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ONLINE GRAPH LEARNING FROM TIME-VARYING STRUCTURAL EQUATION MODELS
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! Delft University of Technology, Delft, The Netherlands
2Radar Technology, TNO, The Hague, The Netherlands

ABSTRACT

Topology identification is an important problem across many disci-
plines, since it reveals pairwise interactions among entities and can
be used to interpret graph data. In many scenarios, however, this (un-
known) topology is time-varying, rendering the problem even harder.
In this paper, we focus on a time-varying version of the structural
equation modeling (SEM) framework, which is an umbrella of mul-
tivariate techniques widely adopted in econometrics, epidemiology
and psychology. In particular, we view the linear SEM as a first-
order diffusion of a signal over a graph whose topology changes over
time. Our goal is to learn such time-varying topology from stream-
ing data. To attain this goal, we propose a real-time algorithm, fur-
ther accelerated by building on recent advances in time-varying opti-
mization, which updates the time-varying solution as a new sample
comes into the system. We augment the implementation steps with
theoretical guarantees, and we show performances on synthetic and
real datasets.

Index Terms— Dynamic topology identification, graph signal
processing, graph learning, time-varying optimization.

1. INTRODUCTION

Graph topology learning is fundamental to identify complex depen-
dencies in irregular datasets and plays a crucial role in the success-
ful deployment of graph signal processing and machine learning
tools [1]. Up to date, most efforts are on learning static graph topolo-
gies [1, 2], an assumption which may not hold in many real scenarios,
e.g. sensor networks and financial markets, which naturally exhibit
a temporal variability. This dynamic graph learning task has mainly
been addressed by a two-step approach: i) first, all the samples are
collected and split into possibly overlapping windows; and then ii)
the topology associated to each window is inferred from the data;
see [3] for a thorough review on the subject. This “modus-operandi”
fails to address the online (data-streaming) setting, recently investi-
gated in [4, 5, 6, 7, 8] under different model assumptions.

Learning a graph from data requires a prior, a model, or an as-
sumption of how the data reflect the underlying graph structure. In
this work, we focus on a time-varying version of the structural equa-
tion modeling (SEM) framework [9], which is a general statistical
modeling technique for multivariate data which is widely adopted in
several different disciplines, such as in social sciences [10], psychol-
ogy [11] and genetics [12]. The popularity of SEM is mainly due to
its ease of use and the ability to capture the influence of exogenous
factors as well as causal effects for the variable of interest [13] (al-
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though we should point out that the latter interpretation has been a
cause of concern [14]).

Dynamic versions of SEM have been proposed in [15] with the
goal of tracking information cascades over (sparse) social networks,
in [16] for learning graphs from real stock quotes and in [17] for
the analysis of intensive longitudinal data. A dynamic regret study
for an online implementation of [15] is given in [18], but a thorough
experimental analysis, possibly considering real data, is missing.

Here we focus on a time-varying version of SEM (TV-SEM)
which considers data to arrive in an online fashion and without ex-
ogenous inputs. While these inputs are of importance in many ap-
plications, their role is mainly used to identify the directionality of
an edge [19]; in addition, in some scenarios, it is expensive or even
impossible to acquire such inputs, as pointed out in [16]. Thus, for
inferring only the pairwise relationships between data (i.e., identi-
fying an undirected graph) we can ignore the latter when modeling
the data evolution. In turn, this leads to a simpler model akin to a
first-order graph signal diffusion [1].

To tackle time and data-constrained SEM scenarios, we propose
an on-the-fly algorithm built upon recent advances in time-varying
optimization [20, 21], only very recently applied to topology identi-
fication for a simple scenario [22]. The proposed approach updates
the solution as samples come into the system and relies on light prox-
imal operations [23]. The devised formulation is made adaptive by
a simple update rule of empirical moments of the data, meaning that
non-stationary topologies can be learned. The proposed algorithm is
accompanied with a detailed theoretical analysis and then corrobo-
rated with both synthetic and real data.

2. PRELIMINARIES

Topology identification entails learning the structure of a network
from data when the former is unavailable from the domain of interest.
Formally, consider 7" data vectors {x:};—; € R” collected into
the matrix X = [x1,...,xr|. Each data vector x; has underlying
dependencies between its elements, which can be represented with
an unknown graph G = (V,E, W), where V = {1,..., N} and
£ C VYV x V are the vertex and edge set, respectively, while W is the
N x N (weighted) adjacency matrix [24] with entries [W],, # 0
only if (j,7) € &, for ¢ # j. Since at time ¢ each node i € V of
the graph is related to the ith data value z(¢), we define as graph
signal at time ¢ the vector x; = [x¢(1),...,z:(N)]T mapping the
node set to the set of real numbers. With this terminology, topology
identification aims to infer the latent underlying graph G from the
available graph signals, which amounts to estimating the adjacency
matrix W.

