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Abstract

We present a generic framework for trading off fidelity and cost in computing stochastic gradients
when the costs of acquiring stochastic gradients of different quality are not known a priori. We consider
a mini-batch oracle that distributes a limited query budget over a number of stochastic gradients and
aggregates them to estimate the true gradient. Since the optimal mini-batch size depends on the unknown
cost-fidelity function, we propose an algorithm, EE-Grad, that sequentially explores the performance
of mini-batch oracles and exploits the accumulated knowledge to estimate the one achieving the best
performance in terms of cost-efficiency. We provide performance guarantees for EE-Grad with respect to
the optimal mini-batch oracle, and illustrate these results in the case of strongly convex objectives. We
also provide a simple numerical example that corroborates our theoretical findings.

1 Introduction

Stochastic gradient methods are widely used to solve large-scale optimization problems in machine learning.
Given a differentiable objective function F : Rd→R with a gradient ∇F , a stochastic gradient descent (SGD)
algorithm chooses an initial iterate w1 ∈Rd , and, on each iteration k = 1, . . . ,K, it uses a noisy gradient G(wk)
instead of ∇F(wk) to set the next iterate as wk+1 = wk−ηkG(wk), where ηk > 0 is a step size. The overall
performance of stochastic gradient methods is controlled by the noise in G(wk) with respect to ∇F(wk) [1].
Often, noisy gradients with large variances lead to slower convergence and degraded performance [2].

Mini-batch stochastic gradient methods, as well as their distributed or parallelized variants, have been
proposed to tackle some of these issues [3, 4]. Recently, federated learning [5] has been proposed as a
decentralized optimization framework, where SGD runs on a large dataset distributed across a number of
devices performing local model updates and sending them to a centralized server that aggregates them, under
privacy and communication constraints. In typical resource- and budget-constrained applications, as the
mini-batch size increases, the cost available to be allocated to each single stochastic gradient in the mini-batch
decreases, so that its quality degrades, i.e., its noise variance increases. A common approach is to focus on the
tradeoff between the rate of convergence and the computational complexity of stochastic gradient methods,
where the dependence of the noise variance on the cost allocated to stochastic gradients is often omitted.
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In this paper, we propose an alternative framework and consider the tradeoff between fidelity and cost of
computing a stochastic gradient. In particular, we model a noisy gradient as an unbiased estimate of the true
gradient, where the noise variance depends on the incurred cost, and this dependence is formalized through a
cost-fidelity function. We focus on mini-batch oracles, where each mini-batch oracle distributes a limited
budget across a mini-batch of stochastic gradients and aggregates them to form a final gradient estimate. We
assume that the aggregation operation also incurs a cost from the budget, as does each of the noisy gradients
in the mini-batch. The optimal mini-batch size in minimizing the noise variance depends on the underlying
cost-fidelity function.

We focus on determining the optimal mini-batch oracle in terms of the cost-fidelity tradeoff when the
cost-fidelity function is unknown. In particular, we propose and analyze EE-Grad: an algorithm that, on
each iteration, performs sequential trials over different mini-batch oracles to explore the performance of each
mini-batch oracle with high precision and exploit the current knowledge to focus on the one that seems to
provide the best performance, i.e, the smallest noise variance. We demonstrate that the proposed algorithm
performs almost as well as the optimal mini-batch oracle on each iteration in expectation. We apply this
result to the case of strongly convex objectives, and prove performance guarantees in terms of the rate of
convergence. We finally provide a numerical example to illustrate our theoretical results.

2 Cost-Fidelity Tradeoff and Mini-Batch Stochastic Gradient Oracles

Suppose that, on each iteration, a stochastic gradient g(w,θ) and the gradient ∇F(w) are related as

g(w,θ) = ∇F(w)+U(w,θ) (1)

where U(w,θ) is a zero-mean perturbation with a positive definite and diagonal covariance matrix θ−1M(w)
for θ > 0. That is,

Ew[U(w,θ)] = 0, Ew

[
U(w,θ)U(w,θ)T

]
= θ

−1M(w),

where Ew[·] is the conditional expectation given w. Here, θ is the fidelity of the stochastic gradient g(w,θ).
We assume that ith element of U(w,θ) is sub-Gaussian with the parameter θ−1M(w)i,i, i.e.,

Ew

[
eλU(w,θ)i

]
≤ eλ 2M(w)i,i/2θ , ∀λ ∈ R, (2)

for i ∈ [d]1. A mini-batch stochastic gradient is computed by averaging n independent noisy gradients
gi(w,θ) = ∇F(w)+Ui(w,θ), i ∈ [n], each with fidelity θ :

