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Abstract—This paper considers the problem of distributed
beam scheduling in millimeter-Wave (mmWave) cellular net-
works with non-cooperating service operators sharing the spec-
trum. The base stations (BSs) may belong to different operators
so there is no coordination or centralized control among them.
Our goal is to design efficient distributed beam scheduling
schemes to optimize the network-level utility defined as the sum of
the logarithm of the average throughput of the users. Utilizing the
Lyapunov optimization theory, the network utility optimization
problem can be cast into two sub-problems to be solved iteratively
in each frame. The second sub-problem is non-convex and
challenging to solve in general. To this end, we propose a non-
cooperative game-based beam scheduling and power allocation
scheme in which the BSs are modeled as players that aim to
optimize their individual payoff. The Nash Equilibrium (NE) then
provides a distributed (approximate) solution to the second sub-
problem. We prove the existence of NE and identify sufficient
conditions guaranteeing the uniqueness of NE by establishing an
equivalence of the formulated game to a variational inequality
problem. A parallel power update algorithm is proposed with
assured convergence. Numerical evaluation demonstrates the
superiority of the proposed approach over several baselines.

I. INTRODUCTION

The proliferation of mmWave frequencies in 5G cellular net-
works makes additional shared and unlicensed spectrum avail-
able, which improves the spectrum efficiency and contributes
to orders of magnitude increase in data rate. Spectrum sharing
enables the secondary utilization of the shared or unlicensed
spectrum that is available by allowing concurrent beam-based
transmission and has the potential to largely enhance the the
system-level throughput performance [1], [2]. However, highly
directional transmission also has drawbacks – it presents a
severe interference condition for the users in ultra-dense small
BS 5G networks if there is no proper coordination of beams.
For efficient beam management and interference mitigation,
two paradigms, centralized and distributed approaches are
considered. Centralized approaches [3]–[5] can be effective
in general but usually incur high complexity due to the global
control, resulting in limited scalability. Systems with a central
control entity is also vulnerable to attack.

Another line of work [6]–[23] considered distributed ap-
proaches, which are usually scalable and flexible, and can

improve system security and robustness by removing any
central point of attack. Nekovee et al. [15] considered a multi-
RAT system where 5G BSs co-exist with existing networks
like WiGig on a shared band. A co-existence mechanism was
proposed where the 5G and WiGig BSs aim to optimize their
own utilities. Wei et al. [16] proposed a two-stage schedule-
and-align scheme that facilitates efficient communication in a
scenario where a BS communicates with multiple UEs through
a number of distributed remote mmWave radio units. Non-
cooperative game-based formulation [6]–[8], [18], [19], [22],
[23] is a natural way to model the distributed scheduling
problem for cellular networks. Alpcan et al. [6] considered the
CDMA uplink power control problem and formulated it as a
non-cooperative game where the UEs are modeled as players
each aiming to maximize its own payoff without information
exchange among them. A fixed point iteration-based power
update algorithm was proposed in order to find the NE. Pang
et al. [7] considered a cognitive radio system consisting of
primary and secondary users sharing the same spectrum. Each
secondary user aims to maximize its own throughput but the
aggregate interference caused by these users to the primary
users should be controlled. A game-based formulation was
presented and the existence and uniqueness of the NE were
analyzed. Candogan et al. [19] studied the distributed power
allocation problem in a multi-cell CDMA network. A potential
game-based approach was proposed to provide an approximate
solution to the formulated power allocation game. It was
shown that by properly selecting the pricing factors of the
potential game, it can converge to the unique equilibrium
which is a globally optimal power allocation. This provides
a good solution to the original game in the high SINR regime.

In this paper, we study the downlink beam scheduling and
power allocation problem for non-cooperative mmWave cel-
lular networks with BSs belonging to different operators and
therefore there is no centralized control or explicit coordina-
tion among them. We formulate a network utility maximization
problem that ensures fairness among the BSs. By utilizing
the Lyapunov stochastic optimization framework, the network
utility maximization problem is decomposed into two sub-
problems that need to be solved distributedly in each time



frame. The first sub-problem is convex and easy to cope with
while the second sub-problem is non-convex and challenging
to solve in general. To this end, we propose a non-cooperative
game-theoretic beam scheduling and power allocation scheme
by modeling each BS as a player which aims to maximize
its own payoff defined as a weighted sum of the throughput
and the power penalization. The pricing weights in the payoff
are automatically and optimally determined by the virtual
queues derived from the Lyapunov optimization. As a result,
the Nash Equilibrium of the formulated power allocation game
provides an approximate solution to the second sub-problem.
We also prove the existence of the equilibrium and provide
sufficient conditions which guarantee the uniqueness of the
equilibrium via an equivalence of the formulated game to
a specific variational inequality problem. A parallel power
update algorithm is proposed where the BSs adapts their
transmit powers simultaneously slot by slot based on the best
response function. Simulation results show that the proposed
approach outperforms several baselines and achieves near-
optimal performance in the high SINR regime.

