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Abstract—The increasing number of wireless devices operating
in unlicensed spectrum motivates the development of intelligent
adaptive approaches to spectrum access that go beyond tradi-
tional carrier sensing. We develop a novel distributed implemen-
tation of a policy gradient method known as Proximal Policy
Optimization modelled on a two stage Markov decision process
that enables such an intelligent approach, and still achieves
decentralized contention-based medium access. In each time slot,
a base station (BS) uses information from spectrum sensing
and reception quality to autonomously decide whether or not
to transmit on a given resource, with the goal of maximizing
proportional fairness network-wide. Empirically, we find the
proportional fairness reward accumulated by the policy gradient
approach to be significantly higher than even a genie-aided
adaptive energy detection threshold. This is further validated
by the improved sum and maximum user throughputs achieved
by our approach.

Index Terms—Medium access, proximal policy optimization,
contention, deep reinforcement learning

I. INTRODUCTION

Spectrum sharing attempts to allow different transmitters to
operate on the same allocated resource (spectrum/time) in a
fair manner, while also providing high throughput. To alleviate
spectrum constraints, 3GPP [1] standardized License Assisted
Access (LAA) for LTE, and more recently released a study on
5G New Radio Unlicensed (NR-U) [2]. The approach adopted
to access unlicensed spectrum in LAA/NR-U is known as
Listen-Before-Talk (LBT) [1] [3] and requires each transmitter
to perform a Clear Channel Assessment (CCA) before accessing
spectrum i.e. a BS is allowed to transmit on a channel only if
the energy level in the channel is less than the CCA threshold
level for the duration of the CCA observation time [3]. However,
a CCA threshold level based MAC decision – also referred
to as an energy detect (ED) threshold in 5G NR – does not
actually reflect the quality of reception (SINR) at the UE.

An optional collision reduction scheme known as Request-
to-Send/Clear-to-Send (RTS/CTS) is supported by 802.11, but
is known to inhibit potentially successful transmissions, and
introduce significant additional overhead and latency [4]. Nearly
all WiFi systems disable RTS/CTS. Recently, multi-agent
reinforcement learning (RL) has been applied to design state-
based policies that can improve the performance of unlicensed
spectrum sharing [5]–[7]. Most recently, [8] presented a
robust and scalable distributed RL design for radio resource
management to mitigate interference. None of these papers
thus far have attempted to model the asynchronous nature of
the decisions made by the transmitters owing to contention.
In [9], we developed a distributed deep RL spectrum sharing

algorithm incorporating contention-based medium access. It
deployed Deep Q Networks (DQN) at each BS that sequentially
decide whether or not to transmit, with the goal of maximizing
proportional fairness (PF) network-wide. However, it suffered
from slow training convergence and stability, and achieved a
much smaller reward than a PF-based BS scheduler.

Policy gradient methods [10] are known to achieve sig-
nificantly faster convergence than DQN algorithms, while
also improving the reward earned by agents in a multi-agent
environment. Consequently, in this paper, we design a novel
distributed version of a recent policy gradient method known
as Proximal Policy Optimization [11] to optimize medium
access under the constraint of a contention-based access
mechanism. We employ the paradigm of centralized learning
with decentralized execution, such that each BS will decide
whether and how to transmit based only on its own observations.

II. PROBLEM STATEMENT AND SYSTEM MODEL

We consider a downlink cellular deployment of N BSs, with
a single UE scheduled per time slot per BS. The notation
utilized henceforth is summarized in Table I. Assuming that
the UE throughput Rj [n] in each time slot n is approximated
by the Shannon capacity W log2(1 + SINRj [n]), the same UE
is scheduled for reception for L consecutive time slots and
each BS transmits at a constant power, the MAC algorithm at
each BS has to decide whether or not to transmit to the UE
in each time slot. We consider a simplified contention-based
access mechanism in which each time slot is divided into a
contention and data transmission period. At the start of the
contention period consisting of N mini-slots, BS i draws a
random counter θi ∈ {0, . . . , N − 1}, with the possibility that
θi = θj for i 6= j. The counter is decremented by 1 every
mini-slot and when this counter expires, the BS ascertains if
the channel is clear before transmitting a unique preamble
for the remainder of the contention period, followed by data
transmission, with the objective of each BS being to maximize
the long-term data throughput seen by the UE. Mathematically,
in [12], this is proved to be equivalent to

max
n→∞

N∑
j=1

log(Xj [n]) (1)

where Xj [n] = (1− 1/B)Xj [n− 1] + (1/B)Rj [n]. (2)

