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Abstract

We summarize our recent findings Authors (2017),
where we proposed a framework for learning a
Kolmogorov model, for a collection of binary ran-
dom variables. More specifically, we derive con-
ditions that causally link outcomes of specific
random variables, and extract valuable relations
from the data. We also propose an algorithm for
computing the model and show its first-order op-
timality, despite the combinatorial nature of the
learning problem. We apply the proposed algo-
rithm to recommendation systems, although it is
applicable to other scenarios. We believe that
the work is a significant step toward interpretable
machine learning.

1. Introduction
Machine learning and artificial intelligence tools have per-
meated a large number of areas (Marr, Sept 2016). These
tools are based on machine learning models, which consist
of learning an input-output mapping for a given dataset. De-
spite the plethora of models (e.g., matrix factorization (Ko-
ren et al., 2009), SVD-based models (Koren, 2008), neural
networks (LeCun et al., 2015), and models inspired from
physics (Stark, 2016b)), they lack interpretability: not offer-
ing insight about the data, nor the underlying process.

The work follows recent attempts at interpretable machine
learning (Doshi-Velez & Kim, 2017), where the lack of
interpretablity may have serious consequences in mission-
critical systems, ethics, and validation of computer-aided
diagnosis (Doshi-Velez & Kim, 2017). While there is no
consensus around the definition of interpretability, causal-
ity (Lipton, 2016) is a vital component: it refers to associa-
tions within the data and information about the underlying
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data-generating process. We adopt the latter as our ‘defi-
nition’ of interpretable model, as one where data-to-data
relations are accurately discovered.

We propose learning a so-called Kolmogorov Model (KM)
associated with a set of binary Random Variables (RVs). In
addition to prediction, the interpretability of the model (as
defined above) enables learning causal relations (Agrawal
et al., 1993): We derive a sufficient conditions under which
the realization of one RV’s outcome (deterministically) im-
plies the outcome of the other. In the context of recommen-
dation systems, causal relations identify groups of items,
for which a user liking one item implies that he/she likes all
other items in the group. In cancer detection, the same rules
identify groups of samples, for which the presence of DNA
methylation in the group, implies its presence in all other
samples. Additionally, these rules may provide insight into
the physical mechanisms underlying user preferences, and
DNA methylation.

We formulate the resulting problem as a coupled combinato-
rial problem, decompose it into two subproblems using the
Block-Coordinate Descent (BCD) method, and we obtain
provably optimal solutions for both. For the first one, we
exploit the structure of linear programs on the unit simplex,
to propose a low-complexity (yet optimal) Frank-Wolfe al-
gorithm (Frank & Wolfe, 1956). To bypass the inherent
complexity of the second subproblem (combinatorial and
NP-hard), we propose a semidefinite relaxation, and show
its quasi-optimality in recovering the optimal solution of
the combinatorial subproblem. Finally, we show the conver-
gence of our algorithm to a stationary point of the original
problem. We refer the reader to Authors (2017) for all the
derivations/discussions.

2. System Model
Notation: We use bold upper-case letters to denote matrices,
bold lower-case letters to denote vectors, and calligraphic
letters to denote sets. For a given matrixAAA, [A]i,j denotes
element (i, j), tr(A) denotes its trace, ‖AAA‖F its Frobenius
norm, and AT its transpose. For a vector a, [a]i denotes
element i, [a]i:j elements i to j, and supp(a) its support.
The inequality x ≤ y holds element-wise. In denotes the
n×n identity matrix, 111 and 000 the all-one and all-zero vectors
(of appropriate dimension). en is the nth elementary basis



Learning Kolmogorov Models for Binary Random Variables

vector, P = {p ∈ RD
+ | 111Tp = 1} the unit probability

simplex, and {n} = {1, · · · , n}.

2.1. Problem Formulation

Consider a double-indexed set of binary Random Vari-
ables (RVs), Xu,i ∈ A = {1, 2}, with indexes from
D = {(u, i) | u ∈ U , i ∈ I}. The RVs are defined on
a sample space Ω, consisting of elementary events Ω =
{ωd | 1 ≤ d ≤ D}. We denote by P[Xu,i = z], z ∈ A, the
probability that RV Xu,i takes the value z ∈ A. Using that
A = {1, 2}, we write
P[Xu,i = 1] = θTuψi,1 and P[Xu,i = 2] = θTuψi,2, (1)

where ψi,1 +ψi,2 = 111. θu is a Probability Mass Function
(PMF) vector on the unit simplex, P , and {ψi,1,ψi,2} ∈
BD are binary indicator vectors representing the support of
its probability measure. The model follows from established
results in classical probability (Gray, 2009).Since Xu,i is
binary, it is fully characterized by considering one outcome,