II. PROBLEM FORMULATION

A. System Description

Consider a mmWave cellular network with M base stations
(BSs) labeled by M = {1,2,⋯,M} and K user equipments
(UEs) labeled by K = {1,2,⋯,K}. Each BS i belongs to
a different service operator and is responsible for serving a
subset Ki ⊆ K of the UEs. We assume that each BS can
transmit to at most one UE at any given time and each UE is
subscribed to exactly one BS. Therefore, we have Ki ≠ ∅,∀i,
Ki ∩Ki′ = ∅,∀i ≠ i

′ and ∪i∈MKi = K, i.e., the M subsets
{Ki}i∈M specifies the BS-UE association, which is assumed
to be determined by some exogenous mechanism and stays
unchanged during the scheduling process considered in this
paper. The system operates synchronously over a shared and
unlicensed frequency band of W Hz. We use a frame structure
as follows: Each frame consists of N blocks and each block
contains Tb time slots. Therefore, each frame contains Tf =

NTb slots. Each block is a UE scheduling unit which means
that the set of scheduled UEs stays fixed within any block
but can change from block to block. Since the problem of
UE scheduling will not be studied in this paper, we simply
assume that the scheduled UEs are selected randomly from
the UE pool of each BS and stay fixed among all blocks of
each frame.

BS/UEs are equipped with directional antennas to facilitate
beam-based data transmission and reception. A commonly
used antenna model is the keyhole-like sectorized model (e.g.,
[24], [25]) which has a constant main-lobe power radiation
gain Gmax and a constant side-lobe gain Gmin. More specif-
ically, the antenna gain G(θ) in the direction of θ ∈ [−π,π)
is

G(θ) = {
Gmax, ∣θ∣ ≤ Θ/2

Gmin, ∣θ∣ > Θ/2
(1)

where Θ is the beamwidth. The antenna has a total power
radiation gain of E = ΘGmax+(2π−Θ)Gmin. We use GBS

j,i and
GUE
j,i to respectively denote the antenna gain of BS i and UE

j along the direction connecting them. The main to side-lobe
gain ratio (MSR) is defined as MSR ∆

= 10 lg (Gmax/Gmin)dB.
A large MSR means that the antenna has strong radiation in
the main-lobe while a small MSR implies energy leakage in
the side-lobe. For any i, j, we let UE ji(ji ∈ Ki) denote the
UE scheduled by BS i, and let BS ij denote the BS that UE
j subscribes to (j ∈ Kij). The SINR at UE j can be written
as

SINRj,ij =
pj,ijG

UE
j,ij
GBS
j,ij

∣hj,ij ∣
2d−ηj,ij

∑`∈M,`≠i pj`,`G
UE
j,`G

BS
j,`∣hj,`∣

2d−ηj,` + σ
2
, (2)

where pj,i denotes the transmit power of BS i to UE j if UE j
is served by BS i; η is the path-loss exponent; σ2 = N0W is the
Gaussian noise power with N0 being the noise power spectrum
density; hj,i is the small-scale fading between BS i and UE j
which is assumed to follow the Nakagami-m distribution [26]
with probability density

f(h∣µ,Ω) =
2µµ

Γ(µ)Ωµ
h2µ−1exp{−

µ

Ω
h2

} , h ≥ 0, (3)

where µ
∆
= E[h2]2/Var(h2), Ω

∆
= E[h2] and Γ is the

Gamma function. We assume a block fading channel for which
the fading coefficients stay unchanged during each frame
and are i.i.d. over different frames1. We further define the
equivalent channel gain gj,ij between UE j and BS ij as
gj,ij

∆
= SINRj,ij /pj,ij if UEj is scheduled and pj,ij ≠ 0.