G(w) =
1
n

n

∑
i=1

gi(w,θ), (3)

which has the covariance matrix M(w)/nθ , and satisfies Ew

[
‖∇F(w)−G(w)‖2

2

]
= S(w)/nθ , where S(w) =

Tr(M(w)) is the trace of the covariance matrix.
A stochastic gradient g(w,θ) with fidelity θ > 0 incurs a cost C(θ), which is a strictly increasing function

of θ with limθ→0C(θ) = cmin ≥ 0. We assume that the cost function C(θ) is unknown. There is also an

1For any positive integer N, [N], {1, . . . ,N}.
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aggregation cost D(n) to perform the averaging operation, where D(n) is increasing with D(1) = 0. Hence,
given a budget B > 0, the maximum feasible mini-batch size is

N = max
{

n ∈ Z+

∣∣∣B > ncmin +D(n)
}
.

Here, we define, for each n ∈ [N], a mini-batch oracle MBO(n,B,w) that computes a mini-batch stochastic
gradient G(w,n) as in (3) using the fidelity

θn ,C−1
(

B−D(n)
n

)
.

That is, each individual stochastic gradient in the mini-batch is allocated (B−D(n))/n in cost. Therefore, the
covariance matrix of G(w,n) is σ2

n M(w), where

σ
2
n ,

1
nθn

is unknown, since the cost function C(θ) is assumed unknown. Note that, given ∇F(w), the concentration of
G(w,n) around ∇F(w) is completely governed by σ2

n for each n ∈ [N]. The optimal mini-batch size in terms
of the cost-fidelity tradeoff is given by

n∗ , argmin
n=1,...,N

σ
2
n ,

and σ2
∗ , σn∗ . In particular, we define the suboptimality gap of each mini-batch oracle MBO(n,B,w)

∆n , σ
2
n −σ

2
∗ ≥ 0.

Since the cost function is unknown, the optimal mini-batch size n∗ and σ2
∗ , and hence the optimal

mini-batch oracle MBO(n∗,B,w), are unknown. In the next section, we propose an algorithm that attempts
to learn the optimal mini-batch oracle over sequential trials in the sense that its noise variance is almost as
small as the optimal mini-batch oracle on each iteration.

3 The EE-Grad Algorithm

In this section, we present EE-Grad: an algorithm that, on each iteration of the SGD, aggregates stochastic
gradients computed over sequential trials, where at each trial it estimates the optimal mini-batch size and
uses the available per-round budget to query the corresponding mini-batch oracle. EE-Grad constructs a
high confidence bound on the variance estimate of each mini-batch oracle by exploiting the sub-Gaussian
assumption on the noisy gradients. We demonstrate that, in expectation, the algorithm performs almost as
well as the optimal mini-batch oracle at each iteration.

On each SGD iteration, EE-Grad performs the following T -round procedure. On round t = 1, . . . ,T , it
picks a mini-batch size nt ∈ [N] based on a strategy introduced later in this section, and uses the per-round
budget B to query the mini-batch oracle MBO(nt ,B,w). The oracle returns Gt(w) = Gt(w,nt), an unbiased
estimate of ∇F(w), with covariance matrix σ2

nt
M(w). After T rounds, the algorithm outputs the stochastic

gradient G(w) = (1/T )∑
T
t=1 Gt(w).
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We denote the number of rounds the algorithm picks MBO(n,B,w) up to round t as γt(n), index its
outputs as G1(w,n), . . . ,Gγt(n)(w,n), and write its sample mean and sample covariance matrix as

mt(n) =
1

γt(n)

γt(n)

∑
i=1

Gi(w,n), Covt(n) =
1

γt(n)−1

γt(n)

∑
i=1

(Gi(w,n)−mt(n))(Gi(w,n)−mt(n))
T ,

respectively, for n ∈ [N]. The algorithm computes the trace of the sample covariance matrix, denoted
by Vt(n) = Tr(Covt(n)) for each n ∈ [N]. Note that Ew[Vt(n)] = σ2

n S(w), which implies that for each
MBO(n,B,w), the trace of its sample covariance matrix is an unbiased estimate of σ2

n S(w).
We emphasize that this framework is similar to the stochastic multi-armed bandit setup that involves

an exploration/exploitation tradeoff when picking different arms over sequential trials [6]. In particular,
algorithms that exploit the available knowledge on the current best arm and explore the other arms to estimate
the actual best arm with higher precision have been shown to yield satisfactory performance [6, 7]. We adopt
a similar approach here, and propose an algorithm that simultaneously performs exploration and exploitation.
More precisely, EE-Grad first initializes by picking each mini-batch oracle exactly twice, so that γt(n) = 2
for each n ∈ [N] at trial t = 2N, and then picks the mini-batch oracle at trial t = 2N +1, . . . ,T according to

nt ∈ argmin
n=1,...,N

[
Vt(n)− f

(
α ln(t)

