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ABSTRACT

Recent advances in neural-network based generative modeling of
speech has shown great potential for speech coding. However,
the performance of such models drops when the input is not clean
speech, e.g., in the presence of background noise, preventing its
use in practical applications. In this paper we examine the reason
and discuss methods to overcome this issue. Placing a denoising
preprocessing stage when extracting features and target clean speech
during training is shown to be the best performing strategy.

1. INTRODUCTION

Autoregressive neural synthesis systems are based on the idea that
the speech signal’s probability distribution can be formulated as a
scalar autoregressive structure, where the probability of each speech
sample s is conditioned on previous samples and a set of condition-
ing features (spectral information, pitch, etc.), 6,
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The paradigm was first introduced for text-to-speech using the
WaveNet [ 1] architecture. Soon thereafter WaveNet was shown ben-
eficial also for low bit rate speech coding in [2], which was the
first coder using neural generative synthesis. Another example of
a codec using WaveNet as synthesis generation is [3|]. Since then
other autoregressive generators with lower complexity have been in-
troduced, and codecs based on such are for example [4]], based on
SampleRNN [5]], and [6], based on WaveRNN [/7].

However, the reproduction of real-world speech signals by gen-
erative models is still a challenge. Coding real-world speech signals
with a neural vocoder requires solving a number of problems simul-
taneously. Foremost is handling of background noise, but a suc-
cessful system must also be able to reliably reproduce speech from
arbitrary speakers using a low bit rate input stream, ideally with a
model small and fast enough to run on a standard smartphone. High
quality has been achieved only for clean input signals and, to date,
no coding performance has been reported for noisy speech.

The difficulty of coding noisy signals can perhaps be explained
by the signal structure, where the signal to be coded is the sum of
a clean speech signal and an interfering signal. The autoregressive
architecture is a good match for the structure of speech, but the ad-
dition of a second signal removes this match. We note that this phe-
nomenon is well-known in linear modeling: the sum of two signals
generated by linear autoregressive systems cannot be modeled effi-
ciently with one autoregressive model unless its order is infinite [8].
This suggests that to reproduce both the speech and the additive sig-
nal with high quality a significantly larger model may be needed.
Resisting the urge to increase the model size we instead performed
experiments to find out whether there is a better training and infer-
ence strategy to improve robustness to background noise, without
changing the network configuration.
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To establish best-practices for handling noise in a neural vocoder
system, we run two sets of tests. The first uses large models with no
reduction of bit rate in the inputs. This allows us to understand how
the systems respond to noise in the best case scenario, without worry
for the quantization schemes or model pruning techniques used. We
find that placing a denoiser in front of a system trained on a large
database of clean speech works best.

To evaluate real-world, end-to-end performance, we run an ad-
ditional listening test using conversational speech at varying signal-
to-noise ratios (SNR), with both the vocoder and denoiser models
optimized for on-device performance. In this second test we also
marginalize by noise SNR and type of noise to demonstrate that the
combination of a pruned ConvTASNet and WaveRNN system works
well in all circumstances.

2. NOISE HANDLING STRATEGIES

In deep learning it is common practice to apply augmentations to
training data to increase the range of conditions familiar to a model
[9l. In particular, the artificial addition of noise signals is a com-
mon and effective step in audio event classification. This allows the
model to train on a wider variety of realistic scenarios given a rela-
tively clean set of ground truth data. In audio event classification, the
event labels are unchanged by the augmentations, and the goal is to
train a system which is invariant under the full set of augmentations.
Augmentations can be static (in which a new static dataset is used
for training) or dynamic (in which augmentations are applied ‘on-
the-fly’ as new training examples are consumed). A dataset with dy-
namic augmentations is effectively infinite, though one still requires
a base dataset with sufficient variation to capture the full variety of
(clean) signals to be modeled.

The neural vocoder has two sets of inputs during training: The
aligned conditioning vectors and the teacher-forced autoregressive
input signal. The conditioning should match what is available at in-
ference time (e.g., noisy melspectra), and the autoregressive input
is what we measure loss against, and, therefore, what we train the
model to produce. Observe that these do not need to be derived from
the same input signal: In particular, if the input conditioning vec-
tors are calculated from noise-augmented clean speech, we can use
the raw clean speech as the teacher-forced training target. The re-
sult is a system which learns to produce denoised audio from noisy
conditioning: This is similar to how augmentation is used in classi-
fication problems. The result is (hopefully) a model which is close
to invariant under the addition of noise.

As an alternative, we can include a denoising model in the en-
coder. During inference, we do not have access to the underlying
clean speech, but we can apply a denoiser to push the conditioning
closer to the speech manifold. A ‘perfect’ denoiser would then allow
a model trained solely on clean speech to perform well, since all in-
terfering noise has been removed. In reality, no denoiser is perfect,



and will miss some noise and introduce artifacts. Preprocessing with
a denoiser is known to work well with classical low bit rate vocoding
systems [10]], leading us to believe that a denoiser could help with a
neural vocoder as well.