P[Xu,i = 1] = θTuψi, (2)
(1) and (2) are equivalent, and will be used interchangeably
(dropping the z subscript of ψi without any loss in general-
ity). Thus, each RV Xu,i is associated with (determined by)
a PMF vector θu, u ∈ U , and an indicator vector ψi, i ∈ I.
Notice that the model in (2) can approximate with arbitrarily
small accuracy the measure corresponding to P[], given a
large enough D.

Problem 1 (Problem Statement) Let pu,i denote the em-
pirical values of P[Xu,i = 1]. We assume that {pu,i}
are known for elements of a training set K ⊆ D, where
K = {(u, i) | (u, i) ∈ U × I}. 1 Given samples coming
from the model in (2), we wish to deduce the parameters of
underlying probability distribution: find parameters of the
KM, i.e., {ψi,θu} that best describe {pu,i | (u, i) ∈ K}.
The resulting problem is a fully parametric statistical infer-
ence task. For tractability, we address it using the minimum
mean-squared error as a point estimator, which in turn
results in minimizing

∑
(u,i)∈K(P[Xu,i = 1] − pu,i)2 =∑

(u,i)∈K(θTuψi−pu,i)2. Once computed, the optimal KM
parameters can be used for prediction on a different set, and
extracting statistical relations (among the RVs in K). The
resulting optimization problem is

(Q)


min

{ψi},{θu}

∑
(u,i)∈K

(
θTuψi − pu,i

)2

, E

s.t. θu ∈ P , ψi ∈ BD, ∀(u, i) ∈ K
. (3)

Our solution to this non-convex combinatorial problem is
detailed in Section 3.

1Note that acquiring (estimates of) the empirical probabilities
can be done via training, and the specific method is application-
dependent (see Appendix A.2).

2.2. Toy Example: Recommendation Systems

In this context, Xu,i models the preference of user u for
item i, (u, i) ∈ K. Thus, P[Xu,i = 1] (resp. P[Xu,i = 2])
models the probability that user u likes (resp. dislikes)
item i. Moreover, θu determines the profile/taste of user
u, ψi is related to item i (depending on genre, price, etc.),
and the elementary events denote movie genres (e.g., ω1 =
“Action”, ω2 = “SciFi”, etc.). 2 Then, the correspond-
ing empirical probability (i.e., training set) is obtained as
pu,i , [R]u,i/Rmax where [R]u,i ∈ N denotes the rating
that user u has provided for item i, and Rmax the maximum
rating (Stark, 2015).

Consider a 10-star “recommendation system”, having 2
users and 2 items. We then find the D-dimensional (D = 3)
KM factorization to obtain , {ψi}2i=1 and {θu}2u=1.3 To
showcase the model’s intuition, note that p1,1, the proba-
bility that user 1 likes movie 1, is represented as ψT

1 θ1.
It is thus expressed as convex/stochastic mixture of movie
genres, since elementary events are movie genres in this
scenario. More generally, a KM represents a set of observed
outcomes for RVs, as mixtures of elementary events. After
finding the empirical probabilities from the rated entries (as
above), (Q) is solved to learn {ψi}2i=1 and {θu}2u=1, and
an example result is shown below:

[
0.3 0.5

0.1 0.2

]
︸ ︷︷ ︸
{pu,i}

=

[
θT1

{
0.2 0.3 0.5

θT2

{
0.1 0.1 0.8

]
0 1 }Action
1 1 }SciFi
0︸︷︷︸
ψ1

0︸︷︷︸
ψ2

}Drama


2.3. Related Work

Our proposal to model binary RVs as elementary events on
a Kolmogorov space (Section 2.1) is based on established
results from classical probability theory. To our best knowl-
edge, this specific formulation is novel. Because this model
is rooted in probability theory, (2) defines the outcome of
a RV in the strict Kolmogorov sense (see definition in Sec-
tion 2.1), and the resulting causal relations (Section 4) also
hold analytically. This is the reason behind the versatility
of the approach. We will also show that the combinatorial
aspects of (Q) are not a limitation.

The inner product in (2) is reminiscent of factorization meth-
ods such as, Matrix Factorization (MF) (Koren et al., 2009),
Nonnegative Matrix Factorization (NMF) (Lee & Seung,
2001), SVD (Cai et al., 2010), and physics-inspired tech-
niques (e.g., Nonnegative Models (NNMs) (Stark, 2016a)).