While Proportional Fair (PF) scheduling would amount to an
iterative BS scheduler computing the rate vector R∗[n] for
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Sj Signal Power
Ij Interference Power
gij Path gain with BS i
Rj Data Rate
Xj Average Rate

ai Action chosen = {0, 1}
oi Local observation
g′ij Path gain with BS j
πi Policy to choose ai
W Channel Bandwidth

TABLE I: UE j and BS i Notation

Fig. 1. The 2 state MDP at each agent capturing the actions taken and reward
obtained on transitioning between the End-Of-Slot(EOS) and Contention(CON)
states

every time slot n, such that

R∗[n] = arg max
R[n]

N∑
j=1

Rj [n]

Xj [n]
, (3)

it requires a centralized controller and hence is not realizable in
any practical decentralized deployment. In [9], we formulated
(1) as a decentralized partially observable Markov decision
process - DEC-POMDP- with the observation oi received
by BS i given by oi[n] = 〈Xi[n − 1], Si[n − 1], Ii[n − 1]〉
and a novel per-timestep reward structure given by r[n] =∑N
j=1 rj [n] ∀ n > 0 and r[0] =

∑N
j=1 log(Xj [0]) where

rj [n] = log

(
(1− 1/B)

(
1 +

Rj [n]

(B − 1)Xj [n− 1]

))
. (4)

We then incorporated contention by partitioning the 1-state
MDP into 2 states, End-Of-Slot (EOS) and Contention (CON),
as shown on the right in Fig. 1, with oEOS

i = oi and oCON
i =

〈oi, Eθii , θi〉, where Eθii = {Eθiij }j∈[N ], such that Eθiij is the
energy measured at BS i due to an ongoing transmission
between BS j and UE j. We have rCON[n] = r[n] and aCON

i =
ai, while both rEOS

i and aEOS
i default to 0. The Eθii vector

served as a message exchanged between agents, and along
with the addition of an LSTM layer to each neural network
in the system, helped to overcome partial observability in a
multi-agent environment [13] [14].

III. PROXIMAL POLICY OPTIMIZATION (PPO) FOR
MEDIUM ACCESS DEC-POMDP

A. Proximal Policy Optimization

Given a state s and an action a, we have three terms
associated with a typical single agent RL problem: π(a|s; Θ),
Qπ(s, a) and V π(s). We denote by π(a|s; Θ) a policy pa-
rameterized by Θ that returns the probability of an agent
selecting action a in state s. If an agent starts from state s,
chooses action a and thereafter follows π, the expected reward

accumulated is represented by Qπ(s, a). Finally, V π(s) denotes
the expected reward accumulated by an agent following π
starting from state s. Policy-based model-free methods directly
parameterize the policy π(a|s; Θ) and update Θ by performing
gradient ascent on J(Θ) = E[γnr[n]]. The gradient is given
by ∇Θ log π(a|s; Θ)Qπ(a|s). To reduce the variance of this
unbiased estimate of ∇ΘJ(Θ), a learnt baseline b(s) ≈ V π(s)
is subtracted [15] such that

∇ΘJ(Θ) = ∇Θ log π(a|s; Θ)(Qπ(a|s)− V π(s)), (5)

where A(s, a) = Qπ(a|s)− V π(s) is known as the advantage.
This approach can then be viewed as an actor-critic architecture,
where actor refers to π(a|s) while V π(s) is the critic. In actor-
critic algorithms, both the actor and critic are represented
by two separate neural networks, π(a|s; Θ) and V (s;ϑ),
parameterized by Θ and ϑ respectively, and the following
loss function is minimized

L(Θ, ϑ) = −J(Θ) + (V (s, ϑ)− V target(s))2. (6)