In this paper, we denote different training regimes as X2Y, where
X describes the conditioning input and Y describes the autoregres-
sive input. The regimes we consider are:

e c2c: ‘Clean-to-Clean:’ Trained with clean, studio recorded
audio for both the conditioning and the autoregressive inputs.

* n2n: ‘Noisy-to-Noisy:” Trained with noisy inputs, using both
larger, noisier speech databases and dynamic noise augmen-
tations. This noisy data is used both for conditioning and the
autoregressive inputs.

* n2c: ‘Noisy-to-Clean:” Trained with noise-augmented speech
from a studio-recorded database. The noise-augmented
speech is used to compute conditioning inputs, and the origi-
nal, unaugmented speech is used as the training target.

* dc2c: ‘Denoised Clean-to-Clean:” The same training regime
as c2c, but applies a denoiser during inference.

¢ dn2n: ‘Denoised Noisy-to-Noisy:” The same training regime
as n2n, but applies a denoiser during inference.

3. NEURAL VOCODER ARCHITECTURE

In this section we describe the architecture of the neural vocoder.
The parameter settings of the scheme are provided in section[3.1}

The vocoder consists of an encoder and decoder. The encoder
simply converts the input signal to log melspectra (e.g., [IT])). The
objective of the decoder is to turn these melspectra back into a high-
quality speech waveform.

The overall structure of the decoder is similar to WaveRNN, with
some changes which result in a leaner model, suitable for subsequent
deployment to low-resource environments. To summarize the differ-
ences, we use a single-pass GRU, predict output samples using a
mixture of logistics distribution, and predict M frequency-banded
samples at a time. (All described in full below.)

The decoder first consumes the log melspectra with a condition-
ing stack, consisting of:

1. An input 1D convolution (which is non-causal, allowing a
fixed amount of delay based on the conditioning frame size),

2. Three dilated causal 1D convolutions (allowing a large recep-
tive field over the past),

3. Three transpose convolutions, which upsample to narrow the
gap between the input conditioning rate and the vocoder’s
output sample rate, and

4. A final tiled upsampling so that the final output is at the
vocoder’s output sample rate exactly.

The autoregressive network consists of a multi-band WaveGRU,
which is based on gated recurring units (GRU) [12]. We split the tar-
get audio (with sample rate .S) using a cascade of Quadrature Mirror
Filters, dividing the signal evenly into M = 2* frequency bands.
Similar to [T3], this allows the system to predict M samples at a
time, greatly reducing the computational load and increasing the ef-
fective receptive field resulting in a slight quality improvement.

Thus, for our M-band WaveGRU, M samples are generated si-
multaneously at an update rate of S/M Hz, one sample for each
frequency band. For each update, the state of the GRU network
is projected onto an M x K x 3 dimensional space that defines

input audio
melspectum
encoder

B

Fig. 1. WaveGRU Neural Vocoder architecture.
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M parameter sets, each set corresponding to a mixture of logistics
distribution with K mixture components for a particular frequency
band. A sample for each band is then drawn by first selecting the
mixture component (a logistics distribution) according to its proba-
bility and then drawing the sample from this logistics distribution by
transforming a sample from a uniform distribution [14]]. For each set
of M output samples a synthesis filter-bank produces M subsequent
time-domain samples, which results in an output with sampling rate
S Hz.

The input to the WaveGRU consists of the sum of autoregres-
sive and conditioning components. The autoregressive component is
a projection of the last step’s M frequency-band samples projected
onto a vector of the dimensionality of the WaveGRU state. The sec-
ond component is the output of the conditioning stack (which has the
same dimensionality as the WaveGRU state).

The training of the WaveGRU network and the conditioning
stack is performed simultaneously using teacher forcing. That is,
the past signal samples that are provided as input to the GRU are
ground-truth signal samples. The training objective is maximizing
the log likelihood (cross entropy) of the ground truth samples.

3.1. Vocoder Configuration

The neural vocoder operates on 160-dimensional log melspectra
computed from 80 ms windows at an update rate of 25 Hz. The
system uses four frequency bands, such that the overall update rate
of the WaveGRU system is 4 kHz. The conditioning stack uses 512
hidden states and a single frame (40 ms) of lookahead. The di-
lated convolutional layers have kernel size two, and dilation of one,
two and four respectively. Each of the three upsampling transpose
convolutions doubles the rate, so that the output of the third upsam-
pling layer is at 200 Hz. This is then tiled to match the GRU rate.
The GRU state is 1024-dimensional, and eight mixture-of-logistics
components are used for each output sample distribution.