γt(n)−1

)]
, (4)

for some α > 2, where

f (x), βP

√
xd
c

max
(

1,
√

x
cd

)
, (5)

and c > 0 is a universal constant that comes from the use of Hanson-Wright inequality, as detailed in the
proof of Theorem 1. Here we assume that β and P are known constants such that σ2

n ≤ β for each n ∈ [N],
and S(w)≤ P. This algorithm constructs an upper confidence bound on the trace of the sample covariance
matrix of each mini-batch oracle, and picks the one with the best estimate. The overall scheme, presented
below as Algorithm 1, will be analyzed using techniques similar to the ones used in UCB strategies [7, 8, 9],
as explained in the proof of Theorem 1.

Algorithm 1 EE-Grad
Input: N,T > 1, per-round budget B.
Initialization: Pick each mini-batch oracle twice in the first 2N rounds.
for t = 2N +1 : T do

Compute Vt(n) for each n ∈ [N], and pick a mini-batch size nt based on (4).
Distribute the budget B to MBO(nt ,B,w), which reveals Gt(w,n), and set Gt(w) = Gt(w,n).

end for
Compute the final gradient estimate as G(w) = (1/T )∑

T
t=1 Gt(w),

4 EE-Grad Performance Guarantees

In this section, we investigate the performance of EE-Grad. In particular, we prove an upper bound on its
noise variance, and compare it to the noise variance achieved by the optimal mini-batch oracle:

4



Theorem 1. On each iteration, the stochastic gradient computed by EE-Grad satisfies

Ew

[
‖G(w)−∇F(w)‖2

2

]
≤ ZT (w)S(w),

where

ZT (w) =
σ2
∗

T
+

(
lnT
T 2

)
C1(w)+

(
1

T 2

)
C2,

and

C1(w), ∑
n:∆n>0

α∆n

φ(∆nS(w)/2)
, C2 ,

(
N

∑
n=1

∆n

)
2(α−1)

α−2
, φ(ε),

cε

βP
min
(

1,
ε/d
βP

)
.

Also, the stochastic gradient G∗(w) computed by the optimal mini-batch oracle satisfies

Ew

[
‖G∗(w)−∇F(w)‖2

2

]
=

σ2
∗

T
S(w).

Proof. We prove this theorem in several steps. We first analyze the difference between the noise variance
of the stochastic gradient generated by EE-Grad and that of the optimal mini-batch oracle. We next show
that this quantity is related to the pseudo-regret term that appears in stochastic multi-armed bandit problems,
where UCB-type strategies are used to achieve upper bounds on the pseudo-regret by leveraging concentration
inequalities. We present a similar formulation to analyze the behavior of the proposed algorithm with respect
to the optimal mini-batch oracle. To prove the upper bound, we first demonstrate that the trace of the sample
covariance matrix for each mini-batch oracle, which is used to pick a oracle on each trial in (4), can be
written as a quadratic form of independent sub-Gaussian random variables. We combine this observation
with the Hanson-Wright inequality [10] to prove a high probability tail bound on the estimate of the optimal
mini-batch size. This result also is the derivation of the rule in (4). Based on these results, we prove a
pseudo-regret bound and connect this bound to the noise variance achieved by EE-Grad.

Note that, on each iteration, the stochastic gradient of the optimal mini-batch oracle after T rounds is

G∗(w),
1
T

T

∑
t=1

Gt(w,n∗),

where G1(w,n∗), . . . ,GT (w,n∗) are independent. We observe that

Ew

[
‖G(w)−∇F(w)‖2

2

]
−Ew

[
‖G∗(w)−∇F(w)‖2

2

]
=

1
T 2

(
T

∑
t=1

Ew

[
‖Gt(w)−∇F(w)‖2

2

]
−

T

∑
t=1

Ew

[
‖Gt(w,n∗)−∇F(w)‖2

2

])

=
1

T 2

(
T

∑
t=1

Ew

[
‖Gt(w)−∇F(w)‖2

2

]
−T σ

2
∗ S(w)

)
, (6)

where in (6) we used Ew

[
‖Gt(w,n∗)−∇F(w)‖2

2

]
= σ2

∗ S(w) for each t ∈ [T ]. We next observe that

Ew

[
‖Gt(w)−∇F(w)‖2

2

]
= Ew

[
Ew

[
‖Gt(w)−∇F(w)‖2

2

∣∣∣nt

]]
= Ew

[
σ

2
nt

]
S(w), (7)

5



where in (7) the expectation is with respect to the randomness in nt . In particular, we can write

