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ABSTRACT

Modulation Classification (MC) refers to the problem of classifying the modulation class of a wireless
signal. In the wireless communications pipeline, MC is the first operation performed on the received
signal and is critical for reliable decoding. This paper considers the problem of secure modulation
classification, where a transmitter (Alice) wants to maximize MC accuracy at a legitimate receiver
(Bob) while minimizing MC accuracy at an eavesdropper (Eve).
The contribution of this work is to design novel adversarial learning techniques for secure MC. In
particular, we present adversarial filtering based algorithms for secure MC, in which Alice uses a
carefully designed adversarial filter to mask the transmitted signal, that can maximize MC accuracy
at Bob while minimizing MC accuracy at Eve. We present two filtering based algorithms, namely
gradient ascent filter (GAF), and a fast gradient filter method (FGFM), with varying levels of
complexity.
Our proposed adversarial filtering based approaches significantly outperform additive adversarial
perturbations (used in the traditional ML community and other prior works on secure MC) and also
have several other desirable properties. In particular, GAF and FGFM algorithms are a) computational
efficient (allow fast decoding at Bob), b) power-efficient (do not require excessive transmit power at
Alice); and c) SNR efficient (i.e., perform well even at low SNR values at Bob).

1 Introduction

In recent years, ML has had success in many applications such as speech recognition [1], stock prediction [2], and natural
language processing [3]. Most notably, deep learning (DL) has surpassed human ability in image classification [4].

In the realm of wireless communication ML has recently been adapted for many uses such as equalization [5], spectrum
sensing [6], channel coding [7], signal classification [8], etc. One important use of ML in wireless communication
is modulation classification (MC). In ML classification problems, ML models take an input and associate it with a
class. In MC, the input to a ML model is a set of features extracted from a signal or samples of the signal itself, and the
classes are the possible modulation formats used to generate the signal.

There are two categories of MC: likelihood-based methods, and feature extraction approaches. Likelihood-based
methods seek to calculate the likelihood of a signal belonging to a certain class. While optimal from a statistical
perspective, these approaches can be too computationally complex in most applications. [9]. Feature extraction involves
prepossessing the signal to gather statistics that can be used as features to classify the modulation format. Many works
have shown that extracting features (e.g., cyclostationary features, higher-order statistics, etc.) can be reliable inputs
for ML MC models [10]. Instead of relying on crafted features for classification, one can pass the raw I/Q samples of
the signal into a neural network (NN) which internally develops features through nonlinear transformations [8]. This
is beneficial because features developed by NNs are optimized as opposed to human-constructed features, which are

∗This project was partially supported by the Department of Energy (DOE) #DE-NA0003946. This project was also partially
supported by the Broadband Wireless Access and Applications Center (BWAC); NSF Award No. 1822071

ar
X

iv
:2

00
8.

06
78

5v
1 

 [
ee

ss
.S

P]
  1

5 
A

ug
 2

02
0



Adversarial Filters for Secure Modulation Classification A PREPRINT

often selected based on empirical evidence. Although NNs on their own are quite successful in MC, it has been shown
that combining a NN acting on raw IQ data with a feature extraction classification approach improves performs better
than the two approaches individually [11]. The ability to classify modulation formats in real-time allows for blind
modulation to improve data rate, where a transmitter does not communicate to a receiver what the modulation format is,
so the receiver must classify it then decode data. [10].

Despite the benefits of using ML for classification, adversarial learning (AL) shows that these algorithms are easily
fooled by adversarial examples, which are created by strategically crafting changes to inputs [12]. Many existing
input transformation AL attacks involve adding a small perturbation to the input. Different algorithms such as the fast
gradient sign method (FGSM) [13] and the Jacobian-based saliency map [14] attack use the gradient of the loss with
respect to the input to the ML to find small perturbations to the input that cause misclassification. Iterative approaches
for creating adversarial examples exist as well, such as deep fool [15]. Some of the aforementioned gradient-based
attacks are input specific, meaning the crafted perturbations are designed for a particular input to a particular fixed ML
model. Universal adversarial perturbations (UAP) are perturbations that work for any input for a fixed ML model [16].

It has also been shown that AL attacks can have detrimental effects on MC [17]. It has been shown that a low power
jammer sending adversarial perturbations can significantly impede devices trying to classify modulation formats of
signals [18]. In addition to blind modulation, MC also has application in other military and commercial scenarios.
One such military scenario is classifying the modulation format of detected signals to determine if it is from friend or
foe, then use triangulation to locate them. Primary users in licensed spectrum can use MC to identify users that are
not adhering to protocols of the spectrum. AL is one method transmitters can prevent others from classifying their
modulation format. This will make it difficult for enemies in military situations to identify a transmitter as an enemy
transmitter.

This paper analyses an eavesdropper scenario where a transmitter (Alice), has an intended receiver (Bob), and there is
an eavesdropper (Eve) listening in on the transmission. The communication system uses blind modulation, so both Bob
and Eve need to classify the modulation format before they can begin to decode information. There exist applications
where decoding is not desired, simply classifying the modulation format is sufficient for identification of other parties.
Encrypting the data before transmission does not impair Eve’s ability to classify the modulation format a signal, so it is
necessary to use physical layer approaches to prevent her ability to classify. Before sending an intended signal, Alice
uses AL to send adversarial examples instead. Alice can share a key with Bob offline to help Bob undo the adversarial
attack, classify the signal, and ultimately decode information. Eve will not have this key making it difficult to classify
the modulation format. For a transmitter to fool an eavesdropper’s classifier and allow for intended receivers to undo
the attack, a UAP must be used. Alice cannot construct a new perturbation for every signal sent, because Bob cannot
know every possible perturbation and when they are used. We measure secrecy in the sense that Bob’s classification
accuracy remains high, but Eve’s classification accuracy is low.