Structural equation model. With the above formalism, neglecting
possible external inputs, and assuming an undirected graph, SEM
postulates a linear dependence of the signal value x¢(z) with (some
of) the signal values at other nodes {z+(j)} s, representing the en-
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dogenous variables, i.e.,:

wo(i) =Y Wi, ae(G) + ecd), t=1,....T (1)
J#i

where W (i, j) weights the influence that node j exerts on node ¢
and e;(¢) captures the unmodeled dynamics. In this view, with W
encoding the graph connectivity, model (1) proposes each node to
be influenced by its one-hop neighbors only. In vector form, we can
write (1) as:

xt:Wxt—i—et, tzl,...,j—‘7 (2)
with e; ~ N(0,02Iy), for some noise variance o2 > 0. Then,
inferring the graph topology under a SEM implies solving the opti-
mization problem:

minimize || X — WX||7 + g(W)

Wew @

subject to

where W = {W/|diag(W) = 0,W;; = Wj;,i # j}, ie., itis
the set of hollow symmetric matrices. The first term in (3) imposes
a good data-model fit, while the regularizer g(W') enforces the esti-
mated adjacency matrix W to have specific properties; e.g., sparsity.
Note that problem (3) estimates a fixed topology for all realizations
columns x; of the matrix X.

Dynamic setting. We consider graphs whose topologies change
over time. Formally, a time-varying network is represented by the
sequence of graphs {G: = (V, &, W¢)}2, with associated adja-
cency matrices {W;}¢2;. Alongside this, we assume that at every
time instant ¢, the graph signal x; is supported by the graph G;. To
express the dependency of such time-varying signals with the under-
lying graph we consider time-varying SEM (TV-SEM) as detailed in
the next section.

3. TIME-VARYING STRUCTURAL EQUATION MODEL

Consider again model (2) and define as X; = [x1,..., x| the ma-
trix collecting all the acquired graph signals up to time ¢. Solving
a time-varying SEM (TV-SEM) problem with a sparsity-promoting
regularizer means solving, fort = 1,2, . . ., the following composite
optimization problem:

x "
Wi = argmin || X, - WX, |7 +X W1+ ow(W) (@)
w —_———
[ —
F(Wit) 9(W)
where ¢ty (+) is the indicator function for the convex set W, by defi-
nition tyy (W) = 0 when W € W and +oo otherwise; A > Ois a
parameter which controls the sparsity of the solution and ||[W||; =
|| vec(W)]|1 is the ¢1-norm of the vectorization of W. Because
[W||% = tr(WW ), the function f(-) in (4) can be rewritten as:

FW3t) = %[m«(vv?ﬁ:t) Cot(WE) + (2] )

where 3; := (1/t)X, X, represents the empirical covariance ma-
trix computed with the signals up to time ¢. However, instead of
using the vanilla update rule for 33;, we make it robust for non-
stationary environments by down-weighting the contribution of past
data. This is achieved with a weighted moving average of the form
3, = wﬁltfl + (1 - 'y)xtxtT, with forgetting factor v € (0, 1).
Notice that [cf. (5)] matrix 3, represents a sufficient statistic of the

model: we do not explicitly need to store all the raw observed data,
resulting in light storage system requirements and a natural recursive
update.

Reduction. Notice that problem (4) is a constrained optimization
problem since matrix W is required to be in the set V. Being sym-
metric and hollow, the number of independent variables in W is [ =
N(N — 1)/2, thus a lifting of spaces is suggested in order to avoid
errors for the gradient computation. For this, we operate on the hol-
low half-vectorization space (henceforth hh-space) to make the prob-
lem unconstrained and reduce the number of independent variables
from N? to l. Specifically, we represent the matrix W in its hollow
half-vectorization form, i.e., w = vechh(W) € R’. This reduction
is achieved by using the hollow elimination matrix E;, € RV ’
which extracts the variables of the strictly lower (equivalently, up-
per) triangular part of the matrix, i.e., w = Ej, vec(W). Likewise
we consider the inverse operation through the hollow duplication ma-
trix D, € RY ?x l, which duplicates the values of w and fills in zeros
in the correct positions, i.e., vec(W) = Dpw.

