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Abstract—The so-called block-term decomposition (BTD) ten-
sor model, especially in its rank-(Lr, Lr, 1) version, has been
recently receiving increasing attention due to its enhanced ability
of representing systems and signals that are composed of block

components of rank higher than one, a scenario encountered in
numerous and diverse applications. Its uniqueness and approxi-
mation have thus been thoroughly studied. The challenging prob-
lem of estimating the BTD model structure, namely the number
of block terms (rank) and their individual (block) ranks, is of
crucial importance in practice and has only recently started to
attract significant attention. In data-streaming scenarios and/or
big data applications, where the tensor dimension in one of its
modes grows in time or can only be processed incrementally, it is
essential to be able to perform model selection and computation
in a recursive (incremental/online) manner. To date there is only
one such work in the literature concerning the (general rank-
(L,M,N)) BTD model, which proposes an incremental method,
however with the BTD rank and block ranks assumed to be
a-priori known and time invariant. In this preprint, a novel
approach to rank-(Lr, Lr, 1) BTD model selection and tracking
is proposed, based on the idea of imposing column sparsity jointly
on the factors and estimating the ranks as the numbers of factor
columns of nonnegligible magnitude. An online method of the
alternating iteratively reweighted least squares (IRLS) type is
developed and shown to be computationally efficient and fast
converging, also allowing the model ranks to change in time.
Its time and memory efficiency are evaluated and favorably
compared with those of the batch approach. Simulation results
are reported that demonstrate the effectiveness of the proposed
scheme in both selecting and tracking the correct BTD model.

I. INTRODUCTION

Tensors and their decomposition models and methods [1]

have attracted significant attention in numerous application

areas in view of their unique ability to represent (explicitly

or implicitly) multi-dimensional data and systems and their

latent structure. The Tucker decomposition (TD), consisting

of a core tensor multiplied by matrix factors on all or some

of its modes, and its specialization with super-diagonal core,

namely the Canonical Polyadic Decomposition (CPD) (or

PARAllel FACtor analysis (PARAFAC or PARAFAC1)), have

been the most well-known and studied tensor decomposition

models [1], in both static and online settings. Block-Term

Decomposition (BTD) was introduced in [2] as a tensor model

that combines the CPD and the TD models, in the sense that

it decomposes a tensor in a sum of tensors (block terms) that

have low multilinear rank (instead of rank one as in CPD).

Hence a BTD can be seen as a constrained TD, with its core

tensor being block diagonal (see [2, Fig. 2.3]). It can also be

seen as a constrained CPD having factors with (some) collinear

columns [2]. In a way, BTD lies between the two extremes (in

terms of core tensor structure), CPD and TD, and it is useful

to recall here the related remark made in [2], namely that “the

rank of a higher-order tensor is actually a combination of the

two aspects: one should specify the number of blocks and their

size”. Accurately and efficiently estimating these numbers and

tracking them in time along with the model factors as the

tensor grows in one of its modes (common scenario in data-

streaming and big data applications) is the aim of this work.

A. Offline BTD model selection and computation

Although [2] introduced BTD as a sum of R rank-

(Lr,Mr, Nr) terms (r = 1, 2, . . . , R) in general, the special

case of rank-(Lr, Lr, 1) BTD has attracted a lot more of

attention, because of both its more frequent occurrence in a

wide range of applications and the existence of more concrete

and easier to check uniqueness conditions (cf. [3] for an

extensive review). Note that the mode with the unit modal rank

is most commonly associated with the temporal dimension, as

it is the case, for example, in tensorial functional Magnetic

Resonance Imaging (fMRI) [4]. This special yet very popular

BTD model is at the focus of the present work and is briefly

defined as follows. Consider a 3rd-order tensor, X ∈ CI×J×K .

Then its rank-(Lr, Lr, 1) BTD is written as

X =

R
∑

r=1

Er ◦ cr, (1)

where Er is an I × J matrix of rank Lr, cr is a nonzero

column K-vector and ◦ denotes outer product. Clearly, Er

can be written as a matrix product ArB
T
r with the matrices

Ar ∈ CI×Lr and Br ∈ CJ×Lr being of full column rank, Lr.

Eq. (1) can thus be re-written as

X =

R
∑

r=1

ArB
T
r ◦ cr . (2)

A schematic representation of the rank-(Lr, Lr, 1) BTD is

given in Fig. 1. It should be apparent from (2) and Fig. 1
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Fig. 1. Rank-(Lr , Lr , 1) block-term decomposition.

that CPD results as a special case with all Lr, r = 1, 2, . . . , R
equal to 1.

In general, R and Lr, r = 1, 2, . . . , R are assumed a-priori

known (and it is commonly assumed that all Lr are all equal

to L, for simplicity). However, unless external information is

given (such as in a telecommunications [5] or a hyperspectral

image (HSI) unmixing application with given or estimated

ground truth [6]), there is no way to know these values

beforehand. Although overestimation of the block ranks Lrs

has been observed not to be harmful in some blind source

separation applications (e.g., [5]), this is not the case in gen-

eral [3]. Besides, in addition to increasing the computational

complexity, setting Lr too high may hinder interpretation of

the results through letting noise/artifact sources interfere with

the desired sources. This holds for R as well, whose choice

is known to be more crucial to the obtained performance as it

represents the number of “factors” that generate the data and

its over/under-estimation will lead to over/under-fitting, with

undesired consequences for the interpretability of the results

(cf. [3] for related references).

It is known that computing the number of rank-1 terms in

a CPD model (i.e. the tensor rank) is NP-hard [7]. Model

selection for BTD is clearly more challenging than in CPD

and TD models and has only recently started to be studied

(cf. [3] for an extensive review of heuristic approaches and

techniques). The most recent contribution of this kind can

be found in our work [3], which relies on a regularization

of the squared approximation error function with the sum of

the Frobenius norms of the factors reweighted by a diagonal

weighting which jointly depends on the factors in two levels:

the reweighted norms of A ,
[

A1 A2 · · · AR

]

and

B ,
[

B1 B2 · · · BR

]

are combined and then coupled

with the reweighted norm of C ,
[

c1 c2 · · · cR
]

. This

two-level coupling naturally matches the structure of the model

in (2), making explicit the different roles of A,B and C. This

way, column sparsity is imposed jointly on the factors and in

a hierarchical manner, which allows to estimate the ranks as

the numbers of factor columns of non-negligible energy. Fol-

lowing a block coordinate descent (BCD) solution approach,

an alternating hierarchical iterative reweighted least squares

(HIRLS) algorithm, called BTD-HIRLS, was developed in [3]

that manages to both reveal the ranks and compute the BTD

factors at a high convergence rate and low computational cost.