There are trade-offs to consider when Alice has limited transmit power and the received signal at Bob must satisfy a
minimum signal to noise ratio (SNR) constraint to ensure decodability. Most AL algorithms for generating adversarial
examples involve adding a perturbation to the input. When Alice sends an adversarial example generated by adding
a perturbation, she must allocate some of her finite transmission power to the perturbation. In doing so the SNR at
Bob will decrease, so to reduce Eve’s classification accuracy as much as possible Alice must allocate just enough
power to the intended signal to satisfy the SNR constraint and allocate the rest of the transmission power to the additive
perturbation. Such additive perturbation strategies may not be feasible with limited transmit power at Alice. Typically
MC models only observe a finite amount of samples, so the additive perturbation must also be the same number of
samples. Real-time communication lasts many more samples than just the input size to the MC model, so the additive
perturbation can simply be repeated. Although a receiver with a finite input MC model may not observe a window where
the perturbation is aligned, it has been shown that such perturbations are shift-invariant and will still reduce classification
accuracy [17]. If Bob knows the perturbation being used, he can subtract it off then classify and decode. To subtract
away the perturbation, Bob needs to sync his subtraction with Alice’s addition, because Alice is continuously repeating
the perturbation. Bob must also make sure that he scales the perturbation before subtracting to ensure that there is not
any more trace of the perturbation in the signal, since the transmitted signal from Alice experiences attenuation.

In this paper, we show that it is also possible to use a filter to create adversarial examples instead of an additive
perturbation. Filter-based adversarial attacks do not suffer from the aforementioned drawbacks in this eavesdropper
scenario (i.e., alignment searching, attenuation prediction, power limitations). When Alice uses a digital filter to create
the adversarial example that is transmitted then Bob can use the inverse of the filter to get the original signal back.
There is no need to sync or find the attenuation like with additive perturbations. Additive perturbations require that
Alice sacrifice some transmission power. Digital filters do not require sacrificing transmit power. Instead, power within
the signal is being transferred between different frequencies, so there is no need to sacrifice transmission power to
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Figure 1: Assumed Communication system model with Transmitter (Alice), receiver (Bob), and eavesdropper (Eve)

create effective adversarial examples. Not sacrificing transmission power also implies that the SNR at Bob will increase
when the filter is used over an additive perturbation.

The main contributions of this paper are the following: Two novel methods of creating adversarial examples using
filters are proposed. The first approach is an iterative optimization technique where filter taps are effectively "trained".
The second is an analytical solution to the optimization problem of maximizing loss with respect to the filter’s taps.
The proposed approaches are for creating finite impulse response (FIR) filters, where the inverse filters are infinite
impulse response (IIR) filters that are trivial to solve for. This paper analyses an eavesdropper scenario for MC, where
secrecy is measured by the reduction in classification accuracy at the eavesdropper by applying adversarial attacks at
the transmitter. Benefits and drawbacks of using traditional additive perturbations versus the proposed filter methods
are employed are analyzed over the metrics of classification accuracy at the eavesdropper, available transmit power at
the transmitter, and SNR requirement at the intended receiver.

The organization of the remainder of the paper is as follows. Section 2 states the system model of the problem trying
to be solved. 3 discusses the important findings of this paper with regards to the system model. 4 presents novel
filter-based AL algorithms. In section 5 simulation experimental results are presented and analyzed. 6 concludes.

2 System Model & Problem Statement

The system model is displayed in Figure 1. Alice wants to send a signal ~s to Bob which is a [d× 1] vector of complex
values (~s ∈ Cd). There are different ways of structuring binary data into a signal ~s that can be sent over a communication
link. The different structures are the possible K modulation formats with which Alice transmits information to Bob. ~s
is a signal with modulation format k, and C̃k is the set of all signals from class k (i.e ~s ∈ C̃k). Alice wants to keep
k secure from Eve. Alice may change the modulation format k for different blocks of transmitted data depending
on channel conditions or other motivations. Using AL, Alice creates an adversarial example ~sa from ~s. Using some
adversarial attack function f with an [m× 1] vector of parameters ~δ,

~sa = f(~s, ~δ). (1)

Alice transmits ~sa and has a finite transmission power PT , this introduces the constraint

‖~sa‖2 ≤ PT , (2)

Where ‖ · ‖ is the L2 norm operation. The communication channel from Alice to Bob and Eve are assumed to be
identical, and the input to the channel ~sa has the output ~ra, and the input ~s would have the output ~r. The channel is
comprised of attenuation of the transmitted signal, and additive noise:

~ra = α~sa + ~N, (3)

where α is a real scalar attenuation coefficient, and ~N is a complex additive white gaussian noise (AWGN) vector with
zero mean. Alice and Bob have a pre-shared key. In this problem, the key is assumed to already have been securely
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shared between both Alice and Bob with no overhead. Bob uses this key to try to undo the adversarial attack to get ~̂r
which is his on ~r. Bob the passes ~̂r into his classifier hB to get his guess k̂B of true modulation format k:

k̂B = hB(~̂r). (4)

Once Bob chooses the modulation format k̂B , he can use the appropriate demodulation scheme. For communication to
be reliable, ~̂r must satisfy a minimum SNR. Eve does not have this key and can’t find k from the received signal ~ra
using her classifier hE . Eve’s classification accuracy is the probability that her classifier acting on the received signal
outputs the correct class:

PE = Pr{hE(~ra) = k} = Pr{k̂E = k}. (5)
Bob’s classification accuracy is the probability that his classifier acting on the recovered received signal outputs the
correct class.