A truncated version of generalized advantage estimation (GAE)
[16] is traditionally utilized to compute V target(st) as

V (st;ϑ) + δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1, (7)
where δt = rt + γV (st+1;ϑ)− V (st;ϑ). (8)

Proximal Policy Optimization (PPO) [11] alters the loss
function in (6) in two ways. Firstly, it replaces J(Θ) =
E[π(a|s; Θ)A(s, a)] with

LCLIP(Θ) = E[min(r(Θ)A, clip(r, 1− ε, 1 + ε)A)], (9)
where r(Θ) = π(a|s; Θ)/π(a|s; Θold). (10)

The motivation for this modified metric is to not reward
excessively large policy updates, which is enforced via the
clip function, while the “surrogate objective" r(Θ)A arises
from a policy gradient approach known as trust region policy
optimization (TRPO) [17], a precursor to PPO. The term
π(a|s; Θold) in (10) is a constant that corresponds to the
evaluation of the policy π at the given (s, a) using the current
weights Θold of the policy NN. Secondly, PPO adds an
entropy bonus S[π(.|s; Θ)] to ensure sufficient exploration.
Consequently, the final PPO objective LPPO(Θ, ϑ) which is
maximized each iteration is given by [11]

LCLIP(Θ)−c1(V (s, ϑ)−V target(s))2 +c2S[π(.|s; Θ)]. (11)

B. Adapting PPO to a Medium Access DEC-POMDP

We now define N loss functions L(ΘπCON
i , ϑVCON

i , ϑVEOS
i )

corresponding to each BS i, by adapting (11) to the 2-state
MDP presented in Fig. 1, as follows

LPPO(ΘπCON
i , ϑVCON

i )− c3LVF(ϑVEOS
i ), (12)

at each BS i, where

LVF(ϑVEOS
i ) = (V EOS

i (oEOS
i )− V target,EOS

i (oEOS
i ))2, (13)

while a similar expression for LVF(ϑVCON
i ) is already part of

LPPO(ΘπCON
i , ϑVCON

i ). Note that the only key changes from



(11) are that we have added a term for training V EOS
i and

the input to the EOS and CON NNs will be oEOS
i and oCON

i

respectively, instead of the full system state s. To overcome this
partial observability, an LSTM layer is introduced in V CON

i ,
V EOS
i and πCON

i at every BS i. Now, to compute V target,CON
i

and V target,EOS
i , we first observe that (8), when applied to the

EOS-CON transition yields

δCON
i,n = r[n] + γ

1
2V EOS

i (oEOS
i [n+ 1])− V CON

i (oCON
i [n])

(14)

δEOS
i,n = γ

1
2V CON

i (oCON
i [n])− V EOS

i (oEOS
i [n]). (15)

Note that the factor of γ
1
2 in (14) and (15) is simply meant

to keep the overall discount factor to γ in one time step.
Substituting (14) and (15) into (7) and replacing T by the
episode length L, we obtain

V target,EOS
i = V EOS

i (oEOS
i ) + δEOS

i,n + (γ
1
2λ)δCON

i,n

+ . . .+ (γ
1
2λ)L−n+1δEOS

i,L−1 (16)

V target,CON
i = V CON

i (oCON
i ) + δCON

i,n + (γ
1
2λ)δEOS

i,n+1

+ . . .+ (γ
1
2λ)L−n+1δCON

i,L−1. (17)

Note that we will denote V target,CON
i (oCON

i )−V CON
i (oCON

i )
in (17) as ÂCON

i , an estimate of ACON
i . This will be utilized

for computing LCLIP(ΘπCON
i ) via (9).

C. Generating an episode

An episode refers to a collection of L consecutive time
slots. At the beginning of time slot n, a random counter θi
is drawn for each BS i. Each πCON

i outputs two probabilities
corresponding to the actions 0 and 1, with

ai = arg max
a∈Ai

πCON
i (oCON

i )[a]. (18)

While generating an episode during the training of the al-
gorithm, we simply sample the action randomly from the
probability distribution outputted by πCON

i (oCON
i ) [18].