B. Our contribution

In practice, data may be streaming (arriving sequentially

in time) or the data-generation mechanism (the model) may

change with time (cf. [8], [9] and references therein). In

big data applications, the tensor to be decomposed may be

too large to fit in the memory and being processed as a

whole. A possible workaround is then to recursively update

the decomposition model in an incremental manner. In both

cases, a sequence of optimization problems results [8]. Instead

of re-selecting and re-computing the model of the entire tensor

every time new data arrive, which is computationally and

memory costly even when the previous model is used to

initialize the computations and renders the task intractable for

fast streamed and/or large-scale tensors, a recursive update

is more desirable, namely one that will update the model

with relatively few additional operations and will be memory

efficient. The aim of such a decomposition ‘on the fly’ [10] is

to track the model in (nearly) real-time with minimal memory

overhead, while attaining a modeling performance comparable

to that of the batch (in terms of decomposing the tensor in

increasing batches or in its entirety) approach. In any case,

an online approach is the only effective way to follow if the

model structure (ranks) and parameters change with time as

it is the case in numerous application contexts such as video

surveillance, network monitoring, dynamic neuroimaging, and

others (see the following subsection).

Assume a noisy version of X above and that new I × J
frontal slices are being added in its third mode. Assume

moreover that the uniqueness conditions hold for all these

tensor batches and that A,B (and hence the corresponding

multilinear subspace) change only slowly with time. In other

words, the assumption is that the incoming data do not have

a detrimental effect on the model (i.e., the BTD model keeps

being valid, albeit with possibly changing ranks), affecting

smoothly only its local features (in the sense of [11]). Hence

(2) holds throughout, with varying factors A,B,C and possi-

bly R and Lrs. It is natural to assume, for a rank-(Lr, Lr, 1)
BTD model, that it is the 3rd dimension that grows, while

the other dimensions are kept unchanged. The growing mode

could correspond to, for example, time in fMRI and dynamic

MRI [10], spectrum in HSI, etc. R and Lrs are assumed a-

priori unknown and possibly time varying. This is in contrast

to all (but one, to be reviewed in the sequel) the existing works

on online tensor factorization (OTF).

Our contribution in this work lies in extending the batch

approach of [3] to OTF with possibly changing ranks. Specif-

ically, we propose and develop here a relaxed variant of BTD-

HIRLS, which is more amenable to an online extension. The

hierarchical nature of BTD-HIRLS is relaxed, considering the

third mode separately from the other modes. For extending

to the online setting this so-called BTD-IRLS algorithm, we

expand on earlier work of ours on online rank-revealing matrix

decomposition [12]. We consider exponential windowing to

realize fading memory, that is, gradually forget the effect of

past slices. Alternatively, we could employ sliding (truncated)

windowing [13]. Whatever is the window type adopted, its

duration is to be chosen according to the dynamics of the

system under study and can also be adaptive (e.g., [14]). The

proposed algorithm, named Online BTD-IRLS, is shown to



enjoy computational efficiency and fast convergence, inherited

from its batch counterpart. Furthermore, it is highly time- and

memory-efficient in the sense that the involved quantities are

updated recursively in an efficient manner and its computa-

tional and memory complexity requirements do not depend on

the horizon of the growing dimension. Moreover, as demon-

strated via simulations, the quality of the data approximation

is comparable with that of the batch version and the ranks

are estimated and tracked correctly with a high probability.

In this presentation, adaptation is done per slice. The method

can be easily extended so as to update the model for each

new chunk of possibly more than one slices. The algorithm

development can be cast in the so-called block successive

upper-bound minimization (BSUM) framework [15] (see also

the appendices) and can be seen as a recursive variant of BTD-

IRLS.

C. Related work

This subsection presents an extensive overview of the incre-

mental/online tensor decomposition literature with the aim of

offering an as complete as possible picture of the framework in

which the proposed method is placed. This is not intended to

be exhaustive, although most of the related work is included.

The interested reader is invited to check the cited works and

the references therein.

Processing a tensor that grows in one of its modes through

the streaming of new slices in a way that takes this into account

and does not re-compute the model parameters from scratch

for every increment in the size of the tensor first appeared

in the tensor-based data mining literature [16] with the name

of Incremental Tensor Analysis (ITA). ITA and its variants

(Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis

(STA), and Windowed Tensor Analysis (WTA)) were aimed

at performing TD on a sequence of tensors and were later

extended to incremental higher-order singular value decompo-

sition (HO-SVD) (based on incremental SVD) for the purposes

of data mining in intelligent transportation systems [17],

computer vision [18]–[22], recommendation systems (see also

[23, Chapter 6]) [24], [25], handwritten digit recognition [26],

and epidemics [27] and social networks [28] analysis. Pairwise

interactive tensor factorization (PITF), a special case of TD,

was studied in this context in [29]. A quite special idea for

online TD was reported in [30]. One augments the current TD

factors with random columns, orthogonalizes them, finds the

TD core tensor with these factors for the newly arrived tensor,

reduces the resulting core to the previous dimensions, and

combines the factors of the last two decompositions. The idea

is that the new decomposition can result from the previous one

by updating the factors with random columns and refine them

by projecting onto the new data. The use of computationally

expensive SVDs is avoided in [31] by exploiting the properties

of block tensor matrix multiplication to efficiently realize

online TD. In [32], the tensor is seen as a function of time

and the manifold properties of the set of low-rank Tucker

decomposable tensors are exploited to formulate the dynamic

(through time) Tucker approximation problem with the aid of

a system of nonlinear tensor differential equations that are to

be numerically solved. Online HO-SVD was also considered

in [33] for tracking of the subspaces of the non-evolving

modes. Tensor switch, i.e., abrupt changes in the subspaces

dimensions, is allowed, with modal rank adjustment based

on thresholding the singular values of a rank-revealing URV

decomposition. Of course one has to properly pre-set the

threshold values, depending on the expected noise level.

Online CPD was also extensively studied after the pioneer-

ing work of [13]; see, e.g., [34]–[36]. The basic idea (proposed

in [13]) is, given a new frontal slice, to find the new row of

the C factor, use this to find the updated subspace spanned by

modes 1 and 2 and finally split it (one way or another) into its

A and B factors. If there is no need to explicitly track A and

B, one may simply track the corresponding subspace only.

Variations include second-order stochastic gradient (for faster

convergence) and updating only one column of the subspace

basis matrix at each time (for linear complexity [35], [37])

or use of momentum (Nesterov) stochastic gradient descent

(SGD) and artificial noisy perturbations for escaping saddle

points [38]. Online nonlinear least squares (NLS), with pos-

sibly dynamic CPD rank, which however needs to be known

at every time instant, was developed in [39] and was shown

to outperform [13] in terms of approximation error and speed.

The tensor is replaced by its current CPD approximation so

that an infinite time horizon can be more easily coped with.

All the previous methods are deterministic. A probabilistic

online CPD scheme was proposed in [40], which follows a

streaming variational Bayesian inference approach to quantify

the uncertainty in the CPD model parameters and hence be

able to predict missing entries that may arrive in different

orders in time, and in all modes.