PB = Pr{hB(~̂r) = k} = Pr{k̂B = k}. (6)
Alice and Bob’s goal is to design an adversarial attack and shared key that keeps Eve’s classification accuracy PE low
and Bob’s classification accuracy PE high, while satisfying the constraint that the SNR of recovered signal ~̂r remain
above a constant threshold. The minimum SNR at Bob is application dependent. This paper analyses the trade-offs
between transmit power PT , the SNR requirement at Bob, and Eve’s classification accuracy when Alice has full control
over f , ~δ, and the shared key is ~δ.

For additive attacks, the attack function in 1 is defined as

f+(~s, ~δ+) = ~s+ ~δ+, (7)

and m = d to satisfy dimensionality constraints. ~δ+ is the additive perturbation in additive attacks. In a filter-based
attack, (1) can be rewritten as follows:

f~(~s, ~δ~) = ~s~ ~δ~, (8)

and m 6= d. ~δ~ denotes the taps of the FIR filter that generates the adversarial sample, and ~ is convolution between
two finite vectors. This work only analyses the performance of additive and filter-based forms of the adversarial attack
f(~s, ~δ).

To correctly classify the received signal and decode, Bob must reverse the adversarial attack from ~ra to get ~̂r. That is

~̂r = f−1(~ra, ~δ). (9)

The formulation of f−1(~ra, ~δ) depends on how the key is shared between Alice and Bob. In this paper the shared key is
assumed to be the vector ~δ. ~δ is assumed to be a secret pre-shared key between Alice and Bob with no communication
overhead. The key is never altered, nor shared during communication between Alice and Bob. The function f(·, ·) is
known by both Bob and Eve.

3 Main Results & Discussion

3.1 Reversing Adversarial Attacks at Bob

Bob needs to know how the adversarial attack is performed to effectively undo the adversarial attack. Bob needs to
know the formulation of f(~s, ~δ), as well as the vector ~δ. The proposed shared key between Alice and Bob is the function
f(·, ·) and the vector of parameters ~δ.

Reversing additive attacks requires subtracting ~δ+ from ~ra with the proper attenuation.

~̂r+ = ~ra − α~δ+ = α~s+ ~N. (10)

However, Bob cannot perfectly find α, so he must make an estimate α̂ of the true α. This fault alters the expression of
~̂r+ to

~̂r+ = α~s+ ~N + (α− α̂)~δ+. (11)
From (11) it is obvious that unless Bob perfectly estimated ~α there will always be remnants of the adversarial
perturbation ~δ+. This is particularly bad for Bob because many AL algorithms that generate ~δ+ are designed to create
perturbations that ruin classification accuracy even when the perturbation’s power is extremely small [12] [13] [19].
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Figure 2: Illustration of how Alice and Bob use AL learning in their communication system. We see that there is a loss
in SNR at Bob when an additive perturbation is employed. When a filter is used, there is no loss in SNR.

Additive perturbations are comprised of a finite number of samples, but real-time implementation consists of a never-
ending stream of samples. In real-time Alice can immediately retransmit the finite perturbation whenever she finishes
transmitting its finite number of samples. Even if Eve’s classifier looks at a window where the perturbation is not
perfectly lined up, her classification accuracy is still low due to the shift-invariance property of additive adversarial
attacks for MC [17]. For Bob to undo this attack he must sync his removal of ~δ+ with Alice’s repeated transmission.
This is a one time process during communication. However, it requires more complex hardware to implement than if a
filter was used.

Reversing a filter attack is a much simpler process. This paper focuses on FIR filters, with an IIR inverse filter. Let ~δ~i
be the ith element of ~δ~ (i.e., the ith filter tap). The recursive difference equation for the IIR inverse filter is

y(n) =
1

~δ~0

(
x(n)−

m−1∑
i=1

~δ~iy(n− i)
)
. (12)

Let δ−1
~ (j) be the impulse response of the inverse filter. The recovered signal under a filter-based attack ~̂r~ is

~̂r~ = ~δ−1
~ ∗ ~ra = ~s+ ~δ−1

~ ∗ ~N. (13)

Therefore, when Bob undoes the filter attack, he colors the noise.

Figure 2 shows the SNR of the recovered signals at Bob when additive and filter attacks are used. Alice has limited
transmission power PT . The recovered signal’s SNR can be expressed as a function of transmit power PT , perturbation
power P~δ, the attenuation coefficient α, and the noise power P ~N . Note that P~δ is only applicable if an additive
perturbation is used.

In the case of additive perturbations, the SNR+ is dependent on the power allocated to the perturbation P~δ. The
transmit power PT = P~s +P~δ must be allocated to the perturbation ~δ+ and the intended signal ~s, where P~s is the signal
power. The best case scenario for Bob with additive perturbations is that his prediction of the attenuation coefficient is
perfect (i.e α̂ = α). Assuming Bob perfectly eliminates the additive perturbation, the of SNR of the recovered signal
~̂r+, expressed in (11), for additive perturbations is

SNR+ =
αPT − P~δ

P ~N
. (14)

The FIR filter coloring the noise does not impact the noise power P ~N . As for filter-based adversarial attacks used by
Alice there is no need to allocate transmit power to a perturbation, so the SNR at Bob SNR~ for filter attacks is

SNR~ =
αPT
P ~N

. (15)

With a fixed transmit power PT , it is clear that there is an SNR gain to using filter-based attacks over additive attacks.
Alice need not exceed the SNR requirement at Bob. Alice can allocate just enough power to P~s for the requirement,
and allocate the rest of PT to P~δ to minimize Eve’s classification accuracy. If there is barely enough transmit power to
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Figure 3: Flowgraph for Training Gradient Ascent Filter (GAF).

satisfy the SNR requirement, little to no power can be allocated to the perturbation. This results in high classification
accuracy for Eve. If a filter-based attack is used, Alice then can still use an effective adversarial attack when there is no
power available to allocate to an additive perturbation.

