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Abstract—Reconfigurable Intelligent Surfaces (RISs) are re-
garded as a key technology for future wireless communications,
enabling programmable radio propagation environments. How-
ever, the passive reflecting feature of RISs induces notable chal-
lenges on channel estimation, making coherent symbol detection
a challenging task. In this paper, we consider the uplink of RIS-
aided multi-user Multiple-Input Multiple-Output (MIMO) sys-
tems and propose a Machine Learning (ML) approach to jointly
design the multi-antenna receiver and configure the RIS reflection
coefficients, which does not require explicit full knowledge of
the channel input-output relationship. Our approach devises a
ML-based receiver, while the configurations of the RIS reflection
patterns affecting the underlying propagation channel are treated
as hyperparameters. Based on this system design formulation,
we propose a Bayesian ML framework for optimizing the RIS
hyperparameters, according to which the transmitted pilots are
directly used to jointly tune the RIS and the multi-antenna
receiver. Our simulation results demonstrate the capability of
the proposed approach to provide reliable communications in
non-linear channel conditions corrupted by Gaussian noise.

Index terms— Reconfigurable intelligent surfaces, Bayesian
machine learning, reflection configuration, multi-user MIMO.

I. INTRODUCTION

Modern communications systems are subject to constantly
growing throughput requirements. In order to meet these
demands, Base Stations (BSs) are commonly equipped with
multiple antennas, and communicate with several users simul-
taneously to increase the spectral efficiency [!]. One of the
main challenges in such multi-user Multiple-Input Multiple-
Output (MIMO) systems is symbol detection, namely, the
recovery of the multiple symbols transmitted over the uplink
channel at the BS. Conventional detection algorithms, such as
those based on the Maximum A-posteriori Probability (MAP)
rule, which jointly recovers all the symbols simultaneously, be-
come infeasible as the number of symbols grows. Alternative
low complexity symbol detection are usually based on separate
detection or iterative interference cancellation methods [2],
which allow to achieve MAP-approaching performance at
complexity which only grows linearly with the number of
users. In addition, even when the channel model is linear
and known, inaccurate knowledge of the parameters of the
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channel, namely, Channel State Information (CSI) uncertainty,
can significantly degrade the performance.

An alternative data-driven approach to model-based algo-
rithms uses Machine Learning (ML). Deep Neural Networks
(DNNs), which constitute a popular ML approach, have
demonstrated an unprecedented empirical success in various
applications, including image and speech processing [3]. Re-
cent years have witnessed growing interest in the application
of DNNs for Receiver (RX) design; see detailed surveys in
[4]-[7]. Unlike model-based reception, which implements a
specified detection rule, ML-based RXs learn how to map the
channel outputs into the transmitted symbols from training,
namely, they operate in a data-driven manner. Multiple ML-
aided MIMO reception architectures have been proposed in
the literature, including the application of conventional black-
box architectures [8], deep unfolded optimization algorithms
such as projected gradient descent [9], [10], and approximate
message passing [| 1]. While the aforementioned RXs involve
highly parameterized DNNs, which require massive volumes
of data for training, the more recent work [12] designed a
data-driven RX which learns to implement the soft iterative
interference cancellation symbol detection algorithm of [13]
from relatively small labeled data sets.

An additional emerging technology for multi-user wireless
communication systems is the consideration of Reconfigurable
Intelligent Surfaces (RISs) as enablers for controllable signal
propagation conditions [14], [15]. This application builds upon
the capability of RISs to generate reconfigurable reflection
patterns. An RIS deployed in urban settings can facilitate and
improve communication between the BS and multiple users by
effectively modifying the propagation of information-bearing
signals [16]. The RISs enable the communications system as a
whole to overcome harsh non Line-Of-Sight (LOS) conditions
and improve coverage, when the surface close to the BS or
the users, without increasing transmission power. Nonetheless,
the fact that RISs are passive devices, which only reflect their
impinging signals in a configurable manner, gives rise to a
multitude of signal processing challenges, including complex
and costly channel estimation [17]. Furthermore, identifying
the proper configuration of the RIS reflection patterns is a dif-
ficult task and requires accurate knowledge of the underlying
channel [18], which in turn is quite challenging to acquire.
This motivates the application of model-agnostic data-driven
ML for tunning RISs, which is the focus here.