Consider as an example N = 3 with BS 0, 1 and 2 being
allocated counter values 〈θ0, θ1, θ2〉 = 〈2, 0, 1〉 in time slot n.
Since θ1 = 0, BS 1 goes first and measures the energy from
ongoing transmissions to compute Eθ11 . It senses no other BS’s
transmitting (Eθ11 = [0, 0, 0]), and in combination with X1[n−
1], S1[n− 1] and I1[n− 1] of the UE it serves, it determines
a1[n] using the policy given in (18). Let us assume it chose
to transmit (transmission is not a given simply because Eθ11 =
[0, 0, 0]). BS 2 is scheduled next, detects BS 1 is transmitting
such that Eθ221 is non-zero and πCON

2 instructs it not to transmit.
Finally BS 0 also detects a non-zero Eθ001 , but chooses to
transmit. Note that while the training procedure, elaborated
in Section IV, will require training V CON

i , V EOS
i and πCON

i ,
testing the learnt policy using (18) only requires πCON

i .
Once all the BS’s have taken an action ai, the action vector

a (〈1, 1, 0〉 in this example) and {gij} are used to calculate
the reward r[n] and the updated average rates X[n]. These
determine the observations oEOS

i for the next time slot. In the

next time slot n+ 1, a new counter θ′i is drawn at each BS i
and the process repeated.

IV. SIMULATION DETAILS

The performance metric is the expected cumulative reward∑L
n=0 γ

nr[n], with r[n] given by (4). Note that for γ → 1,∑L
n=0 γ

nr[n]→
∑N
j=1 log(Xj [L]). In each iteration, Nbatch

episodes are generated by Nbatch π
CON
i (actors) at each BS

i acting in parallel. An overview of the training procedure is
presented in Algorithm 1, while the simulation parameters are
summarized in Table II.

Policy gradient methods in multi-agent environments typi-
cally exhibit very high variance and perform poorly in absence
of both stationarity and the Markov property. Consequently,
to stabilize the training and improve the learnt policy, we
incorporate a decentralized actor centralized critic approach,
first proposed in [20]. The motivation behind this approach
is to use extra information to ease training, so long as this
information is not used at test time i.e. centralized training
with decentralized execution. In Algorithm 1, we observe
that only πCON

i is required for generating an episode i.e. at
test time. Hence, we change the input to both V EOS

i and
V CON
i by replacing oEOS

i with sEOS at each BS i. While
we defined oEOS

i [n + 1] = 〈Xi[n], Si[n], Ii[n]〉, we have
sEOS[n+1] = 〈X[n],S[n], I[n]〉 i.e. it will contain the average
rate, signal and interference power of all UEs in the previous
time slot. Hence the input to V CON

i will be 〈sEOS, Eθii , θi〉,
while the input to πCON

i remains oCON
i .

In order to have a fair comparison with the DQN algorithm
from [9], we make two changes in the implementation of
distributed DQN. Firstly, we alter the input to QEOS

i to sEOS

in place of oEOS
i . Secondly, in each iteration, Nbatch episodes

are generated using the current QEOS
i and QCON

i , in place
of the replay memories DEOS and DCON utilized in [9]
that added one episode generated using the current NNs and
removed the oldest episode every iteration. Finally, we will
also compare with the PF, ED and Adaptive ED baselines. ED
allows a BS to transmit only if

∑N
j=1 E

θi
ij < E0. We employ

E0 = −72 dBm [1]. Adaptive ED finds the ED threshold that
maximizes

∑L
n=0 γ

nr[n] for the given configuration of UEs
from a set of ED thresholds ranging from -22 to -92 dBm.

V. SUMMARY OF RESULTS

We consider 4 BSs lying at corners of a rectangle of breadth
20 m and length 20 m in Layout 1 (L1) and 60 m in Layout 2
(L2). As the rectangle length is increased, for most choice of 4
UE’s, the inter-BS energies Ei will more accurately reflect the
quality of reception. This is because the separation between
UE’s from different BS’s reflects the inter-BS separation more
accurately as we move from L1 in Fig. 2a to L2 in Fig. 2b.