2The model is generic since interpreting the elementary events
in context-dependent. For a coin toss, Ω = {ω1, ω2}, the elemen-
tary events denote heads and tails, respectively.

3D is the size of the Kolmogorov space Ω, the number of
elementary events, and the dimension of the factorization (selected
via cross-validation to minimize the test error).
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However, the inner product in these methods do not model
RVs, in an analytical sense (Section 2.1). Our method also
generalizes K-means and some of its variants. Detailed dis-
cussions of the relation between our proposed method and
these prior works is in Appendix A.1.

3. Proposed Algorithm
We use the well-known Block-Coordinate Descent (BCD)
framework to handle coupling in the cost function of (Q)
in (3). The method essentially splits (Q) into two subprob-
lems. We derive different methods for each subproblem,
with provable accuracy, and show convergence of the al-
gorithm. Given {ψ(n)

i } at iteration n, we first refine the
current PMF estimate θu, as
(Q1) : θ(n+1)

u ∈ argmin
θu∈P

f(θu) , θTuQ
(n)
u θu − 2θTur

(n)
u ,

where
Q(n)

u ,
∑

i∈IK ψ
(n)
i ψ

(n)T

i , r
(n)
u ,

∑
i∈IK ψ

(n)
i pu,i. (e.1)

We then refine the current indicator vector estimate, ψi as

(Q2) : {ψ(n+1)
i } ∈ argmin

ψi∈BD

g(ψi) , ψ
T
i S

(n+1)
i ψi − 2ψT

i v
(n+1)
i

where
S

(n+1)
i ,

∑
u∈UK θ

(n+1)
u θ(n+1)T

u ,v
(n+1)
i ,

∑
u∈UK θ

(n+1)
u pu,i (e.2)

Moreover, UK and IK are defined as K = {(u, i) | u ∈
UK ⊂ U , i ∈ IK ⊂ I}. Next we describe the solution
approach to each problem.

3.1. Refine PMF Estimate

(Q1) is a convex quadratic problem that can be solved by
a variety of tools. However, we exploit its structure to
greatly reduce the computational complexity: The Frank-
Wolfe (FW) algorithm (Frank & Wolfe, 1956) solves (Q1)
as a succession of Linear Programs (LPs) over the unit
simplex. While LP solvers generally have similar complex-
ity as quadratic program solvers, solving an LP reduces to
searching for the minimum index, when the LP is over the
unit simplex. We formalize the algorithm, focusing on the
original FW (detailed in Jaggi (2013)[Algorithm 1]).

While θu should have two superscripts, n for the BCD
iteration and k for the FW iteration, we only use θ(k)

u . We
first determine the descent direction:

d(k)
u ∈ argmins

(
∇f(θ(k)

u )
)T
s s.t. s ∈ P . (4)

The constraint s ∈ P greatly simplifies the above LP, i.e.,
d(k)
u = ej? , j

? ∈ argmin1≤j≤D [∇f(θ(k)
u )]j . (5)

The solution follows from LPs over the unit probability
simplex (Proposition 2). Thus, finding the descent direc-
tion reduces to searching over the D-dimensional vector
∇f(θ(k)

u ) (done in O(D)). Then, θ(k)
u is updated using a

Table 1. Frank-Wolfe Procedure.

procedure [θ?u] = FWA (Qu, ru, ε )
for k = 1, 2, ..., IFW do
d(k)
u = ej? , where j? = argmin

1≤j≤D
[∇f(θ(k)

u )]j

θ(k+1)
u = (1− α(k)

u )θ(k)
u + α

(k)
u d(k)

u

Stop if ‖θ(k+1)
u − θ(k)

u ‖ ≤ ε
end for

end procedure

simple step size, α(k)
u = k/(k + 1) (Jaggi, 2013). Table 1

summarizes the FW procedure, and Proposition 3 shows its
convergence,

3.2. Refine Indicator Estimate

The NP-hard nature of (Q2) implies that relaxations are
the only choice for a scalable solution. We thus propose
a solution based on Semi-Definite Relaxation (SDR) and
randomization, and establish its quasi-optimality for (Q2).
We use the results of Ma et al. (2002)[Sec IV-C]) and a
series of reformulations to rewrite (Q2) in its equivalent
form (Authors, 2017):