In this paper, considering the uplink of an RIS-empowered
multi-user MIMO communication system, we present an ML-
based approach to jointly tackle the problem of symbol de-
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Fig. 1. The considered RIS-empowered multi-user MIMO communication
system operating in the uplink direction.

tection at the BS’s multi-antenna RX, along with the configu-
ration of the RIS reflection coefficients. We adopt the recent
DeepSIC reception of [12] at the BS and treat the RIS phase
configuration as hyperparameters of the learning procedure.
We devise an algorithm based on Bayesian Optimization
(BO) for the RIS configuration, which alternatively combined
with the DNN-aided RX to enable joint optimization of the
RIS and the RX with small amounts for pilot signals. Our
numerical results demonstrate the efficacy of the proposed
model-agnostic DNN-based learning approach for providing
reliable RIS-empowered multi-user MIMO communications,
without relying on channel modeling and CSI estimation.

The rest of this paper is organized as follows. Section II
includes the system model and problem formulation, while
Section III details the proposed learning approach for jointly
learning the multi-antenna RX and the RIS phase configura-
tion. Section IV presents the simulation results, and the paper’s
conclusions are drawn in Section V. Throughout the paper, we
use low-case letters for scalars (e.g. x), lower case bold-faced
letters for vectors (e.g., x), upper case bold-faced letters for
matrices (e.g., X), and calligraphic letters for sets (e.g., X).
The i-th element of x is denoted by [x];, E[-] is the expectation
operator, and (-)T returns the transpose.

II. SYSTEM MODEL AND DESIGN OBJECTIVE
A. System Model

We focus on the uplink of cellular networks and consider
a single-cell including a BS with N antenna elements that
serves K User Terminals (UTs), as illustrated in Fig. 1.
This uplink communication is assumed to be assisted by an
RIS with P unit elements [18]. An RIS controller, which
is accessible by the BS, handles the metasurface’s reflection
configuration [19]. We assume that the BS makes use of
the DNN-based RX in [12], which particularly implements
a data-driven detector. In order to train the BS, in each time
instance ¢, the UTs transmit known pilot symbols, denoted
st = [s14824 - sk € SEX, where S is a discrete
constellation set of size M.

We assume that the input-output relationship of the wireless
channel is given by some stochastic transformation param-
eterized by the RIS phase configuration vector ¢ € CF.
Considering finite resolution phase shifting values for the RIS
unit elements, each n-th element (with n =1,2,..., P) of ¢
can be modeled as follows [20]:
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where b is the phase resolution in number of bits; clearly, the
different number of phase shifting values per RIS unit element
is 2°. Based on the latter expression, we represent the feasible
set of RIS phase configuration vectors as O, ie., ¢ € © C
CP>*1 The channel output, i.e., the baseband received at the
N BS antenna elements, at the time instance ¢ is modeled as

yi = fg (s¢) € CV, 2)

where fg (-) represents an unknown generic function that
depends on ¢. For the special case of the conventional linear
Gaussian channels, this function takes the following form [14]:

ff) (st) = (Ho®H; + G)s; + ny, 3)

where P £ dlag(d)), H; £ [hl,l hl’g hl,K] S CPXK
denotes the wireless channel gain matrix between the RIS unit
elements and the UTs (hy, € CP*! with k = 1,2,...,K
represents the channel for the k-th UT), Hy, € CN*F
represents the channel between the BS and RIS, and G £
[g182 - gx] € CNV*E is the direct channel matrix between
the BS and the UTs (gx € CT*! represents the channel for
the k-th UT). In addition, n, € CV is the Additive White
Gaussian Noise (AWGN) vector, which is usually modeled as
having zero-mean elements and covariance matrix o2Iy.