Ew
[
σ

2
nt

]
=

N

∑
n=1

σ
2
n Pr(nt = n) (8)

for each t ∈ [T ]. If we substitute (8) into (7) and use the result in (6), then we obtain

Ew

[
‖G(w)−∇F(w)‖2

2

]
−Ew

[
‖G∗(w)−∇F(w)‖2

2

]
=

1
T 2

(
N

∑
n=1

σ
2
n

T

∑
t=1

Pr(nt = n)−T σ
2
∗

)
S(w),

=
1

T 2

(
N

∑
n=1

σ
2
n

T

∑
t=1

Ew[1{nt = n}]−T σ
2
∗

)
S(w) (9)

=
1

T 2

(
N

∑
n=1

σ
2
n Ew[γT (n)]−σ

2
∗

N

∑
n=1

Ew[γT (n)]

)
S(w) (10)

=
1

T 2 Ew

[
N

∑
n=1

∆nγT (n)

]
S(w), (11)

where in (9) we used Pr(nt = n) =Ew[1{nt = n}], in (10) we used γT (n) =∑
T
t=11{nt = n} and ∑

N
n=1 γT (n) =

T , and in (11) we used ∆n = σ2
n −σ2

∗ . We note that the term Ew
[
∑

N
n=1 ∆nγT (n)

]
S(w) is similar to the pseudo-

regret term that appears in stochastic multi-armed bandit problems, where there are N arms with unknown
reward distributions [6]. We derive the strategy in (4) based on similar arguments, where we leverage a novel
application of the Hanson-Wright inequality to the trace of the sample covariance matrix of each mini-batch
oracle to prove concentration inequalities.

To prove an upper bound on (11), we first show in Lemma 1 that Vt(n) can be written as a quadratic form
of sub-Gaussian random variables as

Vt(n) = sT
t,nAt,nst,n, n ∈ [N],

where st,n ,
(

G1(w,n)T , . . . ,Gγt(n)(w,n)T
)T

, and

At,n =
1

γt(n)−1

(
I− 1

γt(n)
E
)
,

I ∈ Rdγt(n)×dγt(n) is an identity matrix, and E ∈ Rdγt(n)×dγt(n) is a block matrix with d× d identity blocks.
We next apply the Hanson-Wright inequality [10, 11] to Vt(n) for each n ∈ [N] to obtain high confidence
bounds. This inequality provides a tail probability bound for an arbitrary quadratic function of independent
sub-Gaussian random variables. We present it in the appendix for completeness. Moreover, Lemma 3 shows
that the tail probability of the trace of the sample covariance matrix of each mini-batch oracle satisfies, for
any ε > 0,

Pr
(
Vt(n)−σ

2
n S(w)> ε

)
≤ exp(−(γt(n)−1)φ(ε)), (12)

where

φ(ε),
cε

βP
min
(

1,
ε/d
βP

)
,

6



for each n ∈ [N]. We observe that φ = f−1, where f is defined in (5).
Note that (12) is equivalent to stating that, for any δ ∈ (0,1),

Vt(n)− f
(

1
γt(n)−1

ln
(

1
δ

))
≤ σ

2
n S(w) (13)

with probability at least 1− δ . Using this result, we propose the UCB-type strategy in (4) to pick the
mini-batch oracle on round t. In particular, we show in Lemma 4 that, for any α > 2, we have

Ew

[
N

∑
n=1

∆nγT (n)

]
S(w)≤ (C1(w) ln(T )+C2)S(w), (14)

where

C1(w), ∑
n:∆n>0

α∆n

φ(∆nS(w)/2)
, C2 ,

(
N

∑
n=1

∆n

)
2(α−1)

α−2
.

Finally, if we use (14) in (11), then we obtain

Ew

[
‖G(w)−∇F(w)‖2

2

]
−Ew

[
‖G∗(w)−∇F(w)‖2

2

]
≤ 1

T 2 (C1(w) ln(T )+C2)S(w), (15)

where substituting Ew

[
‖G∗(w)−∇F(w)‖2

2

]
= σ2

∗ S(w)/T in (15) yields the desired result.

5 SGD Performance Under Strongly Convex Objectives

In this section, we investigate the performance of EE-Grad with strongly convex objective functions with
Lipschitz continuous gradients. That is, we assume that the gradient ∇F is Lipschitz continuous with
Lipschitz constant L > 0, i.e.,

‖∇F(w)−∇F(w)‖2 ≤ L‖w−w‖2, ∀w,w ∈ Rd ,

and there exists m > 0 such that

F(w)≥ F(w)+∇F(w)T (w−w)+
1
2

m‖w−w‖2
2, ∀w,w ∈ Rd .

