
QuantileRK: Solving Large-Scale Linear
Systems with Corrupted, Noisy Data

Benjamin Jarman∗, Deanna Needell†

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA
∗bjarman@math.ucla.edu, †deanna@math.ucla.edu

Abstract—Measurement data in linear systems aris-
ing from real-world applications often suffers from
both large, sparse corruptions, and widespread small-
scale noise. This can render many popular solvers
ineffective, as the least squares solution is far from
the desired solution, and the underlying consistent
system becomes harder to identify and solve. Quan-
tileRK is a member of the Kaczmarz family of iterative
projective methods that has been shown to converge
exponentially for systems with arbitrarily large sparse
corruptions. In this paper, we extend the analysis to
the case where there are not only corruptions present,
but also noise that may affect every data point, and
prove that QuantileRK converges with the same rate
up to an error threshold. We give both theoretical
and experimental results demonstrating QuantileRK’s
strength.

I. INTRODUCTION

From medical imaging [1], to image reconstruc-
tion and signal processing [2], [3], to modern data
science and statistical analysis [4], solving systems
of linear equations, has long been a central problem
in applied mathematics. Such systems will often be
large, overdetermined, and consistent: we consider
the system Ax = b, where A ∈ Rm×n, b ∈ Rm, and
m ≥ n, with solution x?.

A practical challenge is that measurement data
often becomes damaged during collection, trans-
mission, or storage, violating consistency. Two im-
portant types of damage are
• corruption; large errors due to faulty soft-

ware, hardware, or mismeasurement, affecting
a small fraction of data, and

• noise; small errors due to imprecision or pro-
cessing that may affect every measurement.

The Randomized Kaczmarz (RK) method [5], [6]
is a popular iterative projective method for large,
overdetermined, consistent systems due to its ex-
ponential convergence and low memory require-
ments. An initial guess x0 is iteratively projected
onto randomly chosen hyperplanes corresponding

to solution spaces to rows of the system. More
precisely, letting a1, · · · ,am be the rows of A, the
kth iterate is computed as

xk = xk−1 +
bi − aixk−1

‖ai‖2
a>i ,

where row i has been chosen with probability
proportional to its Euclidean norm (denoted ‖·‖).

Strohmer and Vershynin [6] showed that RK
converges exponentially in expectation. This was
extended to the noisy case in [7] where a vector
of noise r is added to the measurement data b. In
this case, exponential convergence is still achieved
up to an error horizon depending on the size of the
noise. Namely, letting ek := xk − x? be the error at
the kth iteration,

E ‖ek‖2 ≤

(
1− σ2

min(A)

‖A‖2F

)
‖e0‖2 +

‖A‖2F
σ2
min(A)

‖r‖2 ,

where σmin(A) is the smallest singular value of A,
and ‖·‖F is the Fröbenius norm.

Variants of RK, including those involving multi-
row projections or greedy row selection, have been
shown to exhibit similar robustness to noise [8], [9].

Corrupted data proves more of a challenge for
projection-based methods: projecting onto a row
with large corruption can cause the iterate to move
far from the solution and severely disrupt conver-
gence. Recent modifications have been designed to
handle this issue, see [10]–[12]. In this paper we
focus on the method introduced in [12] and ana-
lyzed further in [13], where the authors constructed
a quantile-based modification of RK, QuantileRK,
in which the quantile of the absolute values of a
subresidual is used to detect and avoid projecting
onto corrupted rows.

Here, we extend the theory and show that Quan-
tileRK is robust to both corruptions and noise in
the measurement data. We give a theoretical result

ar
X

iv
:2

10
8.

02
30

4v
1 

 [
m

at
h.

N
A

] 
 4

 A
ug

 2
02

1



showing exponential convergence down to an error
horizon, and provide experiments demonstrating
the strength of the method in identifying and solv-
ing the underlying system beneath highly damaged
measurement data.