For training the models we used speech from the publicly avail-
able sets WSJO [15] and LibriTTS [16], as well as Google propri-
etary TTS recordings of English speech. These were mixed with
additive noise from Freesound [17]] and a set of recordings captured
in a variety of environments, including busy streets, cafés and of-
fices. During training of n2n and n2c models, noise samples are dy-
namically mixed into training samples with a random SNR chosen
uniformly between 1 dB and 40 dB.

3.2. On-Device Vocoder Configuration

For the second listening test, we use a model optimized for on-device
performance with a low bit rate. We apply a Karhunen-Loeve trans-
form (KLT) to each melspectrum, and then apply vector quantization
to achieve a 3 kbps rate. Meanwhile, the model is pruned to 92%
sparsity using iterative magnitude pruning [18]] in most layers. We
use 4x4 structured sparse blocks to allow fast inference using SIMD
instructions [7]]. For the main GRU layer, we use a fixed block-
diagonal sparsity pattern with 16 blocks for each of the three GRU
matrices, corresponding to 93.75% sparsity. We find this has no im-
pact on output quality relative to magnitude pruning, and greatly im-
proves training speed.

4. DENOISERS

In this section we describe the architecture of the ConvTASNet de-
noiser [19]. We use two different denoisers. For the main MOS
listening tests, we use a TDCN++ architecture, as configured in Ap-
pendix A in [20]]. This is a very high quality model, but is non-causal.
Thus, it provides an upper-bound on real world quality, though the
same model has been shown to work well with lower latencies [21]].

Based on good experimental results, we then developed a causal
ConvTASNet model. Similar to the WaveGRU neural vocoder, the
architecture is modified to minimize complexity when deploying to
mobile devices. The parameter settings of the scheme are provided
in section {11

As with the original ConvTASNet, we use a learned filterbank F'
with stride H to transform the signal to sample rate S/ H. The mask
network then generates sigmoid masks which are applied to the fil-
terbanked signal. A learned transpose filterbank G” then transforms
the masked signal back to the time domain.

The mask network has a separate learned filterbank with F” fil-
ters and matching stride H. Unlike the original ConvTASNet, we
remove all layer-wise normalizations, to preserve causality. We also
use causal dilated convolutions and depth-wise convolutions. We al-
low a fixed amount of look-ahead by introducing a delay between the
generated masks and the filtered mixture. As in the original Conv-
TASNet, we use depth-wise convolutional blocks, consisting of an
‘input’ inverted bottleneck convolution (kernel size 1, increasing the
number of channels), a depth-wise convolution, and an ‘output’ bot-
tleneck convolution (also with kernel size 1, decreasing the number
of channels). Skip connections combine the input and output of each
block.

4.1. On-Device ConvTASNet Configuration

The on-device model consumes audio sampled at S = 16 kH z. The
learned filterbank consists of 256 filters, with a window of 4 ms and
step size of 1 ms.

The mask network’s input filterbank is the same, but with
128 filters. We use two ‘repeats’ of ten depth-wise convolutional
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Fig. 2. Convolutional TASNet architecture.

blocks. The depth-wise convolutions have kernel size 3 and dila-
tion 2F med d, where k is the block number and d = 10 provides
a sawtooth pattern to the dilations. The inter-block hidden size is
128, and 256 channels are used within the depth-wise convolutional
blocks. Finally, a transpose convolutional layer with kernel size 3
combines outputs from adjacent time steps and matches the depth of
the filterbank. A sigmoid activation is then applied to get the final
masks.

The model is pruned to 95% using iterative magnitude pruning,
just as we did for the vocoder, reducing the number of parameters
from 1.5M to 140k. Pruning is not applied to the input or output
filterbanks or the depth-wise convolutional layers (which constitute
only about 1% of the total weights). The unpruned model achieves
a scale-invariant SNR-improvement (SI-SNRi) of 12 dB on held-
out evaluation data, and the pruned model achieves 9.8 dB SI-SNRi.
The pruned model can run at about 3x real-time on a single thread
on a Pixel3 phone. More recent models are even smaller, and runs
reliably in real time alongside the neural vocoder on the Pixel3.

5. EXPERIMENTS AND DISCUSSION

5.1. Noise Handling Strategies Listening Test

For our first experiment, we train unpruned vocoder models under
the c2c, n2n, and n2c regimes. We also include dc2c samples, in
which a large, non-causal ConvTASNet is applied to the inputs be-
fore they are fed to the c2c model. All models in this experiment
use unquantized conditioning features, to study modeling and repro-
duction aspects of the synthesis in generative speech coding while
bypassing the quantization aspects of the conditioning features.