With this notation in place, problem (4) can be written in the
hh-space as:

1 1
w; := argmin W Qiw — 2w oy + —0r +A lwllx  (6)
w2 2 N>

fwst) 9(w)

where Q; := D,I(ﬁt ® I)Dy, with ® denoting the Kronecker prod-
uct, oy = vechh(3,), and o, = tr(2;). Because Q; > 0, i.e.,
it is positive semidefinite, problem (6) is convex. Notice how oper-
ating in the hh-space also avoids handling explicitly the symmetry
constraint in the optimization.

Solving exactly problem (6) for each ¢ may not be feasible, es-
pecially in real-time (streaming) applications. Moreover, the exact
solution may not even be needed due to the dynamic environment,
in which rather a faster estimate may be preferred. Motivated by this
rationale, we propose an online lightweight proximal-based imple-
mentation to track the time-varying solution of problem (4), further
speeded-up through a prediction-correction strategy, which relies on
recent advances in time-varying optimization [20], [21].

4. ONLINE IMPLEMENTATION

To solve problem (6) in a time-varying optimization framework [20],
first notice that function f(-) is smooth strongly convex and function
g(+) is closed, convex and proper. Denote then the composite objec-
tive function of problem (6) with F'(w;t) := f(w;t) + Ag(w;t).
The following two-step prediction-correction approach is now put
forth.

1) Prediction. At time ¢, an approximation ﬁ‘(w; t 4+ 1) of the (yet
unobserved) function F'(w;t 4 1) is formed by exploiting only in-
formation available up to £. Particularly, from the last graph estimate
w¢, we employ a Taylor expansion based prediction for function f(-)
and the one-step back prediction for g(-) as approximation schemes:

Flwit+1) = %wvawf(wt; Hw+w ! (Ve f(Wes )+ (Ta)
— Vww [(We; )W + Viw [ (We; 1))

g(w;t+1) = g(w;1) (7b)

where Vw f(-) and Vww f(+) are the gradient and the Hessian of
() w.rt. w, respectively, and Vi f(+) is the time-derivative of the
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gradient Vi, f(-). The approximated composite function F'(w; t+1)
is then used to predict the topology at time ¢ + 1 using only the
information available up to time ¢. In other words, the predicted
topology is obtained as the solution of the optimization problem:

Wiy = argminf(w; t + 1) + Ag(w) ®)

which is expected to be close to the true topology w;, ; at time ¢ + 1.

Instead of solving problem (8) exactly, which may incur in high
computational efforts, and whose solution will need to be updated
at the next time step, we find an estimate W 1); of w;, |, through
P proximal gradient descent iterations. Specifically, initialize the
solution as w® = W and compute:

WPt = prox,, ,, (W2 — au Vaw f(WP)) )
forp = 0,..., P — 1, where we have defined as the proximal op-
erator of function Ag(-) with penalty parameter (step size) oz > 0,
evaluated at some point v € R”, the solution of the problem:

. 1
ProXy, o, (v) := argmin{\g(z) + Do ||z — ng} (10)
z (&%
By defining as [ - ]+ := max(0, -), where the maximum operates in

an entry-wise fashion and with ® the element-wise product between
two vectors, each iteration of (9) boils down to the two steps:

ﬁp = \i’p — af[wa(x?vt,t)—F (1121)
+ Vww [ (W5 1) (W? — W) + Viw f (Wi 1)]
WP = sign(a”) © [|0"] — 2Aew]+ (11b)

with A = A1 and ai; = o 1. In other words, equation (11b) is the
non-negative soft-thresholding operator which sets to zero all the
edge weights of the graph obtained after the (prediction) gradient
descent operation in (11a). The prediction W1, is set to Wy41); =
w?, which serves a warm start for the correction step.

2) Correction. At time t + 1, a new datum x4 arrives and the
function F'(w;t + 1) (depending on the updated covariance matrix
f]t+1) becomes available. But instead of solving exactly problem
(6) at time ¢ + 1, we again estimate an approximate solution W41
by applying C proximal gradient descent iterations of F'(+), i.e.,:

= prox,, g, (W — B Vw f(W°)) (12)

forc=0,1,...,C — 1, where 8; > 0 is the step-size. We initialize
the graph with the predicted topology w° = Wiy1)e. Likewise (9),
we implement recursion (12) in two steps:

W =w— BV f(Wt+1)
W = sign(a) © [[a°] - 238,
where 3, = ;1. Once the C steps are performed, the corrected
graph W, 1 is set to W41 = W<, which will approximate the solu-

tion wi,; of (4). The online TV-SEM algorithm is summarized in
Algorithm 1.