Constraints, which impose smoothness in time and non-

negativity or sparsity, may also be included depending on

the application context, such as, for example, in nonnegative

online CPD for time-evolving topic modeling (with possible

applications in the analysis of social media-generated data

on the Covid-19 pandemic) [27] or in tensor dictionary

learning [41]. Possible solution approaches include alternating

optimization with alternating direction method of multipliers

(AO-ADMM) [42]. Incorporating ℓ1-norm constraints in dy-

namic TD allows for rejecting outliers or detecting subspace

changes [43]. [44] relies on the well-known in robust principal

component analysis (PCA) [12], [45] low rank plus sparse

representation model to come up with an online CPD scheme

for (ADMM-based) outlier-resistant tracking and completion.

For symmetric (moment) tensors, online (SGD) versions of the

symmetric tensor power method [46] were developed in [47],

[48] with applications in latent model learning for community

detection and topic modeling.

As mentioned previously, OTF has been also studied in the

context of dictionary learning (DL), with the dictionary being

Kronecker or Khatri-Rao (KR) product-structured. Thus, an

online CPD method based on matrix DL for the tensor unfold-

ing corresponding to the sparse mode was developed in [49]

for 3-way tensors based on the idea that the KR structure of



the dictionary can be exploited to disentangle its two factors

via least squares (LS) KR factorization (LS-KRF). This was

extended in [50] to higher-order tensors through an online

CPD scheme that can also incorporate additional constraints

and follows an idea analogous to that of [51] for online matrix

DL, which consists of a sparse coding step followed by circular

BCD over the factors of the dictionary. BCD with diminishing

radius (DR) [52] is employed for increased stability. Notably,

the development of the scheme of [50] was followed by a

convergence proof (also valid for Markovian data), which is

rarely the case in OTF works, and was successfully applied

in brain video tracking, among other applications. It should

be noted that the basic mechanism of [50] (updating of the

evolving mode in alternation with BCD over the rest of the

modes) is what underlies the scheme proposed in the present

work as well and hence the proof in [50] can be extended

towards a convergence analysis of our online method and

its DL generalization. It should also be noticed that our

problem is basically one of sparse factorization with a-priori

unknown support (i.e., set of the indices r of the nonzero

columns of C and the indices l of the nonzero columns of the

corresponding Ar,Br blocks). Thus, the convergence theory

of online sparsity learning methods [53, Chapter 10] is also

relevant here.

To cope with the large scale of tensors in big data streaming

applications, divide-and-conquer approaches have been fol-

lowed, which work incrementally but in parallel over small

batches, fusing the individual CPDs to form that of the overall

big tensor. [54] is such an example. CPDs of subtensors that

include samples of the newly arrived slices are computed in

parallel. Instead of operating on the full data, the method

operates on summaries of the data. The rank is estimated

with the aid of the Core Consistency Diagnostic (CorConDia)

heuristic and a quality control is incorporated to check whether

the rank of the new slices disagrees with the current one. The

case where the new rank is lower is addressed by solving

an assignment problem [54]. A similar idea, inspired from the

philosophy of [55], underlies the method of [56]. Similar ideas

are found in [57], where a Bayesian scheme is also developed

to perform a statistical data-driven initialization. [58] performs

online CPD per blocks, corresponding to those subtensors

that are affected by the new data, and accordingly refines

the overall CPD. In [59], the CPD is incremented without

having to generate subtensors. [60] develops a variant of the

method of [34] that employs randomized least squares to more

effectively cope with large-scale tensors. A randomization-

based online CPD algorithm of the Newton type appears

in [61].

In general, the tensor rank is assumed time invariant and

very often a-priori known. [62] is a rare exception, where the

rank is allowed to change with time (and may correspond to

a so-called drift of concepts). The rank of the newly arrived

tensor is estimated and an algorithm based on correlating the

current CPD factors with those of the new CPD is applied in

order to find new concepts or missing concepts. Therefore, a

new rank estimation and subsequent CPD procedure is needed

for each newly arrived tensor, which considerably complicates

the algorithm. Note that in our method rank estimation and

tracking is done automatically.

Besides TD and CPD, alternative tensor decomposition

models have been implemented via online methods. These

include BTD [63], PARAFAC2 [64], and tensor trains [65].

The so-called OnlineBTD algorithm (inspired from the On-

lineCPD of [34]) recently reported in [63] is to the best of

our knowledge the only method for BTD that operates in an

online fashion. It is shown to outperform batch alternating

least squares (ALS) and NLS in terms of time and memory

efficiency while attaining a comparable approximation error.

Moreover, it is made to work for general rank-(L,M,N) BTD

and for tensors of higher (than 3) order. However, both the

number of block terms and their multilinear ranks are assumed

to be fixed and a-priori known. The authors show that their

method’s performance is rather robust to overestimates of these

ranks. However, this may not be always the case depending

on the application (see [66] and references therein) plus that

one might want to have a sufficiently accurate estimate of the

ranks for the purposes of interpreting the data (as in, e.g., HSI,

where the rank signifies the number of endmembers and the

block ranks stand for the ranks of the corresponding abundance

maps). Moreover, it may be the case in practice that the ranks

vary with time. Our online method for rank-(Lr, Lr, 1) BTD

automatically estimates the ranks and tracks them in time.

In most online methods, the tensor grows in only one

(usually having a time meaning) mode. The more general case

of the tensor being incremented in more than one or even

all of its modes, usually referred to as multi-aspect streaming

tensor analysis, can be also relevant in applications (e.g., in

recommendation systems with growing time and numbers of

movies and users) and is certainly more challenging than

the single evolving-mode case. Examples of works that have

studied this more general scenario include [40], [44], [67]–

[69]. Notably, [69] also leverages side information (in the form

of linear constraints on the Tucker factors).

Applications of OTF abound. They include unveiling the

topology of evolving networks [70], spatio-temporal predic-

tion or image in-painting [41], multiple-input multiple-output

(MIMO) wireless communications [13], [71], brain imag-

ing [72], monitoring heart-related features from wearable sen-

sors for multi-lead electro-cardiography (ECG) [73], anomaly

detection in networks and topic modeling [16], structural

health monitoring (in an internet of things (IoT) context) [36],

online cartography (spectrum map reconstruction in cognitive

radio networks) [14], detection of anomalies in the process

of 3D printing [74], data traffic monitoring in networks [10],

[16], cardiac MRI [10], stream data compression (e.g., in

power distribution systems [75] or in video [76]), and online

completion [10], [77], [78], among others.

D. Outline

The rest of this preprint is organized as follows. The

adopted notation is described in the following subsection.

The problem is mathematically stated in Section II, where



useful expressions for the tensor unfoldings and slices are

also recalled. A relaxed version of the regularization-based

criterion for the batch method of [3] along with the associated

iterative BTD-IRLS procedure is presented in Section III. This

serves as the basis for the development of the online method

in Section IV. Section V reports and discusses the simulation

results. Conclusions are drawn and future work plans are

outlined in Section VI.