The validation curve is shown for Layout 1 and 2 in Fig. 3a
and 3b respectively for both the DQN and PPO methods,
along with the constant benchmarks provided by the PF
and ED baselines. It is obtained by evaluating the trained
models obtained after every 50 iterations on 15 randomly
sampled configurations and averaged over 20 realizations of



N 4
Layout InH-Office [2]
Noise PSD -174 dBm/Hz
Bandwidth W 20 MHz
(UE, BS) Noise Figure (9, 5) dB
Fading Coefficient α 0.1
Smoothing Window B 10
Center frequency fc 6 GHz

(a) Data Generation Parameters

Initial Learning Rate η L1, L2, L3: (4, 4, 2)× 10−4

Learning Rate Decay L1 & L2: 0.85 / 500 updates
L3: 0.5 / 250 updates

Optimizer Adam [19]
Nbatch 8
Training Iterations 800
ε, γ, L 0.2, 1 - 1e-6, 2000
|state_hi,n| for (PPO, DQN) (128, 256)

(b) RL Training Parameters

TABLE II: Simulation Parameters

Algorithm 1: Spectrum Sharing Proximal Policy Opti-
mization

for iteration = 1, 2, . . . do
for actor = 1, 2, . . . , Nbatch do

Generate an episode of L time slots as detailed
in Section III-C.
In each time slot, each BS i chooses to transmit
with probability πCON

i [1]
end
for i = 1, 2, . . . , N do

Compute V target,EOS
i ,V target,CON

i and ÂCON
i

using (16) and (17) at each time for all actors.
Perform 1 epoch of gradient ascent with batch
size Nbatch × L on (12) to update weights of
πCON
i , V CON

i and V EOS
i .

end
end

each configuration. Two key observations can be made from
the PF and ED baselines: firstly, as we move from L1 to L2,
both baselines accumulate a larger cumulative reward. This is
because the increasing separation between UEs from different
BSs allows more BSs to transmit simultaneously. Secondly, a
single standardized threshold of -72 dBm cannot provide the
same degree of fairness in different scenarios. In fact, for L1,
-72 dBm is a very pessimistic threshold that ends up primarily
switching off all the BSs, hence it has not even be plotted. On
the other hand, the RL PPO algorithm consistently outperforms
even the adaptive ED threshold for all three layouts. More
importantly, the RL PPO algorithm tends to always converge
faster to the optimal solution than DQN, has a more stable
training curve and even significantly outperforms DQN in some
instances e.g. Layout 2.

For every realization of each UE configuration, we compute
the sum rate W

∑N
j=1Xj [L] and max rate W maxj Xj [L]

obtained using the RL PPO algorithm at the end of L time-
steps. The sum and max rate, averaged over all realizations and
configurations, and evaluated using the trained model obtained
after every 600 iterations, are plotted for L1 and L2 in Fig.
4a and 4b respectively, along with the corresponding PF and
Adaptive ED baselines. Consistent with the higher cumulative
rewards earned by the RL algorithm, RL PPO achieves a sum
rate at least equal to the adaptive ED algorithm, but always
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Fig. 2. Two layouts of 4 BS’s at the corners of a l × 20 m rectangle.

manages to increase the gap between the maximum and sum
rate, hence providing a greater degree of fairness than the
adaptive ED algorithm.

VI. CONCLUSIONS & FUTURE DIRECTIONS

The distributed PPO algorithm designed in this paper jointly
utilized the information from LBT-based spectrum sensing at
the BS along with the average rate, signal and interference
power seen by the UE it serves to determine whether a BS
will transmit in the designated time slot. Consequently, it
was found to significantly outperform a configuration adaptive
ED threshold, and also achieve improved UE throughputs.
With a view to the design of a learning based BS, the
framework developed in this paper has the potential to be
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Fig. 3. Cumulative Reward evaluated on Validation Set v/s Training Iterations
for Layout 1 and Layout 2

applied in a variety of decision-making problems, including
adaptive modulation and coding, beam selection for scheduling,
coordinated scheduling and channel selection in the frequency
domain. In essence, these extensions tremendously increase
the dimensionality of the output action space, from a simple
transmit Yes/No decision to a choice of MCS, beamformer,
user and subcarrier.
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