II. PROPOSED METHOD

A. Preliminaries & Notation

We aim to solve the consistent system Ax = b̃
with access only to the observed measurement
vector b = b̃+bC+r, where bC is a sparse vector of
corruptions, and r is a vector of noise. In practice,
bC will contain large entries, and r small, but we
make no such assumption for our theory. We define
β to be the fraction of data that is corrupted, i.e.
β = |{i : bCi > 0}|/m.

We build on the foundations established in [12].
To utilize results from random matrix theory, we
view A as a random matrix and make the following
assumptions, that will for example hold if A is
Gaussian with normalized rows:
Assumption 1. All rows ai of A are independent,
and

√
nai is mean zero isotropic with uniformly

bounded subgaussian norm, ‖
√
nai‖ψ2

≤ K.
Assumption 2. Each entry aij of A has probability
density function φij satisfying φij(t) ≤ D

√
n for all

t ∈ R.
We define the q-quantile of the absolute values

of the residual, or sub-residual formed by rows in
an index set S:

Qq(x) = q − quantile{|bi − 〈ai,x〉| : i ∈ [m]}
Qq(x, S) = q − quantile{|bi − 〈ai,x〉| : i ∈ S}.

Throughout, C, c, c1, c2, · · · refer to absolute con-
stants whose values may vary line by line.

B. QuantileRK

Projecting iterates onto corrupted hyperplanes
will often cause abnormally large movements. Our
method detects this by taking a quantile of the
residual entries of a collection of rows at each
iteration, and deeming a row acceptable for projec-
tion if its residual entry is less than said quantile.
Whilst the method may still project onto corrupted
rows, the movement away from the solution caused
by these ’bad’ projections will on average be out-
weighed by projections onto uncorrupted rows. We
present pseudocode for the method in Algorithm 1,
under the assumption that A has been standardized
to have normalized rows for simplicity.

Algorithm 1 QuantileRK(q)

1: procedure QUANTILERK(A,b, q, t, N)
2: x0 = 0
3: for j = 1, . . . , N do
4: sample i1, . . . it ∼ Uniform(1, . . . ,m)
5: sample k ∼ Uniform(1, . . . ,m)
6: compute qk = Qq(xj−1, {il : l ∈ [t]})
7: if |〈ak,xj−1〉 − bk| ≤ qk then
8: xj = xj−1 − (〈xj−1,ak〉 − bk)ak
9: else

10: xj = xj−1
11: end if
12: end for

return xN
13: end procedure

In [12], the authors proved that for A sufficiently
tall and β sufficiently small, QuantileRK conver-
gences exponentially, with

E(‖ek‖2) ≤
(
1− Cq

n

)k
‖e0‖2 ,

Our main result, Theorem II.1, builds on this and
shows that the addition of noise does not harm the
convergence rate, and exponential convergence is
still achieved up to a horizon proportional to the
size of the noise.

Theorem II.1. Let the linear system be defined by
the standardized random matrix A ∈ Rm×n satisfying
Assumptions 1 and 2. Assume that β ≤ min(cq, 1− q),
and that m ≥ Cn. Then with high probability, the
iterates produced by QuantileRK, with q ∈ (0, 1), where
in each iteration the quantile is computed using the full
residual, and initialized with arbitrary x0 ∈ Rn, satisfy

E(‖ek‖2) ≤
(
1− Cq

n

)k
‖e0‖2 +

2n

c1
‖r‖2∞ . (1)

Remark II.2. It is natural to ask whether one may
consider some of the larger entries in r as corruptions,
by increasing β, leading to a smaller error horizon. This
is possible, but there is a tradeoff: increasing β forces a
decrease in q, which slows convergence. The effectiveness
will be application dependent: if the distribution of noise
is concentrated, it would take a significant increase in
β to see a decrease in the error horizon, leading to
substantially slower convergence; however, if the noise
has large spikes, increasing β may be worthwhile.
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C. Proof of Main Result