Let w∗ = argmin w∈Rd F(w) be the global minimizer. We first describe the optimal mini-batch SGD algorithm
that uses the optimal mini-batch oracle on each iteration. We next compare its performance to EE-Grad in
terms of the rate of convergence to the global solution w∗. Note that the cost function C(θ), and hence the
optimal mini-batch size, is allowed to vary across iterations of the SGD algorithm. We use the subscript k,
which denotes the SGD iteration, for the quantities introduced in Section 2 and Section 3 to emphasize the
iteration dependence whenever necessary.

On each iteration k = 1, . . . ,K, the optimal mini-batch SGD algorithm that knows the optimal mini-batch
oracle MBO

(
n∗,k,B,wo

k

)
distributes the per-round budget Bk to it producing Go

t
(
wo

k

)
= Go

t
(
wo

k ,n∗
)

on each
trial t = 1, . . . ,T . After T trials, it computes its final stochastic gradient as Go

(
wo

k

)
= (1/T )∑

T
t=1 Go

t
(
wo

k

)
,

and sets the next iterate as wo
k+1 =wo

k−ηGo
(
wo

k

)
. We observe that wk and wo

k may be different over iterations,
so the true gradients ∇F(wk) and ∇F

(
wo

k

)
also may differ. Also, note that Go

(
wo

k

)
satisfies

Ew

[
‖Go(wo

k)−∇F(wo
k)‖

2
2

]
=

σ2
∗ S
(
wo

k

)
T

,

7



where S
(
wo

k

)
, Tr

(
M
(
wo

k

))
for each k ∈ [K]. In this section, we focus on the case where

M(w), diag
(

∇F(w)2
1, . . . ,∇F(w)2

d

)
for any w ∈ Rd , which implies that S(w) = ‖∇F(w)‖2

2.
We define the expected gaps of EE-Grad and of the optimal mini-batch SGD algorithm with respect to

the global minimizer w∗ on each iteration k as

Jk,η , E[F(wk)]−F(w∗), Jo
k,η , E[F(wo

k)]−F(w∗), (16)

respectively. The next theorem shows how these expected gaps evolve over iterations.

Theorem 2. Suppose that the step size ηk is sufficiently small so that it satisfies

0 < ηk <
2

L(1+ZT (wk))
. (17)

Then, on each iteration k, the expected gap of the optimal mini-batch SGD algorithm satisfies

Jo
k+1,η ≤ τ

o
k (ηk)Jo

k,η ,

where

0 < τ
o
k (ηk), mLη

2
k
(
1+σ

2
∗,k/T

)
−2mηk +1 < 1.

Moreover, the expected gap of the EE-Grad Algorithm on iteration k satisfies

Jk+1,η ≤ τk(ηk)Jk,η ,

where

0 < τk(ηk), τ
o
k (ηk)+mLη

2
k OT,k < 1,

and OT,k , ZT (wk)−σ2
∗,k/T = C1,k(w) lnT/T 2 +C2,k/T 2 > 0, where OT,k→ 0 as T → ∞.

Proof. First note that since ∇F is Lipschitz continuous with Lipschitz constant L > 0, it satisfies [1]

F(w)≤ F(w)+∇F(w)T (w−w)+
1
2

L‖w−w‖2
2, ∀w,w ∈ Rd ,

which implies that on each iteration k, we have

F(wk+1)−F(wk)≤−ηk∇F(wk)
T G(wk)+

1
2

Lη
2
k ‖G(wk)‖2

2. (18)

By taking conditional expectations of both sides and rearranging the terms, we obtain

Ek[F(wk+1)]−F(wk)≤−ηkS(wk)

(
1− 1

2
ηkL(1+ZT (wk))

)
. (19)

Performing the same steps on the optimal mini-batch SGD algorithm yields

Ek
[
F
(
wo

k+1
)]
−F(wo

k)≤−ηkS(wo
k)

(
1− 1

2
ηkL
(
1+σ

2
∗,k/T

))
. (20)

8



Since F is assumed to be m-strongly convex, the optimality gap for any w ∈ Rd satisfies [1]

F(w)−F(w∗)≤
1

2m
‖∇F(w)‖2

2. (21)

The assumption in (17) guarantees that 1−ηkL(1+ZT (wk))/2 > 0. Thus, using (21) in (19), subtracting
F(w∗) on both sides, and rearranging terms give

Ek[F(wk+1)]−F(w∗)≤ F(wk)−F(w∗)−ηkS(wk)

(
1− 1

2
ηkL(1+ZT (wk))

)
≤ F(wk)−F(w∗)−2mηk(F(wk)−F(w∗))

(
1− 1

2
ηkL(1+ZT (wk))

)
=
(
mLη

2
k (1+ZT (wk))−2mη +1

)
(F(wk)−F(w∗)),

= τk(ηk)(F(wk)−F(w∗)).