E. Notation

Lower- and upper-case bold letters are used to denote

vectors and matrices, respectively. Higher-order tensors are

denoted by upper-case bold calligraphic letters. For a tensor

X , X(n) stands for its mode-n unfolding. ∗ stands for the

Hadamard product and ⊗ for the Kronecker product. The

Khatri-Rao product is denoted by ⊙ in its general (partition-

wise) version and by ⊙c in its column-wise version. ◦ denotes

the outer product. The superscript T stands for transposition.

The Matlab indexing notation is adopted. Thus, for example,

X(i, :) is the ith row of the matrix X and X (:, :, k) is the kth

mode-3 (frontal) slice of the tensor X . The identity matrix

of order N and the all ones M × N matrix are respectively

denoted by IN and 1M×N . 1N stands for 1N×1. The row

vectorization and the trace of a matrix X are denoted by

vec(X) and tr(X), respectively. ∇X stands for the gradient

operator with respect to (w.r.t) X. diag(x) is the diagonal

matrix with the vector x on its main diagonal. The block

diagonal matrix is denoted by blockdiag(·). The Euclidean

vector norm and the Frobenius matrix and tensor norms are

denoted by ‖ · ‖2 and ‖ · ‖F, respectively. The mixed 1, 2

(ℓ1,2) norm of a matrix X =
[

x1 · · · xN

]

is defined as
∑N

n=1 ‖xi‖2. C is the field of complex numbers.

II. PROBLEM STATEMENT

Let the I × J × k tensor Y(k) grow in its 3rd mode, i.e.

for increasing k. That is, an additional I × J frontal slice is

considered (in an incremental or streaming fashion) per step

(see Fig. 2). The aim is to compute the best (in the least

squares sense) rank-(Lr, Lr, 1) approximation of Y(k),

Ŷ
(k)

=

R
∑

r=1

A(k)
r B(k)T

r ◦ c(k)r ,

in a recursive manner, that is, based on the BTD model for

the I × J × (k − 1) tensor Y(k−1), compute the matrices

A
(k)
r =

[

a
(k)
r,1 a

(k)
r,2 · · · a

(k)
r,Lr

]

∈ CI×Lr , B
(k)
r =

[

b
(k)
r,1 b

(k)
r,2 · · · b

(k)
r,Lr

]

∈ CJ×Lr , and C(k) ∈ Ck×R,

with the ranks R and Lr, r = 1, 2, . . . , R assumed a-priori

unknown and possibly varying with k.

Recall that, in terms of its mode unfoldings, the tensor in (2)

can be written as [2]

XT
(1) =(B⊙C)AT , PAT, (3)

XT
(2) =(C⊙A)BT , QBT, (4)

XT
(3) =

[

(A1 ⊙c B1)1L1 · · · (AR ⊙c BR)1LR

]

CT

, SCT. (5)

Moreover, its kth frontal slice can be expressed as

X (:, :, k) = Ablockdiag(ck,1IL1 , ck,2IL2 , . . . , ck,RILR
)BT,

(6)

which, for the most common case of all equal Lr = L,

becomes

X (:, :, k) = A(diag(C(k, :)) ⊗ IL)B
T. (7)

Note that, for L = 1, the above yields the well-known

expression for the frontal slices of a CPD-modeled tensor [1].

These expressions will be used in the sequel to solve for

A,B,C in a BCD manner.

III. BATCH BTD-IRLS ALGORITHM

The problem solved by BTD-HIRLS in [3] can be formu-

lated as

min
A,B,C

1

2

∥

∥

∥

∥

∥

Y −

R
∑

r=1

ArB
T
r ◦ cr

∥

∥

∥

∥

∥

2

F

+

λ

R
∑

r=1

√

√

√

√

L
∑

l=1

√

‖ar,l‖22 + ‖br,l‖22 + η2 + ‖cr‖22 + η2, (8)

where η2 is a very small positive constant that ensures

smoothness at zero and R and L here stand for the initial

(over)estimates of the model rank parameters. Observe that

the definition of the regularizer fully matches the structure of

the BTD model in (2). For each block term, r, the blocks

Ar,Br are coupled together and, at a higher level, coupled

with the corresponding column of C. Nonetheless, a simpler

definition, which relaxes the coupling between Ar,Br and

cr and greatly facilitates the development of a recursive

decomposition scheme, is also possible and is given below:

min
A,B,C

1

2

∥

∥

∥

∥

∥

Y −
R
∑

r=1

(

ArB
T
r

)

◦ cr

∥

∥

∥

∥

∥

2

F

+

λ

R
∑

r=1

L
∑

l=1

√

‖ar,l‖22 + ‖br,l‖22 + η2 + µ

R
∑

r=1

√

‖cr‖22 + η2,

(9)

where the regularization parameters of the terms associated

with A,B and C, namely λ and µ, may in general differ. This

modification makes the resulting scheme more flexible and

amenable to incremental processing (see Section IV). It should

also be noted that, ignoring η2, the two regularization terms

above coincide with the ℓ1,2 norms of
[

AT BT
]T

and C,

respectively. Hence, as detailed and demonstrated in [3], it is

expected that this regularization scheme will promote column

sparsity simultaneously on the factors A,B (jointly) and C,

allowing the actual ranks R and Lrs to be recovered. Fol-

lowing a similar methodology as in [3], namely employing a

BCD scheme (with the blocks being the BTD factors A,B,C)

and relying on majorization-minimization (MM) [79] for each

block, we can develop an iterative reweighted least squares

(IRLS)-type algorithm for solving (9). The algorithm, called

here BTD-IRLS, is tabulated as Algorithm 1 and is seen to
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Fig. 2. (a) Growth of a 3rd-order tensor in its (evolving) third mode with an extra slice (red) and (b) updating of its rank-(Lr , Lr , 1) BTD by adding a new
row (red) to the third-mode factor matrix and appropriately modifying the factor matrices in the other modes (pink).