Moreover, each BS has a instantaneous peak power constraint
pi ≤ Pmax

i and a long-term average power consumption
constraint pi ≤ P

avg
i ,∀i where pi denotes the average transmit

power of BS i.

B. Network Utility Maximization

The time-averaged expected throughput of UE j from the
corresponding serving BS ij is given by

Xj,ij = lim
T→∞

1

T

T

∑
k=1

E[Xj,ij(k)], (4)

where the expectation is taken over the system randomness
(e.g., fading channel, scheduling etc). Xj,ij(k) is the achieved
throughput of UE j in frame k and is calculated as

Xj,ij(k) =
N

∑
n=1

T d
j,ij(k,n)W log (1 +SINRj,ij(k,n)) , (5)

where T d
j,ij

(k,n) denotes the data reception time (unit: slot)
of UE j in block n of frame k. The utility of BS i is defined
as Ui

∆
= ∑j∈Ki log (Xj,i), i.e., the sum of the logarithm of

the average throughput of its associated UEs. The purpose of
using the logarithm function is to ensure fairness among UEs.

1We do not consider UE mobility in this paper. However, the proposed
approach applies to the case when UEs may move slowly such that the channel
gains do not change violently from slot to slot.



The network utility is then defined as the sum utility of the
BSs, i.e., Usum

∆
= ∑i∈MUi. We aim to solve the following

network utility maximization problem

max Usum (6a)
s.t. ∑

j∈Ki
pj,i ≤ TfP

avg
i , ∀i, (6b)

pji,i(k,n) ≤ P
max
i , ∀i, k, n, (6c)

where pj,i = lim
T→∞

1
T ∑

T
k=1∑

N
n=1 E[T d

j,i(k,n)pj,i(k,n)] de-
notes the average power consumption of BS i to UE j.
In Section III, we decompose the optimization problem (6)
into two sub-problems and propose a non-cooperative game-
theoretic beam scheduling and power allocation scheme which
solves (6) in a distributed fashion.

III. PROPOSED APPROACH

A. Lyapunov Decomposition

The fact that Usum is a non-linear function of the time
average (4) makes (6) difficult to solve. To this end, we can
transform problem (6) into an equivalent form with a new
objective which is a time average of some non-linear function
and is easier to solve. In particular, by introducing a set of
auxiliary variables {γj,i(k)}i∈M,j∈Ki for each frame k, (6)
can be rewritten as [27]:

max lim
T→∞

1

T
∑
k∈[T ]

∑
i∈M

∑
j∈Ki

E [log(γj,i(k))] (7a)

s.t. ∑
j∈Ki

pj,i ≤ TfP
avg
i , ∀i (7b)

γj,i ≤Xj,i, ∀i ∈M,∀j ∈Ki (7c)

∑
j∈Ki

pj,i(k,n) ≤ P
max
i , ∀i, k, n (7d)

0 ≤ γj,i(k) ≤ TfW log (1 + gmax
j,i P

max
i ) ,∀i, j, k (7e)

where [T ]
∆
= {1,⋯, T}, gmax

j,i
∆
= maxk,n gj,i(k,n) and γj,i

∆
=

lim
T→∞

1
T ∑

T
k=1 γj,i(k) denotes the average value of γj,i(k).

Utilizing the Lyapunov drift-plus-penalty framework, (7) can
be further decomposed into two sub-problems that need to
be solved in each frame, together with two virtual queues to
enforce the constraints (7b) and (7c). In particular, the transmit
power queue {Zi(k)}

∞
k=1 is used to enforce (7b) and is updated

in each frame by ∀i ∈M:

Zi(k + 1) =

max

⎧⎪⎪
⎨
⎪⎪⎩

Zi(k) + ∑
j∈Ki

∑
n∈[N]

T d
j,i(k,n)pj,i(k,n) − TfP

avg
i , 0

⎫⎪⎪
⎬
⎪⎪⎭

.