Here if we take expectations of both sides and note the definition in (16), then we obtain Jk+1,η ≤ τk(ηk)Jk,η .
Similar steps for the optimal mini-batch SGD algorithm imply Jo

k+1,η ≤ τo
k (ηk)Jo

k,η , where τk(ηk) = τo
k (ηk)+

mLη2
k OT,k, so that τk(ηk)− τo

k (ηk)→ 0 as T → ∞.

Here, we note that τk(ηk) is a quadratic function of ηk, minimized at ηk = 1/(1+ZT (wk)), and τk(ηk)< 1
for all ηk satisfying (17). Similarly, τo

k (ηk) is a quadratic function of ηk, minimized at ηk = 1/(1+σ2
∗,k/T ),

and τo
k (ηk)< 1 for all ηk satisfying (17). Also, we observe that

τk(ηk) = τ
o
k (ηk)+mLη

2
k OT,k > τ

o
k (ηk)

for all ηk > 0, i.e., τk(ηk) is uniformly larger than τo
k (ηk), which implies that the optimal mini-batch SGD

algorithm enjoys faster convergence rate than the proposed algorithm. However, the gap between them is
proportional to OT,k for any given step size ηk > 0, which is the gap between EE-Grad and the optimal
mini-batch SGD algorithm, as shown in Theorem 1. Finally, we note that this gap diminishes as the number of
trials T increases, at the expense of larger total incurred cost. In the next section, we illustrate our theoretical
results with numerical examples.

6 Numerical Results

In this section, we present a numerical example based on synthetic data to illustrate our main results. We
consider d = 2 dimensional case, where the objective function and its gradient are F(w) = wT w/2 and
∇F(w) = w, respectively, where F(w∗) = 0 with w∗ = (0,0)T .

We assume that M(w) = diag
(
w2

1,w
2
2
)
, and each stochastic gradient g(w,θ) with fidelity θ > 0 has

uncorrelated Gaussian components with the parameters w2
1/θ and w2

2/θ , respectively. We next assume that
the unknown parameters of the mini-batch oracles are given by σ2

1 = 50,σ2
2 = 26,σ2

3 = 16.7, and run the
EE-Grad algorithm and the mini-batch oracles with a randomly generated initial iterate for T = 50 trials
and K = 5 iterations by using the constant step size η = 0.85, where we obtain expected results over 2000
independent realizations. We plot the resulting expected gaps achieved by EE-Grad and the mini-batch
oracles in Fig. 1a. We repeat the same procedure for T = 200 and T = 3000 and plot the results in Fig. 1b and
Fig. 1c, where we note that σ2

i are scaled accordingly, so that the results over different T s are comparable.
We observe that for this numerical example, the expected gap achieved by the EE-Grad algorithm is

close to that of the optimal mini-batch oracle, where the performance difference between them shrinks with
increasing T at the expense of increased total cost, as we proved in Theorem 2.
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(b) T = 200.
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Figure 1: Expected gaps achieved by the EE-Grad Algorithm and the mini-batch oracles for different values
of T over K = 5 iterations.

7 Discussion

We presented a new framework to analyze the tradeoff between fidelity and cost of computing a stochastic
gradient, where we modeled a noisy gradient as an unbiased estimate of the true gradient such that the noise
variance depends on the cost incurred to compute it. We investigated mini-batch oracles that distribute a
limited budget to a mini-batch of stochastic gradients and averages them to estimate the true gradient, where
the averaging operation is also assumed to be costly. In this framework, the optimal mini-batch size in
minimizing the noise variance depends on the underlying cost-fidelity function, which is assumed to be
unknown.

We proposed the EE-Grad algorithm that performs sequential trials over different mini-batch oracles to
explore the performance of each mini-batch oracle with high precision and exploit the current knowledge to
allocate the budget to the one that seems to provide the best performance. We demonstrated that the proposed
algorithm performs almost as well as the optimal mini-batch oracle on each iteration in expectation. We
next applied this result to the strongly convex objectives with Lipschitz continuous gradients, and provided a
performance guarantee on the rate of convergence with respect to the optimal mini-batch oracle. We finally
illustrated our theoretical results through numerical experiments on synthetic data.
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A Trace of the Sample Covariance Matrix as a Quadratic Form

Lemma 1. On each round t, the trace of the sample covariance matrix Covt(n) can be written as

Vt(n) = sT
t,nAt,nst,n, n = 1, . . . ,N,

where st,n =
(

G1(w,n)T , . . . ,Gγt(n)(w,n)T
)T

, At,n = (γt(n)−1)−1
(

I− γt(n)
−1E

)
, I ∈ Rdγt(n)×dγt(n) is an

identity matrix, and E ∈ Rdγt(n)×dγt(n) is a block matrix with d×d identity blocks.