B. Problem Formulation

The BS uses the baseband received signal vector yy, i.e., the
channel output in (2), along with the prior knowledge of the
pilot symbols s;, to train its DNN-based detector (i.e., multi-
antenna RX) and decide the RIS phase configuration vector ¢.
Consequently, by letting §# € CM*1 denote the weights of the
BS’s DNN-based symbol detector, our goal is to jointly design
# and ¢ to minimize the Bit Error Rate (BER). By representing
the DNN operation as the mapping g (-) : CN X1 SE>X1 we
seek to minimize the following objective function:

F(0;0) =E{|lse — vo (fo (se)llo} - “4)

Obviously, this objective approaches its minimal value of
0 when the DNN operation mimics the inverse function of
fo (-). The BER captures the performance of the considered
communication system, which is actually determined by the
DNN-based RX and the RIS phase configuration, i.e., 6 and
¢. For the DNN design, we need periodic pilots to optimize
6 and ¢ to gradually improve the system performance.

III. JOINT MULTI-USER RX AND RIS DESIGN
In this section, we first present our approach for optimizing
the considered design objective, and then describe the DNN-
based RX structure together with the adopted training scheme.
We also present our method for jointly optimizing the DNN-
based multi-antenna RX and the RIS phase configuration.

A. Proposed Optimization Approach

We seek to jointly adapt the parameters of the proposed
DNN-based RX, parameterized by 6, along with the RIS
phase configuration vector ¢, without explicit knowledge of
the channel input-output relationship. The lack of such CSI
renders conventional ML optimization algorithms, e.g., based
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Fig. 2. The phase configurations of the RIS unit elements considered as
hyperparameters in the proposed ML-based approach for the joint design of
the BS’s multi-antenna RX and the RIS; §j, is the estimate for sj.

on gradient methods and backpropagation [21], [22], infeasi-
ble. To tackle this challenge, we note that the RIS parameters
effectively modify the channel conditions, and can thus be
considered as hyperparameters. Those parameters affect the
learning process, but are not directly learned in it, i.e., by
the DNN-based symbol detector, as illustrated in Fig. 2. This
formulation accounts for the fact that the overall task of the
system is to recover the transmitted symbols, which is carried
out using the DNN-based detector. Modeling the elements of ¢
as hyperparameters motivates the application of BO for tuning
them along with the detector [23].

Conventional ML parameters, e.g., the weights of a neu-
ral network which control its mapping, are learned during
the training process. Hyperparameters are parameters of ML
algorithms that control the model’s class, e.g., the network
architecture [24], or the learning process, e.g., the learning rate
[25] and the optimization rule [26]. They can be either chosen
from a discrete set or from a continuous range, and the space
which the hyperparameters are chosen from is referred to,
henceforth, as the search space. The main difference between
learning the parameters of an ML model and optimizing its
hyperparameters follows from the fact that: while one can
commonly compute the gradient of a model’s loss function
with respect to its parameters, evaluating the gradients with re-
spect to the hyperparmeters is often infeasible. Consequently,
gradient-based methods, which are the leading workhorse in
training DNN parameters [27, Ch. 6], are often not applicable.

It is evident from (4) that the expected BER in the objective
function F(0; ¢) cannot be computed without prior knowledge
of the underlying statistical model, and as such, it must
be approximated using its empirical form. This requires the
transmission of 7 pilot symbols, i.e., a labeled set of the
form {s;,y:}{—; in which y; is a realization of fy (s¢).
Furthermore, to facilitate the optimization of the DNN as a set
of classifiers, we consider that the output of the DNN-based
RX models an estimate of the conditional distribution of each
of the transmitted symbols, i.e., 15 () comprises of K vectors
of size M, each representing an estimate of the conditional
probability of a single symbol. In this case, the {y-norm in (4)
can be replaced with the cross-enrtopy loss function. By letting
Yy (-, )k represent the estimated probability mass function of
the k-th symbol evaluated at realization « € S, the resulting
empirical cross-entropy loss is given by:

T K
FO;¢) =Y > —logo(ys, [sili)s- )

t=1 k=1
Using the latter formulation of the empirical error, one can
apply the following two-stage iterative procedure for the

parameters of the BS’s DNN-based RX and those of the RIS
phase configuration at each iteration index i:

0;+1 = argminy F'(6; ¢,), 6)
@,y = argming F(0;41; @). (7N

We note that, at each iteration 7 in the above approach, the
transmission of additional 7" pilots is required. Recall that, at
each time ¢ is modified, a channel input-output function fg (-)
is generated, and a new training set {s;,y;}7_, is required.
Furthermore, while the optimization of the DNN parameters
in (6) can be carried out using conventional gradient-based
methods, updating ¢ in (7) involves complex optimization
with an objective function which is expensive to compute. This
follows due to the fact that the hyperparameters ¢ affect the
channel mapping fy (-), hence, the parameterization of fg (-)
is not explicit, i.e., it is not a known DNN architecture as the
symbol detector is, and thus the RX has no direct access to
it. This indicates that the usage of Bayesian hyperparameter
optimization techniques [28] for updating ¢ should be suitable
for the problem at hand, and can be simple to apply using
existing BO toolboxes, e.g., [29]. Therefore, the optimization
of the objective actually accounts for the optimization of two
parameters, i.e., § and ¢.

B. Multi-User Receiver Model

We adopt the DeepSIC RX [12], which is a DNN-based
soft RX implementing the traditional iterative interference
cancellation method, based on channel modeling by means
of deep learning, and expands to channel-model-independent
implementations.

1) Receiver Architecture: The RX uses an iterative fashion
to achieve interference cancellation. To this end, the symbols
transmitted by other UTs are regarded as interference symbols
for the k-th UT. The detector operates iteratively: in every
iteration ¢ € {1,2,...,Q} £ Q, an estimate of the conditional
distribution, denoted by p,(f), of sy for a given channel output
y is generated for each UT k € K = {1,2,..., K} using the
corresponding estimate of the interference symbols {s;};«
obtained in the previous iteration. Here, we denote s; as the
symbols transmitted by the k-th UT at each time instance.
The purpose of interference cancellation is achieved through
continuous iteration, and the outputs of the DNN at the last
iteration are used for decoding in a hard decision manner.
The whole process is illustrated in the Fig. 3(a). The DNN of
each UT in the entire structure can be viewed as a building
block and its output is the conditional probability of each
UT’s symbols. Therefore, it can be seen as a classifier that
is agnostic of the channel model. The output for the k-th
building block of g-th iteration is p\”’, which is the estimated
conditional probability of s; given y based on {f),(ﬁqfl)}l#.

The structure for the DNN for each UT’s symbol is
shown in Fig. 3(b). Each soft estimate is produced using
a multi-layer fully connected structure with softmax output
layer. For simplicity, we illustrate the DNN architecture with
real-valued channels, as the considered channel model with
complex values can be represented by real vectors of an
extended dimension. Since we use classification DNNs for
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Fig. 3. Structure of the overall DNN-based multi-user RX. (a) DeepSIC-RX illustration; (b) Detailed structure of each DNN in (a).

soft-esitmates, the number of neurons at their output layers
depends on the size M of the constellation set. The inputs of
each DNN includes the inputs at the BS’s N receive antennas,
and the conditional probabilities {f)éq_l) b, of the interfering
symbols from the previous iteration. Thus, the number of input
neurons is N + (K —1)(M —1). Finally, the initial conditional
probablhtles for each UT are set to the uniform distribution,
ie., { }k =ML