(8)

The throughput queue {Hj,i(k)}
∞
k=1 is used to enforce (7c)

and is updated by ∀i ∈M,∀j ∈Ki:

Hj,i(k + 1) = max{Hj,i(k) + γj,i(k) −Xj,i(k), 0} . (9)

The first sub-problem aims to solve the auxiliary variables
γj,i(k) in each frame k as

max
γj,i(k)

∑
i∈M

∑
j∈Ki

(V log(γj,i(k)) −Hj,i(k)γj,i(k)) (10a)

s.t. 0 ≤ γj,i(k) ≤ TfW log (1 + gmax
j,i (k)Pmax

i ) ,

∀i ∈M,∀j ∈Ki (10b)

where gmax
j,i (k)

∆
= maxn gj,i(k,n) and V is a constant that

establishes a trade-off between the convergence (to the optimal
solution of (7) by solving the sub-problems) speed and the
optimality gap. This sub-problem is convex and thus easy to
solve. More specifically, (10) can be optimally solved in a
distributed manner by letting each BS i perform an indepen-
dent convex optimization over the variables {γj,i(k)}j∈Ki as
follows:

max
γj,i(k)

∑
j∈Ki

(V log(γj,i(k)) −Hj,i(k)γj,i(k)) (11a)

s.t. 0 ≤ γj,i(k) ≤ TfW log (1 + gmax
j,i (k)Pmax

i ) ,∀j ∈Ki.
(11b)

Note that the solution is affected by the throughput queues
{Hj,i(k),∀k}j∈Ki corresponding to the associated UEs of BS
i which can be tracked by BS i. The second sub-problem aims
to solve the transmit powers pj,i(k,n) in each block n:

min ∑
i∈M

∑
j∈Ki

⎛

⎝
∑

n∈[N]
E [T d

j,i(k,n)pj,i(k,n)] − TfP
avg
i

⎞

⎠

×Zi(k) −Hj,i(k)X̂j,i(k) (12a)
s.t. ∑

j∈Ki
pj,i(k,n) ≤ P

max
i , ∀i, k, n (12b)

where X̂j,i(k)
∆
= ∑

N
n=1 E [T d

j,i(k,n)W log(1 +SINRj,i(k,n))]
denotes the expected throughput achieved by UE j in frame
k. The inclusion of the SINR in objective function renders
this sub-problem challenging to solve in general. Therefore,
we propose a game-theoretic distributed power allocation
scheme and use the NE as an approximate solution to (12).
The connection between the optimization (7) and (10), (12) is
that if the two sub-problems can be solved with accuracy β
in all frames, then (7) can be solved with accuracy O(β/V ).
This implies that we can make the optimality gap arbitrarily
small by choosing arbitrarily large V . Let Uopt

sum denote
the optimal value of (6). Let X

game

j,i denote the average
throughput achieved by solving the sub-problems (10) and
(12) iteratively in each frame using the proposed game-based
approach, also let Uopt

sub(k) and Ugame(k) denote respectively
the optimal value of (12) and the value achieved by the
proposed approach in frame k. The above connection is then
formally stated in the following lemma.

Lemma 1: (Optimality Gap) Suppose that the sub-problem
(12) can be solved with accuracy β (given that (10) is
optimally solved) in each frame using the proposed game-
based scheduling approach, i.e., Uopt

sub(k)−U
game(k) ≤ β,∀k.

Then
∑
i∈M

∑
j∈Ki

log (X
game

j,i ) ≥ Uopt
sum −

β +C

V
, (13)



where C is a constant.

B. Proposed Beam Scheduling & Power Allocation

1) Non-cooperative Game-based Formulation: A non-
cooperative game can represented by a triple G =

⟨N ,{Ai}i∈N ,{φi}i∈N ⟩ where N is the set of players, Ai is
the action space of play i, and φi is the payoff function of
player i. Let a

∆
= {ai}i∈N denote the action profile of the

players where ai ∈ Ai is the action chosen by player i. Let
a−i

∆
= {ai′}i′∈N /{i} denote the action profile excluding player

i. For player i, the best response (BR) a∗i is defined as an
action such that φi is maximized given the action profile a−i
of other players, i.e., φi(a∗i ,a−i) ≥ φi(ai,a−i),∀ai ∈ Ai. The
Nash Equilibrium (NE) is an action profile a∗ = {a∗i }i∈N
for which the players’ actions are each other’s BR, i.e.,
φi(a

∗
i ,a

∗
−i) ≥ φi(ai,a

∗
−i),∀ai ∈ Ai,∀i ∈ N .

We model the distributed beam scheduling and power
allocation problem as a non-cooperative game G =

⟨M,{Pi}i∈M,{φi}i∈M⟩ where the M BSs are defined as
the players which do not cooperate with each, i.e., there is
no information exchange at all. The action of BS i is the
transmit powers pi

∆
= (pj,i)j∈Ki ∈ R∣Ki∣ to its associated UEs.