We follow the proof of the main QuantileRK con-
vergence result from [12] closely, making necessary
alterations for the presence of noise throughout. We
firstly present a modified version of Remark 3 from
said paper:

Lemma II.3. Let α ∈ (0, 1], let the random matrix A ∈
Rm×n satisfy Assumption 1, and let x? be the solution
to the consistent system Ax = b̃. Then if m ≥ n, there
exists a constant CK > 0 so that with probability at
least 1− 2e−m, for every x ∈ Rn the bound

|〈ai,x〉 − bi| ≤
CK
α
√
n
‖x− x?‖+ ‖r‖∞

holds for all but at most (α+ β)m indices i.

Proof. Applying ( [12], Proposition 2) with the unit
vector (x − x?)/ ‖x− x?‖, excluding the βm cor-
rupted rows, yields

|〈ai,x〉 − 〈ai,x?〉| ≤
CK
α
√
n
‖x− x?‖

for at most (α+β)m indices i. For each i for which
the above holds, we have 〈ai,x?〉 = b̃i = bi−ri (i.e.,
bCi = 0). Then the right hand side can be written as

|〈ai,x〉 − 〈ai,x?〉| = |〈ai,x〉 − bi + ri|
≥ |〈ai,x〉 − bi| − |ri|
≥ |〈ai,x〉 − bi| − ‖r‖∞ .

Combining the inequalities yields the result.

Taking α ≤ 1 − q − β immediately gives the
following corollary, showing that the quantiles are
well-concentrated:

Corollary II.4. Under the same assumptions as
Lemma II.3, and taking α ≤ 1− q − β, we have

P
(
Qq(x) ≤

Cα ‖x− x∗‖√
n

+ ‖r‖∞

)
≥ 1− 2e−m.

We are now ready to prove Theorem II.1.

Proof of Theorem II.1. Let EAccept(k) denote the
event that we sample a row that with residual less
than the computed quantile at the kth iteration. It
is clear that we have P(EAccept(k)) = q.

Let J be a collection of indices of size 2βm,
containing all corrupted indices and at least βm
acceptable indices. Then split all acceptable indices
into two subsets: those inside J , denoted by I1, and
those outside of J , denoted by I2. Let EkL denote the

event that at the k-th iteration an index in sampled
from L ⊂ [m]. We argue that the possible damage to
convergence caused by projecting onto a corrupted
row in I1 is outweighed by the movement towards
the solution caused by projecting onto a row in I2.

Observe firstly that

Ek(‖ek+1‖2) = qEk(‖ek+1‖2 |EAccept(k + 1))+

(1− q) ‖ek‖2 , (2)

since we have no update to our iterate if the
sampled row was not acceptable.

We now deal with Ek(‖ek+1‖2 |EAccept(k+ 1)) by
splitting into two cases; sampling a row from I1
or from I2. Note that the probability of sampling
an index from I1, conditioned on EAccept(k+1), pJ ,
satisfies pJ ≤ 2βm/qm ≤ 2β/q.

Firstly, if we sample from I2, the iterate xk+1 is
obtained by performing an iteration of standard RK
on the noisy system AI2x = b̃I2 + rI2 . Noting that
I2 has size at least (q − β)m, Proposition 2 from
[12] (with α = q − β) yields that σmin(AI2) ≥
Cα,D

√
m/n with high probability, provided that A

is tall enough. Furthermore since A has normalized
rows, we have ‖AI2‖F ≥

√
(q − β)m. Thus

κ(AI2) ≥ Cq,D
√
n.

Then by the analysis of RK with noise in [7], we
have that

Ek(‖ek+1‖2 |Ek+1
I2

) ≤
(
1− c1

n

)
‖ek‖2 + ‖rI2‖

2
∞

≤
(
1− c1

n

)
‖ek‖2 + ‖r‖2∞ .