Algorithm 1: BTD-IRLS algorithm

Input: Y ,λ, µ, Rini, Lini

Output: Best (in the sense of (9)) BTD approximation of Y

Initialize: A(0),B(0),C(0)

n← 0
repeat

Compute D
(n)
1 ,D

(n)
2 from (10) and (11)

P(n)
← B(n)

⊙C(n)

A(n+1) ← Y(1)P
(n)

(

P(n)TP(n) + λD
(n)
2

)

−1

Q(n) ← C(n) ⊙A(n)

B(n+1) ← Y(2)Q
(n)

(

Q(n)TQ(n) + λD
(n)
2

)

−1

S(n)
←

[ (

A
(n)
1 ⊙c B

(n)
1

)

1L · · ·

(

A
(n)
R
⊙c B

(n)
R

)

1L

]

C(n+1)
← Y(3)S

(n)(S(n)TS(n) + µD
(n)
1 )−1

n← n+ 1
until convergence

only involve closed-form matrix-wise operations for A,B,C
at each iteration. The ranks are over-estimated as R = Rini

and Lr = Lini, r = 1, 2, . . . , R and, provided λ, µ are

appropriately selected, their true values are recovered as the

numbers of columns of non-negligible magnitude of C and the

corresponding Ar,Br blocks, respectively. This can be done

either after convergence or in the course of the procedure,

accompanied by the respective column pruning. BTD-IRLS

differs from the BTD-HIRLS scheme of [3] in that reweighting

is done separately for A,B and C (reflecting the ‘de-coupled’

nature of the regularizer) and not in a two-level hierarchy as

in BTD-HIRLS, hence the name of the new algorithm. The

reweighting diagonal matrices D
(n)
1 and D

(n)
2 , of order R and

LR, respectively, are given by

D
(n)
1 (r, r) =

(

‖c(n)r ‖22 + η2
)−1/2

(10)

and

D
(n)
2 ((r − 1)L+ l, (r − 1)L+ l) =

(

‖a
(n)
r,l ‖

2
2 + ‖b

(n)
r,l ‖

2
2 + η2

)−1/2

(11)

and are applied for reweighting C and A,B, respectively.

This modification of BTD-HIRLS inherits its computational

efficiency, as it will be detailed in Section IV-A. Another

difference with the method of [3] comes from the fact that the

two, now ‘de-coupled’, regularization terms can be weighed

by generally different regularization parameters, offering the

possibility of penalizing the overestimation of the number of

block terms and the number of components in each differently.

As we will demonstrate via simulations, the above algorithm

shares the rank-revelation ability of its counterpart of [3] and

is also fast converging. An online version of it is developed

next.

IV. A RANK-REVEALING ONLINE BTD ALGORITHM

In order to incorporate in the previous method the ability to

track time-varying BTD models, we define an exponentially

windowed version of the objective function in (9). The opti-

mization problem at time step k is formulated as

min
A,B,C

1

2

k
∑

κ=1

ξk−κ
∥

∥

∥
Y(κ) −A

(

diag(γ(κ))⊗ IL

)

BT
∥

∥

∥

2

F
+

λ

R
∑

r=1

L
∑

l=1

√

‖ar,l‖22 + ‖br,l‖22 + η2+µ

R
∑

r=1

√

‖Ξ(k) 1
2 cr‖22 + η2,

(12)

where Y(κ) is the κth I × J slice of Y(k), γ(κ)T , C(κ, :)
is the κth row of C, and Ξ(k) , diag

(

ξk−1, . . . , ξ, 1
)

, with

0 < ξ ≤ 1 being the forgetting factor. The aim is, given

the model for the tensor consisting of the first k − 1 slices

and the new, kth slice Y(k), to update the model parameters

A,B,C and the model orders R and Lr, r = 1, 2, . . . , R
based on their values at κ = k − 1, in a time- and memory-

efficient way. As previously, R and L are the over-estimates

of the rank parameters, with all Lr being over-estimated as

L, and we have thus employed the corresponding expression

for the frontal slice, eq. (7). It must be emphasized that these

parameters are not only a-priori unknown but also potentially

changing with k. The first term in (12) is the data fidelity

cost, represented by the sum of the exponentially weighted

squared errors between the slices of the data tensor and those

of its BTD approximation. The rest of the objective is inspired

from the regularization part of (9). Exponential time-weighting

is also applied on the columns of C, while no weighting is

required in the term involving the factors A and B since these

do not change in size with k. As it is common in the OTF

literature, we will make the assumption that the latter factors,

that is those corresponding to the non-evolving modes, are

only changing slowly.



Let Y
(k−1)
(1) ,Y

(k−1)
(2) and Y

(k−1)
(3) be the mode unfoldings of

the I×J × (k−1) tensor Y(k−1), available at step k−1, and

y(k) , vec(Y(k)), where Y(k) is the new I × J slice that is

included at step k. Then (cf. [20, Fig. 2]) the mode unfoldings

of the incremented tensor Y(k) can be expressed as follows:

Y
(k)
(1) =

[

Y
(k−1)
(1) Y(k)

]

U(k), (13)

Y
(k)
(2) =

[

Y
(k−1)
(2) Y(k)T

]

, (14)

Y
(k)
(3) =

[

Y
(k−1)
(3)

y(k)T

]

, (15)

where U(k) is the kJ × kJ permutation matrix that moves

the jth column of Y(k) to the jkth position of the resulting

matrix.

It follows from (5) and (15) and the assumption of slowly-

varying A,B that the factor C will only change in its new

row at each step k, that is,

C(k) =

[

C(k−1)

γ
(k)T

]

. (16)

Hence the problem of estimating C at the kth step can be cast

from (12) in terms of its last row and using (5) can be written

as:

γ
(k) = argmin

γ

1

2

∥

∥

∥
y(k) − S(k−1)

γ

∥

∥

∥

2

2
+

µ
R
∑

r=1

√

ξ
∥

∥

∥
Ξ(k−1) 1

2 c
(k−1)
r

∥

∥

∥

2

2
+ γ2

r + η2,

(17)

where c
(k−1)
r is the rth column of C(k−1) and γr is the rth

element of the optimization variable γ. This sub-problem can

be solved via MM (see Appendix A), leading to the following

closed-form solution for γ(k):

γ
(k) =

(

S(k−1)TS(k−1) + µD
(k−1)
1

)−1

S(k−1)Ty(k), (18)

where (cf. (5))

S(k−1) ,
[

(A
(k−1)
1 ⊙c B

(k−1)
1 )1L1 · · · (A

(k−1)
R ⊙c B

(k−1)
R )1LR

]

and D
(k−1)
1 is the R×R diagonal matrix with diagonal entries

D
(k−1)
1 (r, r) =

(

ξ
∥

∥

∥
Ξ(k−1) 1

2 c(k−1)
r

∥

∥

∥

2

2
+ η2

)−1/2

. (19)

Observe that the squared norm above can be recursively

computed:

D
(k)
1 (r, r) =

(

ξ2
∥

∥

∥
Ξ(k−1) 1

2 c(k−1)
r

∥

∥

∥

2

2
+ ξ(γ(k)

r )2 + η2
)−1/2

.