Since only one UE can be scheduled in each block, we have
pj,i = 0,∀j ∈ Ki/{ji} where UE ji is scheduled by BS
i. WLOG, we assume that each BS is associated with the
same number of UEs, i.e., ∣Ki∣ = K/M,∀i ∈M. The action
space is correspondingly defined as Pi

∆
= ∏

K
M

j=1[0, P
max
i ]. Let

p = (pi)i∈M ∈ RK
M ×M and P =∏

M
i=1Pi denote the joint action

profile and the joint action space of the BSs respectively. The
payoff of BS i is defined as

φi(pi,p−i)
∆
= αiW log (1 +SINRji,i) − λipji,i, . (14)

where αi, λi ≥ 0 are the pricing weights that can be tuned
(manually or determined by some other mechanisms) to find a
desired trade-off between throughput maximization and power
consumption. For the power allocation game G, the BR of each
player can be calculated by setting the first-order derivative of
φi w.r.t. pji,i to be zero as stated in Lemma 2.

Lemma 2: (Best Response) For the power allocation game
G = ⟨M,{Pi}i∈M,{φi}i∈M⟩, the BR of BS i is given by

p∗ji,i = min{Pmax
i ,max{

αiW

λi
−

1

gji,i
, 0}} , ∀i, (15)

where gji,i
∆
=

GUE
ji,i

GBS
ji,i

∣hji,i∣
2d−ηji,i

∑`∈M,`≠i pj`,`G
UE
ji,`

GBS
ji,`

∣hji,`∣2d
−η
ji,`

+σ2 is the equiv-

alent channel gain between BS i and UE ji.
2) Proposed scheme: Under the proposed game-based

power allocation, the scheduled UE will be served throughout
each block. Therefore, the data reception time of the scheduled
UEs is equal to the block duration and is equal to zero for all
other UEs. That is, for each i,

T d
j,i(k,n) = {

Tb, if j = ji
0, otherwise

(16)

As a result, after omitting the constant term TfP
avg
i , the

objective of (12) can be rewritten as to maximize

∑
i∈M

∑
n∈[N]

Hji,i(k)TbW log (1 +SINRji,i(k,n))

−Zi(k)Tbpji,i(k,n). (17a)

We propose to solve (17) in a distributed way by letting each
BS i perform the following optimization problem in each block
to solve pji,i(k,n):

max αiW log (1 +SINRji,i(k,n)) − λipji,i(k,n) (18a)
s.t. pji,i(k,n) ≤ P

avg
i (18b)

where the pricing weights are determined by the virtual queues
as

αi =Hji,i(k)Tb, λi = Zi(k)Tb, ∀i. (19)

Since (18) takes the same form as the payoff function (14)
defined for G, we can accordingly define a power allocation
game G(k,n) for each block n with payoff functions defined
in (18a). This game can be played from block to block and
the NE can be used as an approximate solution to (12).

We next present a dynamic parallel power update algorithm
based on the BR derived in Lemma 2 where the BSs updates
their transmit powers simultaneously in each slot. In particular,
let p(t)ji,i be the transmit power of BS i in slot t. Also let I(t)ji
denote the measured interference (plus noise) at UE ji in slot
t which can be obtained by BS i via feedback. The transmit
powers in the next slot can be computed according to the
following update rule:

p
(t+1)
ji,i

= min

⎧⎪⎪
⎨
⎪⎪⎩

Pmax
i ,max

⎧⎪⎪
⎨
⎪⎪⎩

Hji,i(k)W

Zi(k)
−

I
(t)
ji

∣hji,i∣
2
, 0

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

, (20)

where ∣hji,i∣
2 = GUE

ji,i
GBS
ji,i

∣hji,i∣
2d−ηji,i denotes the direct chan-

nel gain from BS i to UE ji which can be estimated by BS
i via pilot training. The BSs perform the power update at the
beginning of each slot. If the transmit power is not zero, the
BSs then generate beams towards their scheduled UEs and
start data transmission until the next power update. It should
be noted that (20) is fully distributed as the power update of
each BS does not require the knowledge of the cross channels
or the virtual queues associated with other BSs. This update
algorithm can be proved to converge as shown by Proposition
1.