2) Recezver Trammg In order to make the RX realize
reliable symbol detection, each DNN needs to be properly
trained. We use the data set of N, pairs of channel inputs
and corresponding outputs {57,5/']}]\7tr to train the RX in a
sequential training fashion. Note that the DNN building blocks
do not depend on the iteration index value, and the input of
each DNN depends on the channel output y and the output
{pl(q_l)}l;ék of the trained DNN in the previous iteration.
This indicates that the DNNs can be trained separately in a
sequential manner to minimize the cross-entropy loss. As such,
we can train each DNN with a small number of samples.
By letting 0(q represent the parameters of the k-th DNN
at iteration ¢ and writing p(Q)(y, {pl )}l¢k,a 0 q)) as the
entry of p(q) corresponding to o € S, when the parameters
and inputs of DNN are 6% and (y, {p? " } 1), respectively,
we can re-express the empirical cross-entropy loss in (6) as:

Nir
1 (@)= ralg—1 N
L) = 5 D0 1oy (75 (B b, (850w 647,

j=1

@®)
where {f)g.?fl)}l?gk represents the estimated conditional prob-
abilities at the previous iteration associated with y;. The
sequential training method from [!2] is summarized in Al-

gorithm 1.

C. Proposed Joint RX and RIS Learning Method

In this section, we first discuss the application of the BO
framework to our RIS-empowered multi-user MIMO system
design objective, and then present a method to jointly opti-
mize the DNN-based multi-antenna RX and the RIS phase
configuration.

1) RIS Configuration via Bayesian Optimization: Let g(+)
represent the mapping between the reflection coefficients
of the RIS and the RX output, and ee focus on finding

Algorithm 1: Sequential Training for the DeepSIC RX

Input : Training data set {S;,y; }J 1, @, and IC
Output: Trained DNN parameters 0= {9(q M % q 1

1 Initialization: Set ¢ = 1, {p }K 1 =M"" and
f)EOg = pff) for every k € K, and j € {1,2,..., Ny }.

2 while ¢ < @Q do

3 for k€ K do

4 Set the DNN parameters to H;q).

5 Train the DNN to minimize (8).

6 Feed{y;, {le )}l7£k}N“ to the trained DNN

to obtain {p] k}N“

7 Setq=q+1.

8 end

9 end

¢* & arg maxd,g(qb) (or equivalently, one can solve for

arg ming—g(¢)). Since it’s hard to acquire knowledge for g(-)
(i.e., it’s a black box function), traditional gradient methods
cannot be applied for learning it. For such cases, the BO
formulation can be used which consists, in general, of the
following two components: i) a surrogate model (the most
commonly used is the Gaussian Process (GP)) to incorporate
prior beliefs about the objective function; and ii) an acquisition
function that directs sampling to areas where an improvement
over the current best observation is likely.

Let ¢, denote the i-th sample RIS phase configuration
and g(¢;) the output observation at the RX of the unknown
objective function at the point ¢,. We also use the set notation
D1y 2 {¢.,,,81.n} to represent the observed data pairs; the
subscript is used to denote sequences of data, i.e., ¢;.,
[d)la ¢27 tr d)n} and gin = [g(¢1)>g(¢2>7 g(d)n)] Fol-
lowing the Bayesian framework, the observation gp., can be
considered to be drawn randomly from some prior probability
distribution. Usually, GP considers the multivariate normal as
the prior distribution, having as unknown parameters its n-
element mean value vector g and its n X n covariance matrix
K the latter is also referred as kernel denoted k . A popular
choice of the kernel is squared exponential function,

k(@06 = e (=30~

9)



Hence, the prior distribution on g;., is mathematically ex-
pressed as:

g1:n ™~ N (I»l' (¢1:n) 7K (¢1n)) ’

where p(¢q.,) and K (¢;.,) include the sample mean val-
ues and the covariance matrix for the observation ¢.,,; for
simplicity, we will henceforth omit the dependence of these
parameters on ¢;.,, although implied, and write p@,., and
K;.,. The latter implies that the observation set Dy., is
used to compute gi.,, thus providing an estimate for the
unknown mapping ¢(-). The BO framework can be then used
to predict the next value g,41 at an arbitrary point ¢, ,
hence refining ¢(-) estimation. According to the properties
of GPs, g;., and g,41 (which denotes a new observation
at the RX output as a response to a new RIS configuration
¢,,.1) follow the bivariate Gaussian distribution. By using
the notation Klzmﬂ_l to denote the covariance matrix of that
distribution and applying the Bayes’ rule, the prediction for
the conditional distribution of g, 1, given the observations
D1.,, and the RIS phase configuration ¢, ;, is expressed as:

(10)

In+1 | Dl:n; ¢n+1 ~N (Mn(¢n+1)70721(¢n+1)) ) (11)
where the mean and variance are respectively given by:
tun(d)n-i-l) £ I~<F1I:n.,n+11<_1(gl:n - ll'l:n) + :u(¢n+1)7 (12)

2 A valN —1 e
Un(¢n+1) = k(¢n+17 ¢n+1) _Kl:n,n-l—lKl:nKl:"vn'i‘l'

The latter conditional distribution is called the posterior
probability distribution. Its mean implies the actual prediction
and its variance represents the value of uncertainty. The
previous process constitutes the first part of the BO framework.
It is a sequential iterative process of obtaining the posterior
from the prior and constantly updating the prior. In other
words, after modeling the unknown mapping g(-) with GP,
we can learn its posterior distribution at any sampling point
¢;, which helps us to find its optimal value. When a new
observation is collected, we add it to the existing data set to
form an enlarged new set, and then, update the prior. Thus,
by expanding the observation set, i.e., as n increases for D; .,
the fitted function will approximate the unknown mapping.

The problem now is how to choose the next sampling point
efficiently, so that we can find the optimal value with the least
number of iterations. This problem can be solved by the second
component of BO, i.e., the acquisition function which helps
to guide the search. In general, every next sample in BO is
obtained by maximizing the acquisition function. That is, we
want to sample g at arg max,p(¢|D), where p(-) represents
the generic function of the acquisition function. In this paper,
we deploy the popular analytic acquisition function of the
Expected Improvement (EI) to find the next sample point for
the Bayes’ rule. The definition of improvement denoted I for
an input ¢ is:

I(¢) £ max (gn41(9) — g (¢7),0),

where g(¢™) denotes the currently observed best value and
gn+1(¢) is the mapping output at the next sample point. This
function is intuitively easy to understand: it is positive when
the prediction is greater than the best observation so far; on

13)

the contrary, it is set to zero. Therefore, the second step in (7)
of our iterative procedure can be determined by optimizing the
EI acquisition function, i.e.:

¢ 41 =argmax g E{max (gn41(¢)—g(¢"),0)[Dr.p }. (14)

It is noted that this function can be evaluated analytically
under the GP model [30]. This means that the gradients
are available and we can easily optimize this function using
relevant toolboxes [27].

2) Joint RX and RIS Optimization: As shown in (6) and
(7), the proposed joint design approach includes the following
sequential iterative procedure: the DNN-based multi-antenna
RX is first optimized for multi-user decoding for a given RIS
configuration, and then, the RIS optimization is performed
via BO to further reduce the BER performance. We consider
sending 7' pilot symbols at each iteration index ¢ and for a
given RIS phase configuration to train the DeepSIC RX, with
the intention to optimize the parameters . When the RIS
is optimized and ¢, for the next iteration is obtained, the
wireless propagation channel changes. This means that the new
RIS configuration ¢, , will generate a new function fg, ()
for the input-output relationship of the wireless channel.
Consequently, we need to resend pilots to estimate this channel
and retrain the DeepSIC RX for multi-user symbol detection.
It is noted that the entire optimization process needs to be
carried out alternately in a sequential manner. The steps of
the proposed approach are included in Algorithm 2.