X?
i ∈

argmin
Xi

tr(S̃iXi)

s.t.Xi � 000, [Xi]k,k = 1,∀k , rank(Xi) = 1

where Xi = xix
T
i , S̃i =

[
(1/4)Si −t̃i/2

−t̃Ti /2 0

]
, xi =[

zi

wi

]
, zi = 2ψi − 111, wi ∈ {−1,+1} is an auxiliary

variable, and t̃i , (vi − (1/2)Si111). The above problem is
then relaxed into a convex SDP,

X (SDR)
i ∈

argmin
Xi

tr(S̃iXi) .

s.t.Xi � 000, [Xi]k,k = 1,∀k
(6)

X (SDR)
i may be solved using generic SDP solvers. Then, a

randomization procedure (Ma et al., 2002) extracts an ap-
proximate (binary) solution ψ̂i of (Q2); see Table 2. This
evidently raises the issue of the suboptimality gap for SDR.
We show in Proposition 4 that SDR is optimal (asymptoti-
cally in D) in recovering the binary solution of (Q2). Note
that the performance bound in Proposition 4 compares the
quality of the approximate binary solution offered by SDR,
against the optimal solution of (Q2) (rather than just com-
paring the resulting cost functions).
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Table 2. Semidefinite Relaxation + Randomization (SDR) Proc.

procedure [ψ̂i] = SDR-WR ( Si, ti,Mrnd )
// Repeat to approximate each ψ?

i ,∀i ∈ IK
Solve (6) to findX (SDR)

i

Factorize asX (SDR)
i = LT

i Li

for m = 1, 2, ...,Mrnd do
Generate zero-mean i.i.d Gaussian vector u(m)

i

Compute û(m)
i = sign[ LT

i u
(m)
i ]

end for
Find m? = argmin1≤m≤D+1 û

(m)T

i S̃iû
(m)
i

Compute ẑi = [u
(m?)
i ]1:D [u

(m?)
i ]D+1

Approximate ψ?
i , as ψ̂i = (ẑi + 111)/2

end procedure
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Figure 1. Training error for IKM for different values of D
(ML100K dataset)

3.3. Algorithm Description

The BCD-based algorithm alternates between refining the
indicator and PMF vectors (using the methods of Sec. 3.2
and Sec. 3.1; see Algorithm 1. Its convergence to a sta-
tionary point of (Q) is shown Lemma 1. Figure 1 shows
the convergence behavior of Algorithm 1 for the ML100K
dataset. The numerical setup and further results are provided
in Appendix A.7 (due to the lack of space).

4. Interpretability via Causal Relations
Once a KM is found, we derive causal relations that emerge
from (1) and (2).

4.1. Causal Relations

Proposition 1 (Inclusion of Support Set) Consider two
random variables Xu,i and Xu,j (belonging to the training
set), whose KM are given by (1). If supp(ψj) ⊆ supp(ψi),

Algorithm 1 Iterative computation of KMs (IKM)

// Randomly Initialize {θ(1)
u ∈ P}

for n = 1, 2, ... do
Compute S(n)

i and t(n)
i from (e.2)

Update ψ̂
(n)

i = SDR-wR(S(n)
i , t

(n)
i ,Mrnd ), ∀i ∈ IK

ComputeQ(n)
u and r(n)

u from (e.1)

// Initialize FWA with {θ(n−1)
u }, from prev iter

Update θ(n)?

u = FWA(Q(n)
u , r

(n)
u , ε ), for all u ∈ UK

end for

then the following causal relations hold:
Xu,i = 1 implies Xu,j = 1 (7)
Xu,j = 2 implies Xu,i = 2 . (8)

For the toy example of Section 2.2, note that supp(ψ1) ⊆
supp(ψ2). Then, Proposition 1 yields: if user 1 (or user 2)
likes movie 2 implies he/she also likes movie 1.

Proposition 1 motivates us to look for cases where the
support set condition trivially holds: when ψi = 111, then
supp(ψi) = {D}, and supp(ψj) ⊆ supp(ψi) holds, for
any choice of ψj∀ j ∈ IK , where IK defined in Section 3.

Corollary 1 (Maximally Influential RVs) Let
{ψi, θu}(u,i)∈K denote the KM associated with the
outcome 1 for Xu,i, i.e., {Xu,i = 1}(u,i)∈K. We define
M = {i | ψi = 111} as the set of RV outcomes with maxi-
mum support. Then, the condition supp(ψj) ⊆ supp(ψi)
(Proposition 1) holds trivially ∀ j ∈ IK . It follows that
the causal relations in (7) hold, for each i ∈ M.