Bob needs to reverse the adversarial attack. Alice cannot pre-share every possible ~δj for every possible signal ~sj
she sends. Many AL algorithms are designed to create an attack designed for a specific input, such as the FGSM.
Further, AL algorithms that are inherently designed to develop universal attacks, such as the deep fool (DF) algorithm.
A universal adversarial attack is one designed to work on any input. There exist algorithms that take many input
specific additive perturbations, and create a universal adversarial perturbation (UAP) [16] [17]. Sadeghi et al present an
algorithm for generating UAPs with principal component analysis (PCA [20]) which works well on MC when used
on input specific perturbations generated by the fast gradient method (FGM) [17]. The algorithm is to create a vector
in the direction of the first principal component of all the ~δj . In addition to attacks being universal, they can also be
class-specific. Instead of ~δ being designed to work on every input ~sj ∈ C̃, ~δ(k) can be designed to work especially well
for inputs from the kth class ~sj ∈ C̃k. There are only a finite number of classes, so it is feasible for Alice to pre-share
every ~δ(k) with Bob.

One important aspect regarding undoing the filter at Bob is the invertibility of the filter at Alice. If the inverse filter at
Bob ~δ−1

~ , expressed in (12) is unstable, the noise at Bob’s receiver will be amplified too much and no communication
will be possible. The inverse filter ~δ−1

~ may not be stable if ~δ~ does not satisfy certain constraints. The zeros of ~δ~
will become the poles of ~δ−1

~ . Any filter with poles inside the unit circle is stable. To ensure ~δ−1
~ is stable, ~δ~ must be

designed such that its zeros are inside the unit circle. An FIR filter with all of its zeros inside the unit circle is known as
a minimum phase filter, which will in turn have a stable inverse. Alice needs to employ a minimum phase filter so that
Bob’s inverse filter is stable.

The filters used at both Bob and Alice must have an overall gain of 1 to ensure that signal power is preserved.

1

2π

∫ π

−π
|D~(ω)|2 = 1, (16)

where D~(ω) is the discrete-time-fourier-transform (DTFT) of the filter ~δ~. Using Parseval’s theorem, the constraint in
(16) can be rewritten as the L2 norm of the magnitude:

‖|~δ~i|‖2 = 1. (17)

Here the magnitude operation | · | is element-wise for the complex vector within. This is important, because Bob does
not want to amplify noise power, and Alice does not want to underutilize or surpass her transmit power.

4 Adversarial Filtering Algorithms

4.1 Gradient Ascent Filter

The first novel filter-based AL algorithm is the gradient ascent filter (GAF). It is an optimization approach to generating
an adversarial filter. A temporary vector ~∆ of size [l × 1] is randomly initialized, then converted into a the adversarial
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filter ~δ of size [m× 1] using some filter creation function:

~δ = C(~∆). (18)

The desired number of filter taps m and the creation function C determine the size of the temporary vector l. The filter
~δ is a complex valued vector for this MC problem, and depending on the filter creation function C, the temporary vector
~∆ can be real or complex valued.

During the optimization process, the temporary vector ~∆ is updated iteratively to increase loss as shown in Figure 3.
For ~∆ to be trainable, the filter creation function C needs to be differentiable. The temporary vector ~∆ is trained with
mini-batch stochastic gradient ascent (SGD), or another optimization process as desired (i.e., Adagrad, RMS prop,
Adam [21]). The training data for creating the GAF can be any desired subset of all training data, so one can create a
universal attack, class-specific attack, or an input specific attack.

The formal process of the GAF algorithm is expressed in algorithm 1, but explained in this paragraph. The algorithm
requires Eve’s classifier (fixed), the desired number of filter taps m, the filter creation function C, the loss function to
maximize L , set of desired training data signals s and it’s set of true labels k, the learn rate for SGD η, and the desired
number of training epochs T . The first temporary vector ~∆0 is initialized randomly and i.i.d. as an [l × 1] Gaussian
random vector with zero mean and unit variance. Then the training loop begins with iteration counter t going from
1 to T . In the training loop at iteration t, ~∆t−1 is to create the adversarial filter for this training step ~δ = C(~∆). ~δ is
convolved with all signals in s to create the adversarial examples, then the classifier h acts on those examples to create
the set of prediction k̂. The loss for this training step L is calculated as the sum of the loss function acting on every
prediction in the set k̂ and their corresponding true labels in the set k. The temporary vector at this training step ~∆t is
updated as the addition of the previous step’s temporary vector ~∆t−1 ,and the gradient of the of the loss with respect to
the previous temporary vector scaled by the learn rate ~∆t = ~∆t−1 + η∇~∆t−1

L. When the training loop is complete the

final temporary vector ~∆T converted into the final adversarial filter ~δGAF = C(~∆T ).