Proof. Note that

Vt(n) = Tr(Covt(n)) =
1

γt(n)−1

(
γt(n)

∑
i=1

Gi(w,n)T Gi(w,n)− γt(n)mt(n)
T mt(n)

)
,

where

mt(n)
T mt(n) =

1

γt(n)
2

γt(n)

∑
i=1

γt(n)

∑
j=1

Gi(w,n)T G j(w,n) =
1

γt(n)
2 sT

t,nEst,n.

Noting ∑
γt(n)
i=1 Gi(w,n)T Gi(w,n) = sT

t,nst,n, we conclude that

Vt(n) =
1

γt(n)−1

(
sT

t,nst,n−
1

γt(n)
sT

t,nEst,n

)
= sT

t,nAt,nst,n.

B Hanson-Wright Inequality

Lemma 2. Let W = [W1, . . . ,Wm]
T ∈ Rm, m > 1, where Wi are zero-mean sub-Gaussian with a parameter

σ2 > 0. Then, given an arbitrary matrix A ∈ Rm×m, we have, for any ε > 0,

Pr
(
WT AW−Ew

[
WT AW

]
> ε
)
≤ exp

(
−cmin

(
ε2

σ4‖A‖2
F
,

ε

σ2‖A‖

))
,

where ‖A‖F and ‖A‖ are Frobenius and operator norms of A, and c > 0 is an absolute constant.

C Concentration Result on the Trace of the Sample Covariance Matrices

Lemma 3. Suppose that γt(n)> 1. Then the tail probability of Vt(n) satisfies, for any ε > 0,

Pr
(
Vt(n)−σ

2
n S(w)> ε

)
≤ exp(−(γt(n)−1)φ(ε)),

where

φ(ε),
cε

βP
min
(

1,
ε/d
βP

)
,

for n = 1, . . . ,N, where c > 0 is an absolute constant.
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Proof. Note that I− (1/γt(n))E is a dγt(n)×dγt(n) block matrix with d×d blocks, where the diagonal and
non-diagonal matrices are given by γt(n)−1

γt(n)
I and − 1

γt(n)
I, respectively, and ‖I‖2

F = d. This implies

‖At,n‖2
F =

1

(γt(n)−1)2

(
γt(n)

(
γt(n)−1

γt(n)

)2

‖I‖2
F +(γt(n)−1)γt(n)

1

γt(n)
2 ‖I‖

2
F

)

=
d

γt(n)−1
.

Next suppose that v =
(

vT
1 , . . . ,vT

γt(n)

)T
∈ Rdγt(n) such that vi ∈ Rd and ‖v‖2= 1. Then we write

‖At,nv‖2
2 =

1

(γt(n)−1)2

(
‖v‖2

2 +
1

γt(n)
2 ‖Ev‖2

2−
2

γt(n)
vT Ev

)

=
1

(γt(n)−1)2

1− 1
γt(n)

∥∥∥∥∥γt(n)

∑
i=1

vi

∥∥∥∥∥
2

2

≤ 1

(γt(n)−1)2 ,

where equality is achieved by v =
(

vT
1 , . . . ,vT

γt(n)

)T
such that v1 =

(
1√
2
,0, . . . ,0

)
, v2 = −v1, and vi =

(0, . . . ,0) for i = 3, . . . ,γt(n). This yields

‖At,n‖= sup
‖v‖2=1

‖At,nv‖2 = (γt(n)−1)−1.

We finally note that the trace of the sample covariance matrix can be written as

Vt(n) =
1

γt(n)−1

γt(n)

∑
i=1

(Gi(w,n)−mt(n))
T (Gi(w,n)−mt(n))

=
1

γt(n)−1

γt(n)

∑
i=1

(Qi(n)−qt(n))
T (Qi(n)−qt(n)),

where Qi(n), Gi(w,n)−∇F(w) for i ∈ [γt(n)], and qt(n) = (1/γt(n))∑
γt(n)
i=1 Qi(n). This implies the same

expression holds for the mean-removed versions of Gi(w,n)s. Hence, we can assume that Ew[Gi(w,n)] = 0.
We apply Lemma 2 to Vt(n) by using Lemma 1 to get, for any ε > 0,

Pr
(
Vt(n)−σ

2
n S(w)> ε

)
≤ exp(−(γt(n)−1)φn(ε)),

where

φn(ε),
cε

σ2
n S(w)

min
(

1,
ε/d

σ2
n S(w)

)
,

which is strictly increasing in ε , for n ∈ [N], where c > 0 is an absolute constant. Finally, we note φn(ε)≥
φ(ε), since we assumed maxn=1,...,N σ2

n ≤ β , and S(w)≤ P. This concludes the proof.
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D Pseudo-Regret Bound