(20)

C is updated row-by-row from (18). On the contrary, each

of the factors A and B must be updated as a whole upon the

arrival of a new slice (cf. Fig. 2(b)). Writing (12) in terms of

the mode-1 unfoldings and making use of (3) we obtain the

A sub-problem in the form

A(k) = argmin
A

1

2

∥

∥

∥JΞ
(k) 1

2

(

Y
(k)T
(1) −P(k)AT

)∥

∥

∥

2

F
+

λ

R
∑

r=1

L
∑

l=1

√

‖ar,l‖22 + ‖b
(k−1)
r,l ‖22 + η2, (21)

where P(k) = B(k) ⊙ C(k) (cf. (3)) and JΞ
(k) stands for

IJ ⊗ Ξ(k). Solving (21) via MM (see Appendix A) leads to

the following closed-form expression for A(k):

A(k) =

Y
(k)
(1)JΞ

(k)P(k)
(

P(k)T
JΞ

(k)P(k) + λD
(k−1)
2

)−1

, (22)

where D
(k−1)
2 is the LR× LR diagonal matrix whose ((r −

1)L+ l)th diagonal entry is given by

D
(k−1)
2 ((r − 1)L+ l, (r − 1)L+ l) =
(

‖a
(k−1)
r,l ‖22 + ‖b

(k−1)
r,l ‖22 + η2

)−1/2

. (23)

With V
(k)
A

, P(k)T
JΞ

(k)P(k) and G
(k)
A

, Y
(k)
(1)JΞ

(k)P(k),

(22) is more compactly written as

A(k) = G
(k)
A

(

V
(k)
A

+ λD
(k−1)
2

)−1

. (24)

In addition, making use of the assumption that B(k) ≈ B(k−1)

and recalling the definition of the permutation matrix U(k),

P(k) can be approximately written as

P(k) ≈ U(k)T

[

B(k−1) ⊙C(k−1)

B(k−1) ⊙ γ
(k)T

]

= U(k)T

[

P(k−1)

B(k−1) ⊙ γ
(k)T

]

. (25)

Since γ
(k) is a vector, the latter KR product can be equiva-

lently written as

B(k−1) ⊙ γ
(k)T = B(k−1)(diag(γ(k))⊗ IL). (26)

Using the following recursion for Ξ,

Ξ(k) =

[

ξΞ(k−1) 0

0 1

]

,

and the definition of U(k) readily leads to the following

U(k)T
JΞ

(k)U(k) =

[

ξ · JΞ
(k−1) 0

0 IJ

]

. (27)

From (25) and (13) and making use of (27) we can easily

arrive at the following recursive formulas for updating V
(k)
A

and G
(k)
A

:

V
(k)
A

= (28)

ξV
(k−1)
A

+
(

B(k−1) ⊙ γ
(k)T

)T (

B(k−1) ⊙ γ
(k)T

)

and

G
(k)
A

= ξG
(k−1)
A

+Y(k)
(

B(k−1) ⊙ γ
(k)T

)

. (29)



B can be updated at step k by solving the corresponding

sub-problem of (12), which, in terms of the mode-2 unfoldings

can be expressed as follows:

B(k) = argmin
B

1

2

∥

∥

∥
Ξ

(k) 1
2

I

(

Y
(k)T
(2) −Q(k)BT

)
∥

∥

∥

2

F
+

λ
R
∑

r=1

L
∑

l=1

√

‖a
(k−1)
r,l ‖22 + ‖br,l‖22 + η2, (30)

where (cf. (4)) Q(k) , C(k)⊙A(k) and Ξ
(k)
I , Ξ(k)⊗II . In a

manner analogous to the A sub-problem, the unique solution

for the updated B results as

B(k) = Y
(k)
(2)Ξ

(k)
I Q(k)

(

Q(k)TΞ
(k)
I Q(k) + λD

(k−1)
2

)−1

. (31)

Again, employing the assumption that A(k) ≈ A(k−1), Q(k)

can be approximated as described below:

Q(k) ≈

[

C(k−1) ⊙A(k−1)

γ
(k)T ⊙A(k)

]

=

[

Q(k−1)

γ
(k)T ⊙A(k)

]

, (32)

where γ
(k)T ⊙ A(k) = A(k)(diag(γ(k)) ⊗ IL). From (32)

and (14), and using the recursion

Ξ
(k)
I =

[

ξΞ
(k−1)
I 0

0 II

]

,

V
(k)
B

, Q(k)TΞ
(k)
I Q(k) and G

(k)
B

, Y
(k)
(2)Ξ

(k)
I Q(k) can be

recursively computed as

V
(k)
B

=ξV
(k−1)
B

+
(

γ
(k)T ⊙A(k)

)T (

γ
(k)T ⊙A(k)

)

,(33)

G
(k)
B

=ξG
(k−1)
B

+Y(k)T
(

γ
(k)T ⊙A(k)

)

, (34)

which implies the recursive computation of (31) as

B(k) = G
(k)
B

(

V
(k)
B

+ λD
(k−1)
2

)−1

. (35)

The resulting algorithm, called Online BTD Reweighted

Least Squares (RLS) (O-BTD-RLS), is tabulated as Algo-

rithm 2. The common in the OTF literature initialization

practice, namely initializing the online scheme with the result

of applying the batch algorithm in the first few slices, can also

be employed here. It should be stressed that, in the proposed

algorithm, we respect the BTD model structure throughout, in

contrast to works like [13] where the KR product structure of

the slowly-varying part is only taken into account at the end

of each recursion.

A. Complexity analysis

Thanks to its recursive nature, O-BTD-RLS is much more

efficient in terms of memory requirements than its batch

counterpart. One can readily verify that, in the most practical

case of big low-rank tensors, that is I, J ≫ R,L, it requires a

total storage of O([2(I+J)L+IJ ]R) floating-point numbers,

or roughly O(IJR). In contrast, the memory complexity of

the BTD-IRLS algorithm for processing such a tensor with

Algorithm 2: The O-BTD-RLS algorithm

Input: Y in a streaming manner, ξ, λ, µ,Rini, Lini

Output: Best (in the sense of (12)) BTD approximation of Y(k)

Initialize A(0),B(0),C(0),V
(0)
A

,V
(0)
B

,G
(0)
A

,G
(0)
B

from Algorithm 1
for k = 1, 2, . . .

Compute D
(k−1)
1 ,D

(k−1)
2 from (19) and (23)

Compute S(k−1) from A(k−1) and B(k−1) (cf. (5))

γ
(k)
←

(

S(k−1)TS(k−1) + µD
(k−1)
1

)

−1
S(k−1)Ty(k)

V
(k)
A
← ξV

(k−1)
A

+
(

B(k−1) ⊙ γ
(k)T

)T (

B(k−1) ⊙ γ
(k)T

)

G
(k)
A
← ξG

(k−1)
A

+Y(k)
(

B(k−1) ⊙ γ
(k)T

)

A(k)
← G

(k)
A

(

V
(k)
A

+ λD
(k−1)
2

)

−1

V
(k)
B
← ξV

(k−1)
B

+
(

γ
(k)T ⊙A(k)

)T (

γ
(k)T ⊙A(k)

)

G
(k)
B
← ξG

(k−1)
B

+Y(k)T
(

γ
(k)T

⊙A(k)
)

B(k) ← G
(k)
B

(

V
(k)
B

+ λD
(k−1)
2

)

−1

end

I, J,K ≫ R,L is of the order of O((IJ + (JK +KI)L)R)
for storing the involved quantities, and one should add to this

the IJK places needed to store the entire tensor. As expected,

the memory efficiency of the online w.r.t. the batch method

increases with the size of the evolving mode, K .