Proposition 1: (Convergence, [7]) The sequence
{p

(t)
ji,i
,∀i}

∞
t=0

generated by the power update rule (20)
always converges. Furthermore, if the matrix Q defined in
(23) is a P-matrix, then the sequence {p

(t)
ji,i
,∀i}

∞
t=0

converges
to the unique NE of G(k,n).

C. Existence & Uniqueness of NE

Several properties of the formulated power allocation game
in the previous section will be presented. In particular, we
prove the existence of the NE and derive sufficient conditions
which guarantee the uniqueness of NE by establishing an
equivalence to a corresponding variational inequality (VI)



problem [28] – if the VI problem has a unique solution, then
the formulated game has a unique equilibrium. Due to space
limit, the proof of the lemmas are omitted and can be found
in [9]. The following lemma shows that the NE always exists.

Lemma 3: (Existence of NE) The power allocation game
G = ⟨M,{Pi}i∈M,{φi}i∈M⟩ formulated in Section III-B
always admits at least one pure strategy NE for any αi, λi ≥
0,∀i ∈M and any set of channel realizations.

To prove the uniqueness of NE, we first introduce two
necessary concepts. A matrix A ∈ Rn×n is called a P-matrix if
every principal minor of A is positive. In addition, a mapping
Ð⇀
f

∆
= [
Ð⇀
f1,
Ð⇀
f2,⋯,

Ð⇀
fn] ∶ Rm×n ↦ Rm×r is called a uniformly P-

function on a convex subset C of Rm×n if there exists a con-
stant ε > 0 such that for any x = (xi)

n
i=1,y = (yi)

n
i=1 ∈ Rm×n,

it holds that

max
1≤i≤n

(xi − yi)
T
(
Ð⇀
fi(x) −

Ð⇀
fi(x)) ≥ ε∥x − y∥2. (21)

where ∥ ⋅∥ is the Frobenius norm. In addition, for a closed and
convex subset S ⊆ Rn, and a mapping

Ð⇀
f ∶ S ↦ Rn, the VI

problem, denoted by VI(S,
Ð⇀
f ) seeks to find a solution x∗ ∈ S

such that (x−x∗)T
Ð⇀
f (x∗) ≥ 0,∀x ∈ S. It is known that if

Ð⇀
f

is a uniformly P-function, then VI(S,
Ð⇀
f ) will have a unique

solution x∗ in S .
We further define a vector function

Ð⇀
F (p)

∆
=

[
Ð⇀
F1(p),⋯,

Ð⇀
Fn(p)] ∈ RK

M ×M where
Ð⇀
Fi is defined as the

gradient of the payoff function φi w.r.t. pi, that is,

Ð⇀
Fi(p)

∆
= −∇piφi(pi,p−i) = [0,⋯,−

∂φi(pi,p−i)

∂pji,i
,⋯,0]

T

,

(22)
i.e., the only non-zero element appears at the scheduled UE
ji by BS i. It can be shown that the power allocation game G
is equivalent to VI(P,

Ð⇀
F ) in the sense that if VI(P,

Ð⇀
F ) has

a unique solution, then G admits a unique NE and vice versa.
We also define a matrix Q

∆
= [Qp,q]M×M as

Qp,q =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αpW, ifp = q

−αpW ∣
hjp,q

hjq,q
∣
2

(1 +
∑i∈M ∣hjq,i∣

2Pmax
i

σ2 ) , ifp ≠ q

(23)

where hj,i
∆
=
√
GUE
j,iG

BS
j,i ∣hj,i∣

2d−ηj,i . Recall that αi is the pricing
weights. We are now ready to present a sufficient condition
which can guarantee the uniqueness of NE as stated in Lemma
4.

Lemma 4: (Uniqueness of NE) If the matrix Q defined in
(23) is a P-matrix, then

Ð⇀
F defined by (22) is a uniformly P-

function on P . Consequently, VI(P,
Ð⇀
F ) has a unique solution

which implies that G admits a unique NE.