Algorithm 1: Algorithm for creating ~∆ using the GAF technique
Inputs:

• number of filter taps m
• filter creation function C
• model h
• number of training epochs T
• learn rate η
• loss function L
• training inputs set s = {~si : ∀i}
• training labels set k = {ki : ∀i}

Output:
• The adversarial filter ~δGAF

1: Initialize ~∆0 ∼ N (01×l, I l×l)
2: for t = 1 to T do
3: ~δ = C(~∆t−1)

4: sa = {~sai : ~sai = ~si ~ ~δ,∀i}
5: k̂ = {k̂i : k̂i = h(~sai),∀i}
6: L = {Li : L (k̂i, ki),∀i}
7: L =

∑
∀i Li

8: ~∆t = ~∆t−1 + η ∗ ∇~∆t−1
L

9: end for
10: return ~δGAF = C(~∆T )
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4.2 Filter Creation Functions for GAF

The previous subsection describes how to apply the filter creation function C, but does not define it. This subsection
proposes possible creation functions. All three proposed creation functions ensure that the power preserving constraint
in (17) is satisfied.

4.2.1 Unconstrained GAF

One approach to creating a GAF is to treat ~∆ as an unconstrained filter, and set ~δ to be a power preserving version of ~∆.
The unconstrained GAF creation function is given by

~δ = Cu(~∆) =
~∆

‖|~∆|‖
, (19)

where ~∆ is complex valued, and l = m for dimensionality. The unconstrained GAF is named so, because this creation
function has no constraints on the filter taps besides power preservation, and it does not guarantee an FIR filter with a
stable inverse.

4.2.2 First Tap Constrained GAF

Any minimum phase FIR filter has a stable inverse. Cauchy’s argument principle states that if D(ω) does not wrap
around the origin in the complex plane, ~δ is a minimum phase filter. One way to ensure that D(ω) does not wrap around
the origin it to make sure it’s real part is always greater than 0:

Real{D(ω)} > 0,∀ω. (20)

A simple proposed way to satisfy the constraint in (20) is to constrain the first filter tap:

Real{~δ0} >
m−1∑
i=1

|~δi|. (21)

The reasoning behind constraint in (21), is that if all the terms of D(ω) are lined up to have a phase of π, a large real
vector added to that will keep D(ω) real. The proposed approach to satisfying (21) is to let the taps of a temporary filter
~hftc be

~hftc,k =

{
β + 1 k = 0

~∆k−1∑m−2
i=0 |~∆i|

k ∈ [1,m− 1]
, (22)

where β > 0 is a real constant to ensure stability as opposed to marginal stability, l = m− 1, and ~∆ is complex valued.
Now the filter creation function for the first tap constrained GAF is

δ = Cftc(~∆) =
~hftc

‖|~hftc|‖
. (23)

4.2.3 Root Training GAF

The final proposed approach to creating a GAF with a stable inverse seeks to treat ~∆ as a vector of complex inverted
negative zeros of the filter ~δ. When a filter is inverted the zeros become poles, and for the inverse filter to be stable its
poles must be inside the unit circle. Now the gradient ascent process is effectively training the roots of the Z-transform
of ~δ, D(z). ~δ is a power preserving version of an intermediate filter ~hrt

~δ = Crt(~∆) =
~hrt

‖|~hrt|‖
, (24)

and the Z-transform of ~hrt is given by

Hrt(z) =

m−1∑
i=0

(
~hrt,iz

−i) =

m−2∏
i=0

(
z−1 + ai

)
. (25)
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Figure 4: Flowgraph of the filter creation function Crt(~∆) for the root training GAF.

Using Vieta’s Formula [22], each coefficient of the temporary filter ~hrt can be expressed as a function of ~a:

~hrt,m−i =
∑

m−2≥ki−2>ki−3>...>k0≥0

(
i−2∏
j=0

~akj

)
. (26)

The elements of ~a are related to the zeros of ~hrt as follows:

Hrt(z) = 0, (27)

m−2∏
i=0

(
z−1 + ~ai

)
= 0, (28)

z =
−1

~ai
. (29)

To ensure that the inverse of ~δ is stable, the elements of ~a need to be constrained by∣∣∣∣∣−1

~ai

∣∣∣∣∣ < 1, (30)

|~ai| > 1. (31)

The proposed method of creating ~a from ~∆ is

~a =
~∆β

min|~∆|
, (32)

where β > 1 is a real constant to ensure stability as opposed to marginal stability. For the proposed root constrain GAF,
l = m− 1. Combining (24),(25), (26), and (32) gives the the full expression for Crt(~∆), which can be visually inferred
from figure 4.

Of the three proposed filter creation functions for the GAF, the root training GAF is the most computationally intense
for converting ~∆ to ~δ. This is because of the recursive nature in expanding the product to a summation in (25) using
Vieta’s formula. The computational complexity of the root training GAF is on the order of O(n2), whereas the first
tap constrained GAF and the unconstrained GAF are on the order of O(n). Note that optimization only happens once
offline, and when deploying the filter they all have the same computational complexity.

4.3 Fast Gradient Filter Method

The second novel filtering AL algorithm presented in this paper is the fast gradient filter method (FGFM). This algorithm
is similar to the FGM, because it is based on choosing ~δ to take a small step in the direction of the gradient with respect
to loss. Like the FGM, the FGFM is also creates an input specific ~δ. Let the adversarial example ~sa be a perturbation ~r
scaled by the the real scalar ε added to an input ~s, so the adversarial example generation function

f(~s, ~δ) = ~sa = ~s+ ε~r, (33)

where ~r is created by a perturbation generation function p(·, ·) with parameter vector ~δ

~r = p(~s, ~δ). (34)

The goal of the FGFM and FGM is to craft adversarial examples that cause some fixed known classifier h to make
incorrect predictions. In the eavesdropper scenario, Alice’s goal is to ruin Eve’s classifier hE . The prediction of h
acting on the adversarial example ~sa is k̂, or

k̂ = h(~sa). (35)
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The metric for the incorrectness of the prediction is characterized by the loss function L (e.g., cross entropy, or mean
squared error), and the true class k associated with the original input ~s. The loss on the adversarial input ~sa is

L(~sa) = L (k̂, k). (36)

The goal of the adversarial attack is to choose ~δ to make h as incorrect as possible. This is achieved by selecting ~δ that
maximizes the loss L(~sa). L(~sa) is difficult to maximize directly, so using first order approximation it is estimated as

L(~sa) = L(~s+ ε~r) ≈ L(~s) + ε∇~sL(~s) · ~r. (37)

This approximation leads to the following theorem.

