [Online]. Available:
http://arxiv.org/abs/1701.07738

[11] E. Kavvousanos, V. Paliouras, and I. Kouretas, “Simplified deep-
learning-based decoders for linear block codes,” in ICECS, Dec 2018,
pp. 769–772.

[12] C. Yue, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “A revisit to
ordered statistic decoding: Distance distribution and decoding rules,”
2020. [Online]. Available: http://arxiv.org/abs/2004.04913

[13] M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate
bayesian a posteriori probabilities,” Neural Computation, 1991.

[14] V. Saxena, J. Jaldén, M. Bengtsson, and H. Tullberg, “Deep learning
for frame error probability prediction in BICM-OFDM systems,” in
ICASSP), April 2018, pp. 6658–6662.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. [Online]. Available: http://arxiv.org/abs/1412.6980

http://arxiv.org/abs/1607.04793
http://arxiv.org/abs/1607.04793
http://arxiv.org/abs/1802.04741
http://arxiv.org/abs/1701.07738
http://arxiv.org/abs/2004.04913
http://arxiv.org/abs/1412.6980

	I Introduction
	II System Model
	II-A Channel model
	II-B Hard Decoding (0th Order Statistics based decoder)
	II-C Order-l reprocessing

	III Complexity-Performance Trade-off
	III-A Baseline: Bound-Based Approach
	III-B Learning-Based Approach

	IV Numerical validation
	V Conclusions
	References