Subjective evaluation was carried out through a crowdsourced
MOS listening test, selecting 15 clean and 15 noisy utterances con-
taining both male and female speakers from the VCTK dataset [22].
Each utterance had 20 naive listeners (which could be different from
utterance to utterance) rating the quality on a scale from 1 to 5. The
results are given in Fig. El

The baseline c2c is, as expected, performing the best for clean
speech but is also the worst performer in noisy speech. Qualita-
tively, the c2c model produces choppy-sounding output in regions
with steady background noise. It also produces babbling when tran-
sient noises are present. Using noisy features and target (n2n) im-
proves the quality in noisy speech, but at great expense of quality in
clean speech.

With n2c the quality does not significantly improve for noisy
speech. We find that it occasionally drops phonemes, especially



Table 1. On-Device Models Test MOS Results. Bold entries indicate that the 95% confidence intervals do not overlap.

All SNRs 10dB SNR 5dB SNR 1dB SNR
System All Bbl Amb | All Bbl Amb | All Bbl Amb | All Bbl Amb
Reference | 2.96 2.97 295 | 327 3.23 331 | 3.02 3.07 297 | 2.6 2.6 2.59
TASNet 2.70 2.53 2.87 | 3.12 3.01 3.23 | 2.69 2.48 291 | 2.29 2.12 247
dn2n 2.18 2.04 232 | 240 2.34 246 | 2.19 1.97 241 | 1.96 1.82 2.09
n2n 1.87 1.83 191 | 2.21 2.07 236 | 1.93 1.93 1.92 | 1.46 1.48 1.44
3 o f—— ambient’ noise (e.g., cars passing) or ‘babble’ noise consisting of

Mean Opinion Score

nzZn n2c
Noise Handling Strategy

Fig. 3. Mean opinion scores from the Noise Handling Strategies
Listening Test. The vertical bars indicate 95% confidence intervals.

‘noisy’ fricatives at the beginning of a word. Having access to only
a single melspectrum frame of lookahead likely makes it difficult
to determine whether a noisy frame is an actual speech sound or a
transient background noise.

The denoised setup is the overall better system. For clean speech
it has statistically indifferent performance from c2c, indicating that
the denoiser is quite transparent in clean speech. With noisy speech
it is also the best setup, with a mean MOS somewhat higher than the
reference noisy speech.

The conclusion from these experiments is thus that using noisy
features in the training will improve the performance in noisy back-
ground, but the trade-off will be inferior performance in clean con-
ditions. Instead, we recommend adding a speech enhancer to obtain
denoised features and use clean speech as teacher-forced target dur-
ing training.

5.2. On-Device Models Test

For our second experiment, we check that the denoising setup is
still superior in situations closer to a real-world deployment. In this
experiment, we use the pruned vocoder with melspectrum features
quantized to 3 kbps, and the pruned ConvTASNet variant described
above. We wish to demonstrate that inclusion of the denoiser im-
proves a current-best n2n system, and thus use a single n2n vocoder
model for both the n2n and dn2n cases.

For subjective evaluation, we used another crowdsourced MOS
listening test. For this test, we use the Hispanic-English Database
[23]], which contains spontaneous, conversational speech from 22
speakers. We composed an evaluation set of twelve 10-second audio
segments, eight with an isolated speaker, and two with cross-talking
speakers. We added randomly selected noise samples at 1, 5 and 10
dB SNR, to produce a total of 36 evaluation segments in the test.
Each item was evaluated by 30 listeners. Noise samples are either

mixed background talking (e.g., background chatter in a cafe), as
babble noise is a weakness of the ConvTASNet system.

Results are reported in Table[T] both overall and marginalized by
SNR and type of noise (babble vs ambient). In summary, the dn2n
system has a higher mean MOS score overall and in all marginal-
izations by SNR and type of noise. A 95% confidence interval was
computed for each bucket; entries where the confidence intervals did
not overlap are indicated in boldface. In particular, the dn2n system
is significantly better overall and at 5dB and 1dB SNR.

We also report results for the pruned ConvTASNet in isolation,
and find that it does not improve on the reference in any case, and can
observe that it performs a bit worse on babble noise. On listening, we
find that the pruned ConvTASNet occasionally has a ‘scratchiness’
in its output, especially at lower SNRs. Curiously, this scratchiness
is largely removed in the output of the dn2n model: The artifacts
may be masked by the quantized melspectrum transformation, or
may be sounds that the model never saw in the training data, and are
therefore smoothed away.

6. CONCLUSIONS

In this paper, we examined three strategies for handling noise with
a neural vocoder: Adding noisy training data, training the vocoder
to act as a denoiser, and adding an additional ConvTASNet denoiser
in the encoder. Training on noisy data and introducing a denoiser
to the encoder both worked well, though the denoiser gave the best
quality. We also demonstrated that a heavily pruned ConvTASNet
works well in conjunction with the neural vocoder in on-device con-
ditions: in conversational speech with varying levels of background
noise, using low biw-rate features.
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