Implementation. The derived gradient and Hessian of function
f(-) in the hh-space, as well as the time derivative of the gradient
Vwf(-)' can be expressed as:

Vwf(w;t) = Qew — 2074;

VAVc-&-l

(13a)
(13b)

Vwwf(W;t) = Qq; (14a)

Viwf(wit) = (Qt — Qio1)w — 2(0y —0¢—1)

IThe time derivative of the gradient is given by the partial mixed order
derivative [25].

(14b)

Algorithm 1 Online TV-SEM
Require: Feasible wo, f(w;to), g(w;to) P, C
1: fort =0,1,...do
2: /] Prediction - time t
Initialize W° = w;
Compute o, Ve f(We;t), Vww [(We5 1), Viw f(We; t)
forp=0,1,...,P—1do
Compute w” T as in (11a)(11b)
end for
Set the predicted variable Wy 1)y = w?
/I Correction - time t + 1: new data arrives
Initialize the corrected variable w® = \ L
Compute S,
forc=0,1,...,C —1do
Compute W as in (13a)(13b)
11: end for
Set the corrected variable W41 = W
12: end for

=)

._.
SN

C

As final comment, the step-sizes .+ and S; are chosen in the interval
(0,2/Ly], where L is the Lipschitz constant of V, f(-) at time ¢.
This enables us to ensure the algorithm’s convergence and bound the
estimation error at each iteration (see Section 5).

5. CONVERGENCE ANALYSIS

We now establish convergence results related to Algorithm 1 by de-
riving bounds for the error sequence {||W: — wy||2,t = 1,2,...},
where we recall that w; is the unique minimizer of problem (6).
First, notice that for a fixed ¢, the TV-SEM function f(+; ¢) in (6) (and
hence its approximated version f (+) in (7a)) is m¢-strongly convex
and L;-smooth for:

my < )\min(ﬁzt) L > 2)\max(ﬁ:t) (15)

Next, consider the temporal variability of the optimal solution
Wiy — wi| and the prediction error ||w}, ,, — Wiy1]|. Then,
we have the following non-asymptotic performance guarantee for
Algorithm 1, which is an adaptation of [21, Proposition 5.1].

Proposition 1. Consider two scalar bounds {d:,#:} € Ry such
that:

||Wt*+1 - W:” <d: and ||Wt*+1\t - W:+1H < ot (16)

for any ¢ € N. Moreover, assume that the prediction and correction
steps use the same step-size p1 = a¢ = (¢. Then, by employing P
prediction steps in (9) and C' correction steps in (12), the sequence
of iterates { W } generated by Algorithm 1 satisfies:

[Wesr — wigalle < af (af |[We — wil| +af de + (1+g) o))
(17)

where ¢¢ € (0, 1) is the contraction coefficient, which for the proxi-
mal gradient method is ¢+ = max{|1 — pyml, |1 — peLe|} [23].

Proof. Follows from [21, Proposition 5.1] and [21, Lemma 2.5],
with variables A = g and y = 8 = 1. |

Therefore (17) is a contraction (i.e. th“D < 1) when py < 2/Ly,
which is the reason why we pick {a¢, 8¢} < 2/)\max(ﬁ]z) at every
iteration ¢. In turn, this ensures a slightly modified notion of Q-
linear convergence for the error sequence {||W: — w;||2} generated
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Fig. 1: Normalized mean squared error (NMSE) for the synthetic scenarios: (a) NMSE between our online solution w; with respect to the
offline solution w; (red) and the batch solution wi (green); (b) function value attained by the online {W} (blue), offline (red) and batch
(green) solutions; (c) Smooth scenario, NMSE between the online solution w; and offline solution w; (top) and the associated function value

(bottom).

by Algorithm 1 [26]. Notice that choosing an equal step-size p; for
the prediction and correction steps is not a limitation, since both the
functions f(-) and f(-) share the same smooth and strong convexity
constants (15).