IV. SIMULATION

A. Simulation Setup

Consider 10 BSs located on a 800×800 meter squared grid
as shown in Fig. 1. Each BS is associated with 5 UEs and has
a (possibly overlapping) disk coverage area with radius 150

meters. The total shared bandwidth is W = 400 MHz; path-
loss exponent is η = 4; The power constraints are P avg

i = 38.13
dBm (6.5 Watt), Pmax

i = 39 dBm (7.9 Watt). The total noise
power over the 400 MHz bandwidth is σ2 = −86.46 dBm.
Each frame has N = 5 blocks, each block has Tb = 80 slots,
implying Tf = NTb = 400 slots. Small-scale fading parameters
are chosen as µ = 1,Ω = 10−3. We consider two baseline

Fig. 1: Simulation network with 10 BSs and 50 UEs.
schemes which are p-persistent and CSMA/CA media access
strategies widely used in real-world wireless networks. For
p-persistent, the optimal contention probability is chosen as
0.1. For CSMA/CA, the minimum and maximum contention
windows are chosen as 20 and 200 slots respectively and
each data transmission duration contains two slots. For the
baselines, based on an estimate of the data reception time of
the UEs in each frame, the corresponding one-time transmit
powers can be obtained by solving (12) similar to the proposed
approach. In addition, we consider an ‘ideal case’ where we
assume that there is no interference among BSs and thus the
maximum transmit power will be chosen by every BS. This
ideal case is not achievable but serves as an performance upper
bound on any scheduling approach including centralized ones.

B. Simulation Result

We verify the effect of beamwidth and antenna gain on the
proposed approach and compare it with two baselines. Sim-
ulation results show that the proposed approach has superior
performance than the baselines and can achieve near-optimal
performance in the high SINR regime as it approaches the
ideal case when the BSs have sharp beams.

1) Effect of beamwidth: We assume all BSs have identical
antenna configurations as well as the UEs. Because varying the
UE beamwidth and antenna gain has a similar effect to varying
that of the BSs, we fix the UE antenna configuration to be
(20 dB, π/18) throughout the simulation. We fix the antenna
gain as MSR = 20 dB and then change the beamwidth as
ΘBS ∈ {π

9
, π

36
, π

72
} in order to observe the effect of beamwidth.

The achieved network utility is shown in Fig. 2. It can be seen
that the proposed approach outperforms the baselines in all
three cases with both faster convergence and higher achieved
utility. The achieved utility also increases as the beamwidth
decreases. This is because narrow beams increases the power



(a) ΘBS = π/9 (b) ΘBS = π/36 (c) ΘBS = π/72
Fig. 2: Effect of beamwidth. BS antenna MSR is set to be 20 dB.

(a) MSRBS = 10 dB (b) MSRBS = 20 dB (c) MSRBS = 30 dB

Fig. 3: Effect of antenna MSR. BS beamwidth is set to be π/18.

radiation towards the target UE and avoids covering non-target
UEs and thus causing less interference to them. Moreover, the
proposed approach achieves more than 90% of the utility of
the ideal case.

2) Effect of antenna MSR: We fix the BS beamwidth to be
π/18 and change the antenna gain as MSRBS

∈ {10,20,30} dB
in order to verify the effect of antenna MSR. The results is
shown in Fig. 3. It can be seen that the proposed approach has
faster convergence speed and achieves higher utility than the
baselines. The achieved utility also increases with the antenna
MSR as a higher MSR increases the desired signal component
power as well as reducing the power leakage in the side-lobe.
Again, the proposed approach can achieve more than 90%
utility of the upper bound.

3) Optimality: A comparison of the proposed approach
with the ideal case under various BS antenna beamwidth-MSR
configurations (π/3,6 dB), (π/20,30 dB) and (π/30,40 dB)

is shown in Fig. 4. It can be seen that when the beams become
sharper, the performance gap decreases, which is because the
interference from unintended BSs is effectively suppressed.
In the extreme case of (π/30,40 dB), the proposed approach
achieves almost identical performance to the ideal case. This
demonstrates the near-optimality of the proposed approach in
the high SINR regime.

V. CONCLUSION

In this work, we studied the distributed beam scheduling
problem in mmWave cellular networks for the purpose of

Fig. 4: Comparison with the ideal case.

network utility maximization. We proposed a non-cooperative
game-based beam scheduling and power allocation scheme
by formulating the power allocation task as a game. The
Nash Equilibrium of the game then serves as a distributed
and approximate solution to the second sub-problem extracted
from the original network utility maximization problem. The
existence of the equilibrium was proved and sufficient con-
ditions guaranteeing the uniqueness of the equilibrium were
derived utilizing the connection to the variational inequality
problem. A parallel power adaptation algorithm was proposed
and shown to converge to the equilibrium. Simulation results
demonstrated the efficiency of the proposed approach.
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