For maximally influential RVs, the realization of one out-
come, Xu,i = 1, determines that of all RVs of the set
{Xu,j = 1 | ∀j ∈ IK}. It is illustrated in Figure A.1. For
a recommendation system, maximally influential RVs are
items for which a user liking an item implies that he/she like
all other items, in the training set. We underline that, unlike
other probabilistic causal relations, our approach provides
deterministic rules. In Appendix A.3, we have provided effi-
cient algorithmic approach to automatically mine these rules
based on the adjacency matrix and influence score. Simula-
tion results confirm the usefulness of our causal relations ;
see Appendix A.7.

5. Conclusion
We have proposed a framework for learning a Kolmogorov
model, associated with a collection of binary RVs. Inter-
pretability of the model (as defined by causality) was har-
nessed by deriving causal relations, i.e., by finding sufficient
conditions that bind outcomes of certain random variables.
We also proposed an algorithm for computing a Kolmogorov
model, a combinatorial non-convex problem, and showed
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its convergence to a stationary point of the problem, us-
ing block-coordinate descent. The combinatorial nature of
the problem was addressed using a semi-definite relaxation,
where we showed that it yields asymptomatically optimal
solutions. Our results suggest that increased interpretability
and improved prediction, do not cause a significant increase
in complexity.
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A. Supplementary Material for
Learning Kolmogorov Models for Binary
Random Variables
A.1. Related Work

We position our work against other approaches (focusing
on recommendation systems).

Factorization Methods: Note that, (Q) can be re-written
as a low-rank matrix factorization problem, over the set of
binary and stochastic matrices (Authors, 2017)[Sec. 9.2].
Thus, the proposed approach is connected to factoriza-
tion methods: Matrix Factorization (MF) (Koren et al.,
2009), Nonnegative Matrix Factorization (NMF) (Lee &
Seung, 2001), SVD (Cai et al., 2010) (and their many vari-
ants/extensions) have gained widespread applicability, cov-
ering areas in sound processing, (medical) image recon-
struction, recommendation systems and prediction prob-
lems (Davenport & Romberg, 2016). These techniques
assume that each element in K is the inner product of two
arbitrary vectors. Thus, the model in (2) does not repre-
sent a RV (in a mathematical sense), when viewed in the
context of the proposed model (Section 2.1). Consequently,
the analytical guarantees of Section 4, that yield the causal
relations, do not hold for general factorization methods:
Though causal relations may still be extracted, they are not
as rooted in Kolmogorov probability theory, and lead to
different statistical relations. Naturally, we wish the explore
the causal relations that arise from the proposed model.

Exact Factorization: Ideally, it is desirable to solve (Q) ex-
actly, i.e., find θu,ψi satisfying pu,i = θTuψi, ∀(u, i) ∈ K,
over the training set K. While we are unaware of such
results, we highlight a related variant where the factor-
ization is solved exactly over the entire dataset D, i.e,
pu,i = θTuψi, ∀(u, i) ∈ D, using binary MF (Slawski
et al., 2013): It is not applicable when factorizing a subset
of D, e.g., the training set K. Consequently, binary MF is
unfit for prediction tasks.

KMs as a generalization of K-Means: Consider a special
case of (Q), where ψi is constrained to have one non-zero
element. The resulting problem becomes the well-knownK-
means clustering (Lloyd, 2006). The K-means algorithms
(and its variants K-medoids, fuzzy K-means and K-SVD),
have become pervasive in an abundance of applications
such as clustering, classification, image segmentation, DNA
analysis, online dictionary learning, source coding, etc. Our
approach generalizes K-means, by allowing for overlapping
clusters. While a similar generalization of the classical K-
means algorithm was considered in (Whang et al., 2015),
the number of points per cluster is determined explicitly. In
our approach however, the number of points per cluster is
optimized within the algorithm.

Nonnegative Models: Non-Negative Models
(NNMs) (Stark, 2016a) are recent attempts at interpretable
models. For reasons of computational tractability (Stark,
2016a), NNMs are defined by relaxing ψi in (2), to the
unit hypercube. However, this relaxation impairs the highly
interpretable nature of the original model in (2), making
causal relations less accurate. Moreover, the relaxation
implies that (2) no longer models the outcome of a random
variable, thus limiting its applicability to (many) problems
where KMs are applicable.

A.2. Applications

We briefly mention other applications.