The bound can then be generalized by taking a constant step size
p < 2/sup,en{L:}. Let g := sup,en{q:}, d := sup,n{d:} and
¢ := sup,cn{¢+}. Then, an upper bound for the asymptotic error
can be established as follows:

qc P P
l_qicﬂa(q d+(1+4q ¢))

18

limsup ||[W: — wy||2 =
t— o0

That is, the output of Algorithm 1 hovers (asymptotically) around
the optimal trajectory {wy }¢>m,, for some Ty € N,. This distance
is bounded by a number depending on the maximum drifting and the
maximum prediction error incurred during the algorithm’s iterations.
In addition, it is important to notice how the initial condition, i.e.,
the starting condition, does not influence the asymptotic error.

6. NUMERICAL RESULTS

In this section, we demonstrate the capability of Algorithm 1 to
closely track the offline counterpart and we show several numerical
results obtained by performing several experiments on synthetic and
real datasets. For all the experiments carried out, we initialize the
empirical covariance matrix 320 with some samples acquired prior
to the analysis, which are then discarded. We fix P = 1 prediction
steps and C' = 1 correction steps, i.e., a streaming scenario. The al-
gorithm per-se is however capable of handling different values of P
and C, depending on the environment and processing characteristics.

As performance metric, to establish the convergence of Algo-
rithm 1 to the offline counterpart solving (6), we consider the normal-
ized mean squared error (NMSE) between our algorithm’s estimate
w; and the optimal (offline) solution w; 2, computed at iteration ¢,
ie.,:

_ e = will3

NMSE(w}, W) = (19)

w3

Notice that this is a more robust metric than the cost function value
attained by w; and Wy, since there might be solutions “far-away”

2We use CVX [27] as solver for the offline computations of the experi-
ments.

in space that yield the same function value. For completeness, we
show both these metrics. For the real dataset, we consider also other
metrics helping us in explaining better the graph behavior.

6.1. Tests on synthetic data

To validate the proposed online algorithm, we test it on synthetic
data generated under two different scenarios: abrupt and smooth
temporal edge variations. In the first scenario, we generate a ran-
dom sensor-network of N = 28 nodes with a piece-wise constant
topology. In particular, the initial graph undergoes a perturbation
on [N/2] nodes of the graph, whose edges undergo a dilation in-
creasing their weights with 50%, after t = 300 samples. Then, for
t = {1,...,600}, we generate each graph signal x; according to
(2),ie., x; = (I — W)~ 'e,, with a noise standard deviation equal
too. = 0.5.

Fig. 1a shows, for A = 0.05 and v = 0.97, the NMSE of the
online solution w; with respect to: the optimal (offline) solution wf
(in red) and the optimal batch solutions of the two stationary intervals
(in green). The results clearly indicate the convergence of our online
algorithm to the optimal offline counterpart after few iterations, and
its capability to closely track it. In addition, both solutions converge
to the batch solutions of the two stationary intervals. Indeed, after the
sudden topology perturbation at ¢ = 300, the NMSE with respect to
the stationary trajectory increases and then converges again (green),
while with respect to the offline solution it remains close to zero (red).
This is also visible in Fig. 1b, where the function value attained by
the three different solutions over time is shown. Another important
metric to consider in time-sensitive applications is the required time
per iteration. For the above experiment, considering N = 15 and
T = 800 time instants, each iteration (prediction-correction step)
of Algorithm 1 required 0,0017s (1, 39s the entire run) in contrast
to the 0,4324s per iteration (345, 94s the entire run) of the offline
(CVX) counterpart solution.

In the second (smooth) scenario, we consider the support of the
network generated in the first scenario; then, the edge-evolution pat-
tern follows a sinusoidal behavior, i.e., S;;(t) = 1 + sin(27 fst) for
t={1,...,T}and fs = 1/T, where T' = 600. Then, we generate
again the data {x;} according to (2). Under this setting, the NMSE
between our online solution w; and the offline counterpart w; is
shown in Fig. 1c, together with the cost function value. Also in this
case we can see how the online solution is able to track the offline
one.
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These examples serve as a sanity check of the algorithm, which
is now applied to a real application.

6.2. Tests on Real Data

‘We now test the proposed algorithm on real data and show the result-
ing inferred topologies.