Theorem 1: If ~sa = ~s+ ε~r and ~r = p(~s, ~δ), under the approximation L(~sa) ≈ L(~s) + ε∇~sL(~s) · ~r, the optimal choice
of ~δ for maximizing L(~sa) is:

~δ =
(
J~δ(~r)

)T∇~sL(~s). (38)

Proof: Taking the Jacobian (denoted by J) of L(~sa) with respect to ~δ in (37) introduces the need to utilize the property
of dot products for Jacobians:

J(~a ·~b) = ~aTJ(~b) +~bTJ(~a), (39)

which results in:
J~δ(L(~sa)) ≈ J~δ(L(~s)) + ε~rTJ~δ(∇~sL(~s)) + ε(∇~sL(~s))TJ~δ(~r). (40)

J~δ(L(~s)) evaluates to a [1×m] vector of zeros, because L(~s) is not a function of ~δ. The term J~δ(∇~sL(~s)) evaluates to
a [d×m] matrix of zeros, because∇~sL(~s) is not a function of ~δ. This implies that the second term in (40) will result in
another [1×m] vector of zeros. Therefore, the following expression holds for any form of r(~s, ~δ):

J~δ(L(~sa)) ≈ ε(∇~sL(~s))TJ~δ(~r) = ε(∇~sL(~s))T


∂~r1
∂~δ1

. . ∂~r1
∂~δm

. . . .

. . . .
∂~rd
∂~δ1

. . ∂~rd
∂~δm

 . (41)

It is assumed that the optimization is being done in a linear domain. Therefore the best option for ~δ is the approximation
of J~δ(L(~sa))T .

In the above proof, a particular structure is assumed for f(~s, ~δ), but p(~s, ~δ) remained unspecified.

In the case of the FGM ~r is denoted as ~rFGM and ~δ is denoted as ~δFGM . The FGM is an additive attack, so ~rFGM is
the additive perturbation, which implies p(~s, ~δFGM ) is simply ~δFGM . That is

~rFGM = ~δFGM , (42)

and m = d for dimensionality. Now the Jacobian is evaluated as

J~δFGM
(~rFGM ) = J~δFGM

(~δFGM ) = Id×d. (43)

This results in the same perturbation for the FGM algorithm

~δFGM = ε∇~sL(~s). (44)

For the FGFM, p(·, ·) is convolution between vectors of different dimensionality.

~rFGFM = ~s~ ~δ, (45)

and m 6= d

Before proceeding, convolution between vectors ~ must be defined. For demonstration purposes, let m = 3 and
d = 5 (i.e., ~s = [~s0, ~s1, ~s2, ~s3, ~s4]T and ~δ = [~δ0, ~δ1, ~δ2]T ). In typical digital convolution (denoted by∗), signals have
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infinite dimensionality (i.e., ~s = [..., 0, 0, ~s0, ~s1, ~s2, ~s3, ~s4, 0, 0, ...]
T ). First, normal convolution is between ~s and ~δ is

calculated:

~s ∗ ~δ =



.

.
0
0

~δ0~s0

~δ0~s1 + ~δ1~s0

~δ0~s2 + ~δ1~s1 + ~δ2~s0

~δ0~s3 + ~δ1~s2 + ~δ2~s1

~δ0~s4 + ~δ1~s3 + ~δ2~s2

~δ1~s4 + ~δ2~s3

~δ2~s4

0
0
.
.



, (46)

then the center d entries are kept as the result for ~s~ ~δ

~s~ ~δ = ~r =


~δ0~s1 + ~δ1~s0

~δ0~s2 + ~δ1~s1 + ~δ2~s0

~δ0~s3 + ~δ1~s2 + ~δ2~s1

~δ0~s4 + ~δ1~s3 + ~δ2~s2

~δ1~s4 + ~δ2~s3

 . (47)

Now the matrix J~δ(~r) is given by the Toeplitz structure:

J~δ(~r) =


~s1 ~s0 0
~s2 ~s1 ~s0

~s3 ~s2 ~s1

~s5 ~s3 ~s2

0 ~s4 ~s3

 . (48)

Now ~δ can be chosen, which is the filter for creating ~rFGFM :

~δ = ε(J~δL(~sa))T ≈ ε

[
~s1 ~s2 ~s3 ~s4 0
~s0 ~s1 ~s2 ~s3 ~s4

0 ~s0 ~s1 ~s2 ~s3

]
(∇~sL(~s)). (49)

The form of ~δ generalizes for other values of d and m. The structure of Toeplitz matrix J~δ(~r) depends on how the vector
convolution operation ~ is defined, but its dimensionality is always [d×m]. In the case of the convolution function
from the Numpy library [23] with the parameter "padding=same" , the aforementioned definition of ~ is the same.