Outage Prediction in Wireless Communication: Con-
sider a network with several transmitters and receivers. In
this setting, Xu,i represents the state of the communication
link, between transmitter u and receiver i (link (u, i)), and
P[Xu,i = 1] (resp. P[Xu,i = 2]) denotes the probability
that it is “good” (resp. in outage). Then the corresponding
KM, computed from K, can be used to predict the state of
other links, in a different set. Moreover, the causal relations
in Section 4 identify links in the network, where link (u, i)
good (resp. in outage) implies that link (u, j) good (resp. in
outage). Thus the interpretability of KM provides valuable
information on the network.

DNA methylation for Cancer Detection: Recent investi-
gations have suggested that DNA methylation, chemical
changes in the DNA structure, may act as a cancer detec-
tion mechanism (Houseman et al., 2012). In this context,
pu,i denotes the measured methylation level for location i
on the DNA, and sample u. DNA methylation expresses
pu,i = ψT

i θu, where ψi is a binary vector indicating the
presence or absence of DNA methylation at location i, and
θu is a PMF vector modeling the weight assigned to each
location (Slawski et al., 2013). From the perspective of
KMs, ψT

i θu is the probability that location i and sample
u is methylated. Moreover, the causal relations can iden-
tify groups of DNA locations for which the presence (resp.
absence) of methylation in one location, implies its pres-
ence (or absence) for all other locations in the group. Note
that, the above insights are not possible using conventional
methylation analysis.

A.3. Interpretable Aspects

Here we detail additional aspects of KMs, related to inter-
pretability (via causal relations).

Adjacency Matrix and Influence Score: The causal rela-
tions of Proposition 1 can be modeled using the so-called
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Figure A.1. causal relations for maximally influential RVs

adjacency matrix A ∈ B|IK |×|IK |, define as

[A]i,j = ai,j =

{
1, if supp(ψj) ⊆ supp(ψi)

0, otherwise
. (A.1)

[A]i,j = 1 denotes the inclusion of Xu,j in Xu,i. In this
case, the first outcome ofXu,i implies the same outcome for
Xu,j , and the second outcome for Xu,j implies the second
one for Xu,i (as stated in Proposition 1), thereby imply-
ing coupling and mutual influence among them (since Xu,i

influencesXu,j and vice-versa). This raises the natural ques-
tion of quantifying this coupling. We define an influence
score essentially counting (and normalizing) the number of
pairs Xu,i and Xu,j , satisfying the support set condition,

βi =
1

|IK |
∑
j∈IK
j 6=i

ai,j . (A.2)

Thus, we provide the following method for automatically
mining these rules (presented in the context of recommen-
dation systems).

• Check the support set condition, via a pairwise search
to check for pairs ψi and ψj satisfying supp(ψj) ⊆
supp(ψi), ∀(i, j) ∈ IK × IK , i 6= j.

• Build the adjacency matrixA, in (A.1) , and compute
the influence score βi

• Find all pairs (i, j) such that ai,j = 1: for each of
these pairs the following holds (from Proposition 1),{

[u likes i] implies [u likes j]

[u dislikes j] implies [u dislikes i]
(A.3)

• Identify, if possible, maximally influential RVs (Corol-
lary 1), having the all-one indicator vector, i.e.,M =
{i | ψi = 111}. For each of them, the relations in (A.3)
hold for all other items in the collection

Practical Issues Regarding Interpretability We recall
that the proposed SDR method was shown to be quasi-
optimal in providing approximate binary solutions to (Q2).
Thus, the relaxation does not affect the interpretability, in the
sense that Proposition 1 and Corollary 1 still hold. However,
another remark is in order. While the derivations pertaining
to causal relations (Section 4) assume globally optimal solu-
tions to (Q) - an NP-hard problem, Algorithm 1 guarantees
locally optimal ones. Thus, a bound on the gap between
these solutions is needed. We highlight this issue as an
interesting topic for further investigation.

A.4. Variations and Special Cases

Learning RVs with Common Support: We underline
some interesting special case of the proposed approach,
namely, when all the RVs have the same support, i.e.,
ψ1 = · · · = ψD , ψ. This reduces to learning KMs,
for RVs having common support.

Learning a sequence of RVs: Consider a special case of
Sec. 2.1, where we learn a KM for a sequence of binary
RVs, {Xu | u ∈ U}, from observing samples from the
training set, {pu | u ∈ UK}. The KM in (2) reduces to
P[Xu = 1] = θTuψ, and resulting optimization becomes: min

{θu},ψ

∑
u∈UK (θTuψ − pu)2

s.t. θu ∈ P , ∀u ∈ UK , ψ ∈ BD
(A.4)

The BCD-based solution approach is still applicable in this
case, though many simplifications are possible.