Dataset Description: To perform an analysis on real world networks,
we consider the publicly available Beijing Multi-Site Air-Quality
Data Set [28, 29], which includes hourly measurements from 12
nationally-controlled air-quality monitoring sites in Beijing for the
period March 1st, 2013 to February 28th, 2017. Each monitoring
site considers: the concentration (pg/m’) of 6 main air pollutants
(PM2.5, PM10, SO2, NO2, CO, O3) and 6 relevant meteorological
variables (temperature in °C, pressure in hPa, dew point temperature
in °C, precipitation in mm, wind direction, wind speed in m/s). For
the experiments, we analyze all the six pollutants and five meteoro-
logical variables (all but wind direction) for the monitoring site of
Nongzhanguan, since it contains the lowest number of missing data
among the twelve sites. The missing values were substituted with a
linear interpolation of their neighboring, non-missing values.

Results. We consider T = 8000 hourly measurements (March 2013
to February 2014) as graph signals {x;} for the eleven quantities
of interest, which are further standardized, i.e., each variable is cen-
tered and divided for its empirical standard deviation; see Fig. 2a
for a plot of the standardized time series. Notice that since RAIN
is a sparse variable, its standardization leads to a behavior akin to
a change-detection scenario. Based on our previous experiments on
the piece-wise constant scenario, we expect to find structural differ-
ences during the learning process.

We run Algorithm 1 for different values of the regularization
parameter A and forgetting factor «y. Then, we monitor the evolution
over time of some graph properties: among these, the cost function
value and the number of edges of the inferred graph. This enables
us, by simple inspection, to assess whether there are notable patterns
which are consistent with observable phenomena in the data. The
values A = 0.05 and v = 0.97 yielded results most consistent with
the data behavior: empirically, a value of A higher than 1 made the
graph almost completely sparse. Notice also how the covariance-
based formulation (5) (with the relative update rule) avoids the least
squares term in (4) to grow indefinitely, enabling us to confidently
select a constant A over time.
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Fig. 3: Estimated time-varying graph topologies: (a) Evolution of
the edge weights over time, with brighter (darker) colors indicating
a positive (negative) weight; (b) Inferred topologies from four differ-
ent dates of interest.
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Fig. 2b shows the function value attained by the inferred topolo-
gies {w:} over the considered dates. Predictably, the effects of the
variable RAIN around the period of July 2013 are reflected in the
cost function value, which exhibits some sharp peaks. This is also
evident in Fig. 2c which shows the number of edges of the inferred
topology w; for each date ¢ (where also its moving average with a
window size of 30 days is shown - dotted blue - to ease the visualiza-
tion of the value dynamics). The fact that the cost function does not
have smooth peaks indicates that the algorithm can handle to abrupt
changes and can immediately go back to its “normal” state (in this
case a function value lower than 5). This is visible at the initializa-
tion of the algorithm and in the period of July.

A more informative description of the learning behavior of the
algorithm over time is given in Fig. 3a, which shows the evolution of
the edge weights over time®, with brighter (darker) colors indicating
a positive (negative) weight. Here we can see the sparsity pattern
of the graph over the considered temporal horizon, and the impor-
tance of the weights at each date. As previously observed, the heavy
rainfall happening during the summer period leads to an increasing
value of the edge weights. To really enjoy the visualization potential
offered by graphs as a tool, we show in Fig. 3b the graphs inferred
on the 9th day of May, June, July, and August. Wider edges indi-
cate a larger (absolute) value for their weights, i.e. a higher linear
dependence between the variable of interest; the size of a node (also
brighter color for bigger sizes) indicates how connected that node
is with the rest of the nodes. Notable is the variable RAIN which
is disconnected in May and August, while highly connected in July
consistent with the previous observations.

From a technical point of view, according to our algorithm, these
are the graphs that better explain an instantaneous linear dependence
between the observed variables. Are these graphs meaningful rep-
resentations from a geophysical and meteorological point of view?
Unfortunately, our knowledge, does not allow us to answer this ques-
tion, which requests the feedback of a domain expert.

7. CONCLUSION

In this work, we presented an adaptive algorithm for tracking struc-
tural equations models (SEMs) from online data. The proposed ap-
proach, which relies on proximal gradient iterations, is further accel-
erated through a prediction-correction strategy. The strategy builds
upon recent advances in time-varying optimization and is accompa-
nied by theoretical performance guarantees to track the optimal time-
varying solutions. Numerical experiments on synthetic and real data
validate the proposed on-the-fly formulation. Possible algorithmic
enhancements include the introduction of an adaptive forgetting fac-
tor v able to automatically adjust itself by recognizing substantial
changes of the data distribution (thus discarding old information) as
well as a distributed implementation scalable to very large graphs.

3We remind that the number of total edges in an undirected graph of N
nodes is N(N — 1)/2.
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