In a manner analogous to that for BTD-HIRLS [3, Ap-

pendix C], it turns out that the per-iteration computational

requirements of BTD-IRLS are of the order of O(IJKLR),
again for the case of a big low-rank I × J × K ten-

sor. The computational cost of an O-BTD-RLS recursion is

roughly estimated as follows. D1 and D2 need O(R) and

O((I + J)LR) multiplications and divisions, including those

for the calculation of the square roots. The computation of S

requires IJLR multiplications and that of its Grammian, STS

(I + J + 1)(LR)2 multiplications by virtue of [3, Eq. (25)].

For the update of γ, O(IJR+R3/3+R2) multiplications are

required. (I + J)LR multiplications are needed to compute

γ
T ⊙A and B⊙γ

T. In addition, we need (2IJ + I + J)LR
multiplications for GA and GB. (I + J + 2)(LR)2 multipli-

cations for VA and VB, and O((I + J)(LR)2 + 2(LR)3/3)
multiplications for computing A and B. The total per-iteration

cost is O(IJRL), that is, roughly the cost of analyzing the

entire tensor in one batch divided by K .

The complexity (in terms of memory and computation) of

both schemes can of course be reduced if symmetries and/or

sparsity (via efficiently computing the matricized tensor times

Khatri-Rao products (MTTKRP) [1], [63]) are also taken into

account.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the O-

BTD-RLS algorithm in selecting and computing/tracking the

correct BTD model for a given tensor. Comparisons with its

batch counterpart are included, in terms of both approximation

accuracy and time efficiency. We consider two experiments.

The first, with a tensor of relatively large third mode which is

described by a single BTD model in its entirety, corresponds

to a big data scenario, where the tensor has to be analyzed

incrementally due to its large size that prevents its storage



and analysis as a whole. In this case, we can compare the

batch and online schemes in terms of the error incurred when

approximating the tensor and the time this requires. In the

second experiment, a data-streaming scenario is considered,

in which the tensor only becomes available on a slice-by-slice

basis and its underlying BTD model may be time varying.

This allows us to evaluate the tracking ability of the online

algorithm. In both cases, we also assess the ability of the

BTD-IRLS method to reveal the BTD ranks. O-BTD-RLS is

initialized with the results of the batch scheme applied on the

first few slices of the tensor. We show that the selected model

is tracked by the online variant.

We consider an I×J×K tensor Y = X+σN , where X is

built as in (2), N contains zero-mean, independent and identi-

cally distributed (i.i.d.) Gaussian entries of unit variance, and σ
is set so that we get a given signal-to-noise ratio (SNR), with

SNR in dB defined as SNR = 10 log10 ‖X‖2F/(σ
2‖N‖2F).

The entries of A,B,C are also i.i.d. samples from the standard

Gaussian distribution.

Experiment 1: We set I = 40, J = 35 and K = 1250.

The true R is 5 and all Lrs are equal to 4. BTD-IRLS was

run with overestimates of the true ranks, namely R = 10 and

L = 10 for all blocks terms, using random initialization.1 O-

BTD-RLS was initialized with the result of BTD-IRLS on

the first 50 frontal slices and incrementally processed the

remaining 1200 slices, with ξ = 1. For BTD-IRLS, λ was

selected as L(I + J)σ̂, where σ̂ is an estimate of the noise

standard deviation (in our experiments taken equal to the true

σ), and either µ = 0.75KRσ̂ (at SNR=5 dB) or µ = 2KRσ̂
(at SNR=10 and 15 dB). The regularization parameters of O-

BTD-RLS were selected for simplicity equal to each other,

λ = µ = L(I + J)σ̂. Table I shows the Relative Error (RE),
∥

∥

∥
Y − X̂

∥

∥

∥

F
/ ‖Y‖F and the normalized mean squared error

(NMSE) over the blocks, 1
R

∑R
r=1

‖ArB
T
r
◦cr−ÂrB̂

T
r
◦ĉr‖

2
F

‖ArB
T
r
◦cr‖2

F
, at

different SNR values, for both the batch and incremental

cases, where X̂ stands for the approximation of Y given by

the computed BTD model and (A,B,C), (Â, B̂, Ĉ) denote

the true and the estimated BTD factors, respectively. For

computing the NMSE, the Hungarian algorithm was employed

to resolve permutation ambiguities (as in [3]). In each case, the

median over 50 independent realizations of the experiment is

given. Clearly, the online scheme achieves an approximation

accuracy close to that of the batch one (especially in terms

of the RE), and the performance gap is diminished as SNR

increases. In addition, this is achieved much more efficiently

in terms of the average run-time, with O-BTD-RLS requiring

only 2.8 sec to process the whole tensor, as compared to

the 10.8 sec needed by BTD-IRLS. All experiments were run

in a MacBook Pro, 2.6 GHz 6-Core Intel Core i7, 16 GB 2667

MHz DDR4 using Matlab v2019b.

Experiment 2: This experiment aims at assessing the ability

of O-BTD-RLS to track changes of the BTD model. To

1In the light of the robustness to initialization of BTD-HIRLS demonstrated
in [3], we expect that BTD-IRLS will also enjoy such a desirable property.
Further experimentation is required to confirm this.
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Fig. 3. Normalized squared error per frontal slice of O-BTD-RLS vs. time
steps, at SNR=10 dB. The model changes abruptly at the k = 2001 step.

this end, we consider a 40 × 35 × 5000 tensor resulting

by concatenating two smaller tensors with dimensions

40 × 35 × 2000 and 40 × 35 × 3000. The true ranks R
and Lrs of the first tensor are 5 and 4 and those of the

second one are 4 and 2. This implies an abrupt change of the

underlying BTD model at the k = 2001 step. Noise is added

for an SNR of 10 dB. Since the model is now time varying,

a fading memory effect is simulated by setting ξ to 0.985 in

O-BTD-RLS. All other specifications are as in the previous

experiment. The normalized squared error (NSE) per frontal

slice of one run of the online algorithm is plotted in Fig. 3 as

a function of the number of update steps, namely NSE(k) =
∥

∥X (:, :, k)−A(k)(diag(γ(k))⊗ IL)B
(k)T

∥

∥

2

F
/ ‖X (:, :, k)‖

2
F.

Note that the algorithm immediately recognizes the model

change and, after a few steps required to collect information

about the new model, re-adapts fast back to the new BTD

model.