A.5. Practical Aspects

Including Regularization Parameters: Regularization pa-
rameters for θu and ψi, are needed for prediction to avoid
over-fitting (Bishop, 2006)[Sec. 1.1]. They can be in-
cluded without any changes to the solution method. An
`2−regularization can be included in (Q1):
f(θu) = θTu (Qu + λuID)θu − 2θTuru + γu , (A.5)

where the regularizer λu ≥ 0 is absorbed into a “new” ma-
trix (Qu + λuID). While desirable, an `1−regularization
for θu would not work, since θu ∈ P . Similarly, an `1-
regularization for (Q2) is,
g(ψi) = ψT

i Siψi − 2(vi − (µi/2)111)Tψi + γi , (A.6)
where the regularizer µi is absorbed into the linear term,
since µi‖ψi‖1 = µi111

Tψi, for ψi binary.

Computational Complexity: The computational complex-
ity of Algorithm 1 is dominated by the SDP solution in (6),
≈ O(D4.5) for medium accuracy solutions (keeping in
mind the negligible cost of the FW method). Thus, the
total cost (per iteration) of Algorithm 1 is CKM ≈ O(D4.5).
The added complexity compared to MF, NMF, NNM and
SVD++ (≈ O(D3)) is not significant, keeping in mind
that D � min(|IK | , |UK |). Moreover, complexity reduc-
tion techniques (for the SDP solution) can be investigated.
Finally, proposed method yields problems that decouple ,
thereby significantly speeding up the computation due to
parallelization.

Non-stationary distributions: The proposed method as-
sumes that distributions of the RVs (in the training set)
are stationary: Indeed, scenarios with time-varying distri-
butions are a limitation (and interesting future directions).
However, in learning it is quite common to assume that the
data-generating distribution is stationary.
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A.6. Main Results

Below, we summarized the results used in the paper; see Au-
thors (2017) for the proofs.

LPs over the Unit Probability Simplex: We use following
known result to find the descent direction for the FW method
(the proof is known).

Proposition 2 Consider the following Linear Program
(LP),

(PPS) x? = argmin
x∈Rn

cTx, s.t. 111Tx = 1, x ≥ 000

Its optimal solution is given by

x? = ej? ,where j? = argmin1≤j≤n c
Tej

Thus, the solution reduces to searching over the vector c.�

Convergence of FW algorithm: We show the convergence
of the FW algorithm (Table 1).

Proposition 3 Let θ?u be the optimal solution to (Q1). Then
the sequence of iterates {θ(k)

u } satisfies (Jaggi, 2013)[The-
orem 1],

‖f(θ(k+1)
u )− f(θ?u)‖2 ≤ O(1/k), k = 1, 2, · · ·�

Proof: The linear convergence rate for all FW variants, was
proved in Jaggi (2013)[Theorem 1].

Quasi-optimality of SDR: The question was studied exten-
sively in the context of binary detection for multi-antenna
communication (Tan & Rasmussen, 2001). Interestingly,
(Q2) can be recast as a noiseless binary detection problem,
where SDR has been to be optimal. The results is formalized
below.

Proposition 4 Let g(ψ?
i ) and g(ψ̂i) denote the optimal so-

lutions to the binary QP in (Q2), and its SDR after random-
ization (Table 2), respectively. The approximation quality is
defined as (Luo et al., 2010),

η ≤ g(ψ?
i )/g(ψ̂i) ≤ 1. (A.7)

It holds that η = 1, with probability 1− exp−O(D), asymp-
totically in D. Thus, the relaxation is quasi-optimal. �

Proof: See (Authors, 2017).

Convergence of IKM:

Lemma 1 Let tn , E({ψ(n)
i }, {θ

(n)
u }), n = 1, 2, ... be

the sequence of iterates, resulting from the updates in IKM.
Then, {tn} is non-increasing in n, and converges to a sta-
tionary point of (Q) in (3), almost surely. �

Proof: The convergence is shown in (Authors, 2017).