In the proposed algorithm, we use the set {s;, y:} to present
the channel input and corresponding output at the iteration
index t. The set Dy includes the data {¢,.,, BER;.;}, with
BER;.; representing the BER performances of the trained
DeepSIC RX up to the time index ¢, which is used for
the proposed BO method. The RX training in Step 5 is
implemented with Algorithm 1. We also use additional UT
data to validate the trained RX, by computing the BER.
At the end of the algorithmic iterations Ny, we select the
RIS phase configuration corresponding to the minimum BER,
i.e., ¢*, as shown in Step 10. It is worth noting that after
obtaining the optimal ¢*, we still choose to transmit pilots,
in particular the s; sent during the first iteration, to form the
corresponding channel output y* for retraining the DeepSIC
RX. In this way, the best parameters of the trained DNN and
the RIS, i.e., 8* and ¢*, are obtained. It is noted that the first
algorithmic iteration is considered as the initial reference and
the remaining Ny, — 1 iterations are used for the optimization
process. At the end of the process, we re-send s; to verify
whether the RIS parameters have been optimized. In addition,
at each iteration index ¢, the 7" transmitted pilots are chosen to
be different in order to improve the generalization capability of
the system. Also, the initial RIS configuration ¢, is randomly
chosen since there is no CSI available at the system.

D. Discussion

The proposed joint RX and RIS design approach is quite
flexible. During the BO process, we model the mapping
between the RIS and RX, which is independent of the specific
RX structure, i.e., the RX is relatively independent. This



Algorithm 2: ML-Based Joint RX and RIS Design

1 Initialization: Generate the RIS phase configuration
¢, and the DNN parameters #;, and initialize the
observation set as Dy.q = {0}.

2fort=1,2,..., Ny, do

3 The UTs make use of the T pilots s; and the BS

sets as 6; the parameters of its DNN-based RX.

4 The RIS realizes ¢, and the data set (s¢,y:) is

generated at the RX input after UTs’ transmission.

5 The RX is trained to obtain 0;; and BERj.

6 The new data set (¢,, BER;) is generated and

appended to the existing set Dy.;_1.

7 The data set Dy.+ = {¢;.4, BERy.+} is formulated

to estimate g(-) via the BO approach.

8 Solve (14) to get the next sample ¢, .

9 end

10 Set ¢* = ¢, where t* = argmin;BER.p, ..

11 Run Steps 3-5 with s; and ¢* to obtain 6* for the RX.

12 Output: The joint design ¢* and 6*.

greatly improves the scalability of the framework. The de-
ployed DeepSIC RX [12] is suitable for multi-user MIMO
scenarios, implementing a model-based ML algorithm, but
also extending it to a channel-model-independent realizations;
this is suitable for both linear and non-linear channels. Each
DNN building block in DeepSIC is trained separately, thus, its
complexity increases linearly with the DeepSIC of UTs; this
is very beneficial for MIMO systems. In addition, DeepSIC
allows to complete the training process with a small number
of training sets, i.e., we can send few pilots for training at each
iteration. The computational complexity of the BO approach to
optimize the RIS is acceptable. Since we consider probabilistic
modeling, the problem of optimizing a black box function is
transformed into that of optimizing an acquisition function,
which has reduced computational complexity.

The training of the DeepSIC RX is carried out in an
iterative way, which means that the improvement in the BER
performance is at the cost of increasing training time. Note that
in Algorithm 2, the DeepSIC RX needs to be retrained at each
iteration. This happens because we need to continuously obtain
the data used to fit the target mapping in the BO formulation,
and the system performance can be gradually improved as the
amount of data increases. Therefore, the BER improvement in
the propsoed two-stage iteration is at the cost of increasing
time complexity. Actually, the BO method is typically applied
to adapt a limited amount of parameters. One can extend it to
high dimensions [31]; we leave this for a future extension.

IV. NUMERICAL RESULTS
A. Simulation Parameters

The scenario we consider is the uplink of a MIMO com-
munication system assisted by an RIS. There exist X = 5
UTs in the system, the BS has N = 5 antenna elements, and
the RIS consists of P = 18. The considered channel model
follows (3), where the channel matrices H; and G follow the
Rayleigh distribution, while Hy is a Rician channel. As such,
we have modeled each column of H; and G as h; ;, = ’yljll’k
and gy = 8, respectively, where -y is the passloss factor and

flLk, gk ~ CN(0,Ip). The channel matrix Hy was modeled
as follows:

[ K ~
HQ - 5 ( mH%OS +

where § and k denote the pathloss and Rician factors, re-
spectively. The superscripts "LOS’ and "NLOS’ represent the
LOS and non-LOS components of the channel. These channel
components in the previous expression were both modeled as
standard Gaussian channel matrices. In the simulations, we
have set the passloss factors 5 and - to be normalized to 1,
and the Rician factor x was set 10.