Now the adversarial filter attack under this approximation is denoted by

~sa = ε~δ ~ ~s+ ~s. (50)

Alice ultimately wants to create a filter ~δFGFM for creating adversarial examples without the need to add the original
signal ~s. Luckily it is simple to convert the adversarial attack in (50) to an equivalent filter that accomplished the
following:

~δFGFM ~ ~s = ε~δ ~ ~s+ ~s. (51)
~δFGFM is given by

~δFGFM = ε~δ + ~v, (52)

11
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Algorithm 2: Algorithm for creating ~δ on a specific input using the FGFM.
Inputs:

• number of filter taps m
• model h
• loss function L
• training input ~s
• training label k
• scalar of filter ε

Output:
• The adversarial filter ~δFGFM designed for the input ~s

1: Initialize J~δ(~r)
T = 0[m×d]

2: for i = 1 to m do
3: Jδ(~r)

T row i columns i− m
2 to i− m

2 + d− 1 = ~s
4: end for
5: L(~s) = L (k, h(~s))

6: ~δ = J~δ(~r)
T∇~sL(~s)

7: ~v = 0[m×1]

8: ~v column m
2 = 1

9: ~δFGFM = ~v + ε~δ
10: return ~δFGFM

where ~v is an [m× 1] vector of zeros with a 1 in the center. In the case of m = 3, ~v = [0, 1, 0]T .

The algorithm for creating an input specific ~δFGFM is formally described in algorithm 2. First, the Toeplitz matrix
J~δ(~r)

T is initialized to a matrix of zeros, and ~s is tiled in a down-right diagonal fashion in each row such that ~s is
aligned with J~δ(~r)

T in the middle (m/2) row. The loss L(~s) is then calculated as the loss function acting on the true
label and the model acting on the signal L (k, h(~s)). Next, the filter for creating an additive perturbation ~δ is computed
as J~δ(~r)

T∇~sL(~s). Then the vector ~v is set to a [m× 1] vector of zeros with a 1 in the center. Finally the FGFM filter
~δFGFM is computed as ~v + ε~δ which is returned.

Recall that ~δFGFM is specifically to designed for a particular input ~s. As previously stated in section 3 a universal
attack is needed for Alice to effectively communicate with Bob. One can simply use existing algorithms to aggregate
many filters generated by the FGFM into a universal filter, such as the PCA based approach presented in [17].

It is important to note that the FGFM may not be a minimum phase filter, hence Bob may not be able to use a stable
inversion to get Alice’s signal back.

5 Experiments

All experiments were conducted purely in simulation using Python [24]. The TensorFlow [25] and Keras [26] libraries
were used as the platform for implementing DL algorithms with graphics processing unit (GPU) acceleration. Many
useful functions, such as convolution, from the SciPy [23] library, were used. The machine-learning algorithm analyzed
in these simulations is a deep convolutional neural network with inputs that have normalized power and mean. The
aforementioned DL architecture was used for both Bob and Eve. Only white-box attacks were considered, however
it has been shown in many AL works that AL attacks are transferable between DL models. The channel model used
is the attenuation and AWGN described in section 2 with trivial attenuation α = 1. Adjusting attenuation with this
system model is analogous to adjusting transmit power and noise power. To implement the FGFM, FGM, and FGSM as
universal or modulation specific attacks, the PCA based algorithm for creating UAP’s from Sadeghi et al was used [17].
All filters in these experiments have 5 taps. Classification accuracy in these experiments is given by averaging the
probability of correct classification over all classes.

Figure 5 show experiment results when the minimum SNR requirement at Bob is 0 and 5 dB respectively. Eve’s
classification accuracy, as well as Bob’s, is plotted against Alice’s available transmit power. In this experiment it is
assumed that Bob can estimate the attenuation of the channel α perfectly, so the plot shows that Bob’s classification
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Figure 5: The relationship between Alice’s transmit power and Eve/Bob’s classification accuracy when different attack
are applied by Alice and Bob. The minimum SNR requirement at Bob is 0dB (left), -10dB (right), and the noise power
is 5dB.

accuracy does not drop in additive attacks. The lowest Tx power shown in the plots indicates that PT is just enough
to satisfy the SNR requirement at Bob. This means that additive attacks such as the FGSM or FGM cannot have any
power allocated to them (i.e PT = P~s + P~δ and P~δ = 0). Eve’s classification accuracy is equal to Bob’s classification
accuracy when PT is very low because of this. The FGSM has a steeper dropoff in Eve’s classification accuracy than
the FGM because the FGSM is the optimal solution to minimizing perturbation power (measured by the infinite norm,
not L2 norm) such that classification is incorrect. The FGM was not derived to minimize perturbation power, so it
does not drop Eve’s classification accuracy as steep. However, when PT is very low the root training GAF (labeled as
rtGAF) reduces Eve’s classification accuracy, because there is no need to dedicate transmit power for the attack. Bob’s
classification accuracy remains constant under the additive attacks because Alice is allocating as much transmit power
to the perturbation as possible. Bob’s classification accuracy raises with Alice’s transmit power when filter attacks are
used because Alice can allocate more power to her signal and Bob can almost perfectly recover the un-attacked signal.

Figure 6 shows experimental results comparing Eve and Bob’s classification accuracy when Alice employs different
filtering attacks proposed in this paper. The FGFM produces a very effective filter at fooling Eve, however, it’s inverse
is unstable so Bob’s classification accuracy suffers as well. The unconstrained GAF (labeled as uGAF) was the most
effective at fooling Eve, due to being able to optimize filter taps unconstrained, but its inverse is even more unstable than
the FGFM which causes Bob’s classification accuracy to be worse. The first tap constrained GAF (labeled as ftcGAF)
has a stable inverse, so Bob’s classification accuracy is good. However, the first tap constrained GAF retains a large
portion of Alice’s original because of the large real-valued first tap, so Eve is not fooled effectively. β for the first tap
constrained GAF was 0.9 for this experiment. The root training GAF (labeled as rtGAF) also has a stable inverse, and it
is significantly less constrained than the first tap constrained GAF, so it is intuitive that Eve’s classification accuracy is
very low with this filter. β for the root training GAF was 0.5 for this experiment.