A.7. Numerical Results

Experimental Setup: The training set K, is chosen as
the MovieLens 100K (ML100K), with U = 943 users
and I = 1682 items, split into 80% for training and
20% for testing. Let {ψ̂i}, {θ̂u} the output of Algo-
rithm 1, after 5 iterations (used to predict pu,i over the
test set). For benchmarking, we factorize the rating ma-
trix using MF (Koren et al., 2009), NMF (Lee & Seung,
2001), SVD++(Koren, 2008) (ensuring the dimension of
the factorization, k, is close to D). The implementation
and results use the MyMediaLite package (Gantner et al.,
2011), and the corresponding performance results are avail-
able http://www.mymedialite.net/examples/
datasets.html. We also benchmark against the NNM
algorithm in Stark (2015), and the classical K-means (K-M)
algorithm.

Training Performance: We first evaluate the performance
of Algorithm 1 on artificial training data, i.e., pu,i ∈ K =
{U = 20}×{I = 40} where {pu,i} are i.i.d. and uniformly
chosen on the unit interval. We benchmark against a variant
on Algorithm 1, where the SDR solution for Q2 is replaced
by an exhaustive search. As the data is artificial, the re-
sulting matrix does not have any missing entries: we also
include the binary matrix factorization (BMF) in Slawski
et al. (2013)[Algorithm 2]. Table (3) is a numerical vali-

Table 3. Error rate for SDR (U = 20, I = 40).
D = 4 D = 8 D = 10

SDR Accur. ×10−3 7.5 4.4 4.0

dation of Proposition 4 where we computed the error rate
of SDR (compared to the exhaustive search), aggregated
over all iterations. We observe that the approximation error
decreases, with increasing D (following Proposition 4).

Following the same setup and benchmarks, Fig A.2 shows
the resulting normalized training RMSE training error,
RMSE = (

∑
(u,i)∈K |pu,i − θ̂

T

u ψ̂i|2/|K|)1/2, for several
values of D. We observe that the monotone convergence
in Lemma 1 is validated numerically, and that the train-
ing error decays with increasing model size, D. While the
performance of IKM (first-order optimality guarantee) is
indistinguishable from its exhaustive search variant, there
is large gap compared to BMF (globally optimal). Unfor-
tunately, BMF does not work with missing data, and is
inapplicable to prediction (Slawski et al., 2013). The same
conclusions hold when testing Algorithm 1 on the ML100K
(Fig. 1).

Interpretability of KMs: We numerically evalu-
ate the method for finding causal relations (Sec-
tion A.3), on the ML100K dataset, with the resulting
influence scores shown in Fig. A.3. We first iden-

http://www.mymedialite.net/examples/datasets.html
http://www.mymedialite.net/examples/datasets.html
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Table 4. Normalized RMSE values for test set (ML100K). The
dimension of factorization for MF/SVD++, k, is equal toD (unless
stated in the corresponding entry).

D = 4 D = 8 D = 16 D = 24
KM 0.199 0.2013 0.1900 0.1861

NNM 0.194 0.2255 0.2057 0.2118
MF 0.229 0.228(k = 10) − 0.226(k = 40)

SVD++ 0.228 0.227(k = 10) 0.227(k = 20) 0.226(k = 50)
K-M 0.210 .2096 0.2105 0.2105
NMF − − − 0.192(k = 100)
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Figure A.2. Training error vs number of iterations (U = 20, I =
40)

tify the set of maximally influential items, M =
{119, 814, 1188, 1190, 1290, 1393, 1462, 1486, 1494,
1530, 1590, 1638}. For each of these items, a user liking
one given item, implies he/she likes all other items in
the training set. Interestingly, these results remain the
same when D = 24, thereby suggesting that procedure for
mining causal relations is quite stable.

Prediction Performance: Since the range of the pre-
dicted variable is different for MF/NMF/SVD++, and
KM/NNM, we use the normalized test RMSE, i.e.,
NRMSE = η(

∑
(u,i)∈K̄ |[R](u,i) − R̂u,i|2/|K̄|)1/2 where

K̄ is the test set, and η = (Rmax − Rmin)−1 =
1/4 is the normalization for MF/NMF/SVD++. For
KMs/NNMs the same metric reduces to NRMSE =(∑

(u,i)∈K̄ |[R](u,i)/Rmax − θ̂
T

u ψ̂i|2/|K̄|
)1/2

. The best
values for λu and µi, were picked from a coarse two-
dimensional grid by cross-validation, using a held-out val-
idation set. The Normalized RMSE results are shown in
Table 4. We observe a significant gap between KMs, and
well known collaborative filtering methods, especially as D
increases. Moreover, the drop in performance for NNMs for
increasing D may be due to over-fitting.
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Figure A.3. Influence score for items having βi ≥ 0.5 (D = 8,
ML100K dataset)