The DNN structure of the DeepSIC RX was chosen to have
three fully-connected layers: the N + (K — 1)(M — 1) x 60
first layer followed by sigmoid activation, the 60 x 30 second
layer followed by ReLU activation, and the 30 x M third
layer. The transmitted symbols were randomly generated from
the QPSK constellation, i.e., Sypsk = {1+ 7, -1+ j,—1 —
j,1—j}. Note that this modulation scheme can be represented
equivalently by the BPSK constellation, i.e., Spper = {—1,1}
in the following sence: a 5 X 5 complex channel with QPSK
signaling is actually equivalent to a 10 x 10 real channel with
BPSK signaling. This transformation can be actually used to
simplify simulations. Since the input data y at the DNN-based
RX cannot be complex, we have given as inputs the real and
imaginary parts of this vector. The number of iterations @) for
each DNN run was set to 5 in Algorithm 1 and the optimizer
used was the ADAM with learning rate 0.01. We have used
Python as the simulation environment and we realized BO via
Botorch based on Pytorch, which is a BO toolbox.

1 ~
HNLOS 15
1 + K 2 ) ( )

B. BER Performance Results

We first evaluated the BER performance versus the signal-
to-noise ratio (SNR), defined as 1 /02, for a fixed RIS con-
figuration in order to solely optimize the DeepSIC RX and
verify its performance. Then, we evaluated the BER with the
proposed joint DeepSIC RX and RIS optimization, which is
described by the two-stage iteration method summarized in
Algorithm 2. The results in Fig. 4(a) were obtained with a
training set of 1000 samples and a testing data with more
than 80000 symbols. The total number of iterations for the BO
part were set as V,, = 25. It can be seen that when RIS is
fixed, the DeepSIC RX can achieve a good BER performance
with a small training data set, and as expected, BER decreases
gradually with the SNR. Interestingly, when we also optimize
the RIS phase configurations, the BER gets further reduced.
For example, for both cases to achieve the BER value 1073,
there will be more than 2 dB gain after optimizing the RIS.

In Fig. 4(b), we evaluate the BER versus the BO iteration
number Ny, for the fixed SNR value —8 dB. It can be
concluded that the BER decreases with increasing NVy,,. Note
that in Algorithm 2, we get the next sample by optimizing the
acquisition function. In this subfigure, we also simulated the
case where the next sample point (i.e., next RIS configuration)
was generated in a random way. Namely, other conditions
remained unchanged and we transmitted the same pilots at
each iteration, while randomly generating the RIS phase
configurations. This random generation yields a straight BER
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Fig. 4. The BER performance of the proposed ML-based joint RX and RIS optimization: (a) versus the SNR in dB; (b): versus the iteration number Ny,.

curve, which means that none of the chosen RIS configurations
improved the BER in the considered 60 iterations. Recall that,
at each iteration in our proposed approach, we need to send
pilot signals and train the DeepSIC RX receiver whenever the
RIS configuration changes. This results in training overhead,
implying that the RIS configuration search needs to perform
efficiently, improving the BER sequentially. As shown, our
BO method is more stable than the random selection strategy,
yielding better RIS configurations (in terms of BER) with
fewer algorithmic iterations.

V. CONCLUSIONS

In this paper, we proposed a joint optimization approach
for reception and RIS phase configuration targeting reliable
symbol detection in the uplink of RIS-aided multi-user MIMO
communication systems. We considered a DNN-based RX
which was combined with BO in a two-stage alternating
optimization algorithm, requiring periodical transmissions of
small numbers of pilot symbols for convergence. Our BER
performance evaluation results demonstrated the efficacy of
the proposed model-agnostic DNN-based learning approach.
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