Figure 7 shows experimental results comparing Eve and Bob’s classification accuracy when Alice employs a universal
version and modulation specific version of the root training GAF and the FGSM. It is clear from this experiment that
the modulation specific version of the root training GAF is more effective at fooling eve than the universal version. This
is because the GAF is trained to be near-optimal for every modulation format in the modulation specific attack case,
whereas in the universal attack case the GAF must compromise between all modulation formats during optimization.
It is interesting to see that the FGSM is not as effective when modulation specific as opposed to universal. This is
likely because of the ineffectiveness of the algorithm used to create a universal adversarial perturbation from the many
individual perturbations.

To further emphasize the importance of Bob estimating the channel attenuation coefficient α accurately, figure 8 shows
Bob’s classification accuracy when his estimate α̂ is not perfect. In this experiment, only the FGSM is analyzed. Each
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Figure 6: The relationship between Alice’s transmit power and Eve/Bob’s classification accuracy when different filtering
attack are applied by Alice and Bob. The minimum SNR requirement at Bob is 0dB (left), -10dB (right), and the noise
power is 5dB.

curve represents Bob’s classification accuracy on his recovered signals as indicated by (11). The number used to label
each curve is the ratio between Bob’s estimate and the true channel attenuation coefficient α̂/α. The perfect estimate is
when α̂/α = 1 where Bob’s classification accuracy is highest. As α̂/α deviates further from 1, Bob’s classification
accuracy drops detrimentally. An imperfect estimate of the channel’s attenuation means that when Alice has more
transmit power dedicated to the perturbation ~δ+, the leftover perturbation from Bob’s signal recovery becomes larger.
Eve’s classification accuracy is not affected by Bob’s inability to estimate α

6 Conclusion

This paper examines point to point communication system with an eavesdropper (Eve), where the transmitter (Alice)
has finite transmission power, and the intended receiver (Bob) has a minimum SNR requirement that must be met for
reliable communication. The channel model explored in this work is an AWGN channel model with attenuation of the
transmitted signal, and the channel effects are assumed to be the same for Bob and Eve. Secrecy is measured by making
Eve’s classification accuracy low, but keeping Bob’s classification accuracy high. Alice uses an adversarial attack on her
transmitted signal to lower Eve’s classification accuracy and shares a key with Bob so that he can undo the adversarial
attack. Eve does not know the key, so she cannot undo the adversarial attack. This paper concludes that additive
adversarial attacks fall short in this application, because they require sacrificing transmit power, and can be difficult to
undo for Bob. To undo an additive perturbation, Bob must synchronize the subtraction of the perturbation with Alice’s
repeated addition of the perturbation. In addition to synchronization, Bob must also predict the attenuation coefficient
of the channel, which if not done perfectly will leave remnants of the adversarial perturbation which is detrimental to
classification accuracy. If Alice uses filters to generate adversarial examples instead of additive perturbations, there is
no need to sacrifice transmit power and it is simpler to undo the adversarial attack at Bob. Bob needs only to use the
inverse to the filter used at Alice to undo the adversarial attack.

This paper also presents two novel filter-based AL algorithms to generate adversarial examples. The first of which is an
optimization approach called the gradient ascent filter (GAF) which is similar to training a neural network to minimize
loss, but instead the filter is being trained to maximize loss of a fixed machine-learning model. This paper proposes
three methods of creating a GAF, two of which have a stable inverse which is necessary for Bob to decode information.
The second presented AL filtering algorithm is similar to the fast gradient method (FGM), called the fast gradient
filter method (FGFM). This algorithm, like the FGM, is the solution to a first-order approximation of loss when an
adversarial example is predicted by a fixed machine-learning model. Unlike the two stable GAF algorithms, the FGFM
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Figure 7: The relationship between Alice’s transmit power and Eve/Bob’s classification accuracy when root training
GAF and the FGSM applied by Alice and Bob as modulation specific attacks (MS) and universal attacks (U). The
minimum SNR requirement at Bob is 0dB (left), -10dB (right), and the noise power is 5dB.
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Figure 8: The relationship between Alice’s transmit power and Eve/Bob’s classification accuracy when noise power is
5dB and the minimum SNR requirement at Bob is 0dB. The attack used is the FGSM, and the numbers in the labels
indicate the ratio between Bob’s estimated channel attenuation and the true attenuation α̂/α.

has an unstable inverse which makes it infeasible for Bob to use. In simulations with a convolutional neural network,
the root training GAF was the most effective AL algorithm in this system model where transmit power is limited.
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CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0–Fundamental Algorithms for Scientific Computing in
Python. arXiv e-prints, page arXiv:1907.10121, Jul 2019.

[24] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2014.

[25] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[26] François Chollet et al. Keras. https://keras.io, 2015.

17

https://keras.io

	1 Introduction
	2 System Model & Problem Statement
	3 Main Results & Discussion
	3.1 Reversing Adversarial Attacks at Bob

	4 Adversarial Filtering Algorithms
	4.1 Gradient Ascent Filter
	4.2 Filter Creation Functions for GAF
	4.2.1 Unconstrained GAF
	4.2.2 First Tap Constrained GAF
	4.2.3 Root Training GAF

	4.3 Fast Gradient Filter Method

	5 Experiments
	6 Conclusion