Lemma 4. For any α > 2, the pseudo-regret term in (11) satisfies, for any T ,

Ew

[
N

∑
n=1

∆nγT (n)

]
S(w)≤ (C1(w) ln(T )+C2)S(w),

where

C1(w), ∑
n:∆n>0

α∆n

φ(∆nS(w)/2)
, C2 ,

(
N

∑
n=1

∆n

)
2(α−1)

α−2
. (D.1)

Proof. We follow along similar steps to the proof of Theorem 2.1 in [6]. Suppose that nt = n, and consider
the events

Et,1 ,

{
Vt(n∗)− f

(
α ln(t)

γt(n∗)−1

)
≥ σ

2
∗ S(w)

}
,

Et,2 ,

{
Vt(n)< σ

2
n S(w)− f

(
α ln(t)

γt(n)−1

)}
,

Et,3 ,

{
γt(n)< 1+

α ln(T )
φ(∆nS(w)/2)

}
.

We claim that Et,1∪Et,2∪Et,3 must occur. Assume, by contradiction, that Et,i are all false. We obtain

Vt(n∗)− f
(

α ln(t)
γt(n∗)−1

)
< σ

2
∗ S(w) = σ

2
n S(w)−∆nS(w)

≤Vt(n)+ f
(

α ln(t)
γt(n)−1

)
−∆nS(w). (D.2)

By assumption Et,3 is false, and we have γt(n)−1≥ α ln(T )/φ(∆nS(w)/2), which is equivalent to

∆nS(w)≥ 2 f
(

α ln(T )
γt(n)−1

)
, (D.3)

If we use (D.3) in (D.2), then we obtain the following result, which contradicts the rule in (4):

Vt(n∗)− f
(

α ln(t)
γt(n∗)−1

)
<Vt(n)− f

(
α ln(t)

γt(n)−1

)
.

For all n such that ∆n > 0, we define

Mn ,

⌈
α ln(T )

φ(∆nS(w)/2)

⌉
.

We next upper bound Ew[γT (n)] as

Ew[γT (n)] = Ew

[
T

∑
t=1

1{nt = n and γt(n)< Mn}
]
+Ew

[
T

∑
t=1

1{nt = n and γt(n)≥Mn}
]

≤Mn +Ew

[
T

∑
t=Mn+1

1{nt = n and γt(n)≥Mn}
]
. (D.4)
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In (D.4), we observe that γt(n)≥Mn is equivalent to Et,3 being false, which is further equivalent to Et,1∪Et,2
being true, i.e., Et,1 or Et,2 must occur. Therefore we can further upper bound (D.4) as

Ew[γT (n)]≤Mn +Ew

[
T

∑
t=Mn+1

1{Et,1 or Et,2 is true}
]

= Mn +
T

∑
t=Mn+1

Pr(Et,1∪Et,2 is true)

≤Mn +
T

∑
t=Mn+1

Pr(Et,1)+
T

∑
t=Mn+1

Pr(Et,2). (D.5)

where we used the union bound. We upper bound Pr(Et,1) for each t = Mn +1, . . . ,T . Note that

Pr(Et,1 = 1) = Pr
(

Vt(n∗)− f
(

α ln(t)
γt(n∗)−1

)
≥ σ

2
∗ S(w)

)
, (D.6)

where γt(n∗) can take values in {2, . . . , t}. Hence we apply the union bound in (D.6), which yields

Pr(Et,1 = 1)≤
t

∑
s=1

Pr
(

V ′s (n∗)− f
(

α ln(t)
s

)
≥ σ

2
∗ S(w)

)
≤

t

∑
s=1

1
tα

= t1−α , (D.7)

where (D.7) follows from (13). Here, V ′s (n∗) is the trace of a sample covariance matrix given s+2 independent
random vectors with sub-Gaussian components with the parameter σ2

∗ S(w). Hence we obtain

T

∑
t=Mn+1

Pr(Et,1 = 1)≤
T

∑
t=Mn+1

t1−α ≤
∞

∑
t=1

t1−α ≤ 1+
∫

∞

1
t1−αdt =

α−1
α−2

. (D.8)

The same upper bound holds for Pr(Et,2 = 1) so that

T

∑
t=Mn+1

Pr(Et,2 = 1)≤ α−1
α−2

.

By incorporating these upper bounds into (D.5) we obtain

Ew[γt(n)]≤Mn +2(α−1)/(α−2).

Finally we use this result to get

Ew

[
N

∑
n=1

∆nγT (n)

]
S(w)≤ (C1(w) ln(T )+C2)S(w),

where C1(w) and C2 are defined in (D.1).
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