VI. CONCLUSION

The problem of rank-(Lr, Lr, 1) BTD model selection and

tracking was studied in this work for the first time, based on

the idea of imposing column sparsity jointly on the factors

and estimating the ranks as the numbers of factor columns of

nonnegligible magnitude. An online method of the alternating

reweighted least squares (RLS) type was developed, on the

basis of a newly introduced rank-revealing batch scheme. It

was shown to be computationally efficient and fast converging,

with a modeling capacity comparable to that of its batch

counterpart and the ability to track models that change abruptly

in time. The proposed online scheme was shown to be memory

efficient while its time efficiency was demonstrated to be

considerably higher than that of its batch counterpart. The

effectiveness in both selecting and tracking the correct BTD

model was clearly demonstrated via simulation results.



TABLE I
COMPARISON OF BTD-IRLS AND O-BTD-RLS IN TERMS OF RELATIVE ERROR, NMSE OVER THE BLOCKS AND AVERAGE RUN-TIME AT DIFFERENT

SNR VALUES.

SNR (dB)
Average run-time (s)5 10 15

NSE (×10−3) RE NMSE (×10−3) RE NMSE (×10−3) RE

BTD-IRLS 0.5 0.2703 0.15 0.1560 0.05 0.085 10.8

O-BTD-RLS 1.2 0.2945 0.4 0.16 0.2 0.0886 2.8

Future research can be directed towards extending the novel

online BTD algorithm to incorporate constraints and side

information [69] and perform completion [66] and DL [11]

tasks. Modifications necessary for solving large-scale prob-

lems (using, for example, sampling/sketching) [54], [80] or

being robust (to outliers) [12], [43] are also worth exploring.

Coupled [81], [82] and Bayesian [83] versions should also

be developed, greatly widening its applications spectrum. The

convergence analysis of the proposed online algorithm is also

left as a future work. Note that, as pointed out in the introduc-

tion, sich a task is far from being easy for this kind of methods.

It is expected that ideas recently employed to develop provable

online CPD schemes (e.g., [50]) and knowledge available for

online sparsity learning [53, Chapter 10] will be most helpful

in this direction. The effect of having fixed vs. time-varying

regularization parameters is also worth investigating (cf. [8]).
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APPENDIX A

DERIVATION OF EQS. (18), (22), (31)

Call fγ(γ) the objective function of (17), i.e.,

fγ(γ) =
1

2

∥

∥

∥
y(k) − S(k−1)

γ

∥

∥

∥

2

2
+

µ

R
∑

r=1

√

ξ
∥

∥

∥
Ξ(k−1) 1

2 c
(k−1)
r

∥

∥

∥

2

2
+ γ2

r + η2. (36)

To minimize this we follow a MM approach [79]. Namely, we

instead minimize a surrogate function, which is selected here

to be a second-order Taylor approximation of fγ(γ) around

γ = 0:

gγ(γ) = fγ(0) + γ
T∇γfγ(0) +

1

2
γ
TH̃(k−1)

γ
γ, (37)

with ∇γfγ(0) = −S(k−1)Ty(k) and H̃
(k−1)
γ being an approx-

imation of the Hessian matrix of fγ at 0, H
(k−1)
γ :

H̃(k−1)
γ

= S(k−1)TS(k−1) + µD
(k−1)
1 . (38)

The reason why we consider the Taylor approximation around

0 and not γ(k−1) is that the variable γ
(k) (kth row of C) is

not related in any way to γ
(k−1) ((k − 1)st row of C).

Note from (37) that gγ(0) = fγ(0) and H̃
(k−1)
γ is positive

definite. In addition, as we will show below, the matrix

H̃
(k−1)
γ − H

(k−1)
γ is positive semi-definite. These properties

ensure that gγ(γ) is a majorizing function of fγ(γ) [15].

Indeed, it is not difficult to show that the Hessian of fγ(γ) is

given by

H(k−1)
γ

= S(k−1)TS(k−1) + µD(k−1)
γ

, (39)

where the entries of the R × R diagonal matrix D
(k−1)
γ are

expressed as

D(k−1)
γ

(r, r) =

(

ξ
∥

∥

∥
Ξ(k−1) 1

2 c(k−1)
r

∥

∥

∥

2

2
+ γ2

r + η2
)− 1

2

−γ2
r

(

ξ
∥

∥

∥
Ξ(k−1) 1

2 c(k−1)
r

∥

∥

∥

2

2
+ γ2

r + η2
)− 3

2

. (40)

From (38), (19), (39) and (40), we easily deduce that

D̃
(k−1)
γ , H̃

(k−1)
γ − H

(k−1)
γ is a diagonal matrix with non-

negative diagonal elements given by

D̃(k−1)
γ

(r, r) = µ

(

ξ
∥

∥

∥
Ξ(k−1) 1

2 c(k−1)
r

∥

∥

∥

2

2
+ η2

)− 1
2

−µ

(

ξ
∥
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∥
Ξ(k−1) 1

2 c(k−1)
r
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2

2
+ γ2

r + η2
)− 1

2

+γ2
rµ

(

ξ
∥
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∥
Ξ(k−1) 1

2 c(k−1)
r

∥

∥

∥

2

2
+ γ2

r + η2
)− 3

2

. (41)

Note that the D̃
(k−1)
γ (r, r)’s are all positive for γ 6= 0 and

become zero at γ = 0, i.e., at the point of approximation.

Besides majorizing the objective function fγ , the approxi-

mation function gγ has the same first-order behavior with fγ
at 0 [15]. As a result, the vector γ that minimizes gγ will at

least guarantee some descent of the original objective fγ . It

can be easily shown that the minimization of gγ leads to (18).

Consider now the objective function for the A sub-problem,

fA(A) =
1

2

∥

∥

∥JΞ
(k) 1

2

(

Y
(k)T
(1) −P(k)AT

)∥

∥

∥

2

F
+

λ

R
∑

r=1

L
∑

l=1

√

‖ar,l‖22 + ‖b
(k−1)
r,l ‖22 + η2, (42)

and define a surrogate function, gA(A), as a second order

Taylor approximation of fA(A) around A(k−1), the estimate



of A computed at step k − 1,

gA(A) = fA(A(k−1)) + tr{(A−A(k−1))∇AfA(A(k−1))}

+
1

2
vec(A−A(k−1))TH̃A(k−1)vec(A−A(k−1)),

(43)

where H̃A(k−1) is an approximation of the IRL×IRL Hessian

HA of fA at A(k−1), defined as

H̃A(k−1) = P(k)T
JΞ

(k)P(k) + λD
(k−1)
2 . (44)

It is now clear that gA(A(k−1)) = fA(A(k−1)) and H̃A(k−1) is

positive definite. In addition, working as in [84, Appendix B],

it can be shown that H̃A(k−1) − HA(k−1) is also positive

definite, which verifies that gA majorizes fA around A(k−1).

It is then straightforward to show that the unique minimizer

of the quadratic function gA is given by (22).

In a similar way, we can arrive at the update equation (31)

for the B factor.
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