The β = 0 case (i.e., when we have no corrup-
tions) follows immediately from this and Eq. (2). In
the case where β > 0, i.e., when I1 is not empty,
we consider the possibility that we sample from I1.
Our update will take the form xk+1 = xk − hiai,
where |hi| ≤ Qq(xk), and so we have

Ek(‖ek+1‖2 |Ek+1
I1

) ≤ ‖ek‖2 +Qq(xk)
2+

2Qq(xk)Ek(|〈ek,ai〉|i ∼ Unif(I1)).

To continue estimating, note that we have by
( [12], Lemma 4), with probability 1− 2e−cm,

Ek(|〈ek,ai〉||i ∼ Unif(I1)) =
1

|I1|
∑
i∈I1

|〈ek,ai〉|

≤ C ‖ek‖√
βn

.
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Then using this and the result of Corollary II.4:

Ek(‖ek+1‖2 |Ek+1
I1

) ≤
(
1 +

√
βc2 + c3

n
√
β

)
‖ek‖2

+

(
c4
√
β + c5√
nβ

)
‖r‖∞ ‖ek‖+ ‖r‖

2
∞ .

We can now estimate Ek(‖ek+1‖2 |EAccept(k+1)) as
follows:

Ek(‖ek+1‖2 |EAccept(k+1)) = pJEk(‖ek+1‖2 |Ek+1
I1

)

+ (1− pJ)Ek(‖ek+1‖2 |Ek+1
I2

)

≤
(
1− c1

n
+ pJ

(√
β(c1 + c2) + c3

n
√
β

))
‖ek‖2

+ pJ

(
c4
√
β + c5√
nβ

)
‖r‖∞ ‖ek‖+ ‖r‖

2
∞ .

To handle the ‖r‖∞ ‖ek‖ term we split into two
cases. The motivation is that when our error is
large relative to the noise, the quantile can detect
corruptions well, whereas when the error is small
relative to the noise, our movement will be small.
Firstly, if

√
n ‖r‖∞ ≤ ‖ek‖ (i.e. when our error is

large), we have

Ek(‖ek+1‖2 |EAccept(k + 1)) ≤
(
1− c1

n
+

pJ

(√
β(c1 + c2 + c4) + c3 + c5

n
√
β

))
‖ek‖2 + ‖r‖2∞

≤
(
1− 0.5c1

n

)
‖ek‖2 + ‖r‖2∞

for small enough β (we need
√
β ≤ cq). On the

other hand, if
√
n ‖r‖∞ ≥ ‖ek‖, we have

Ek(‖ek+1‖2 |EAccept(k + 1)) ≤
(
1− c1

n
+

pJ

√
β(c1 + c2) + c3

n
√
β

)
‖ek‖2+pJ

(
c4
√
β + c5√
β

)
‖r‖2∞

≤
(
1− 0.5c1

n

)
‖ek‖2 + ‖r‖2∞ ,

again for
√
β ≤ cq sufficiently small.

We may now substitute our expressions into
Eq. (2) to obtain our per-iteration guarantee:

Ek(‖ek+1‖2) ≤
(
1− 0.5qc1

n

)
‖ek‖2 + q ‖r‖2∞ .

By induction, we obtain our overall guarantee:

E(‖ek‖2) ≤
(
1− 0.5qc1

n

)k
‖e0‖2 +

k−1∑
j=0

(
1− 0.5qc1

n

)j
q ‖r‖2∞

≤
(
1− 0.5qc1

n

)
‖e0‖2 +

2n

c1
‖r‖2∞ .

III. EXPERIMENTAL RESULTS

Experiments are performed on 2000 × 100 stan-
dardized Gaussian matrices A. We sample a Gaus-
sian x∗ ∈ R100×1, compute b = Ax, and then
corrupt a fraction β of the rows of b by adding
corruptions of size to be specified. We add noise
r ∈ R2000×100 with Uniform(−0.02, 0.02) entries,
and apply QuantileRK to the resulting system. At
each iteration 400 rows are sampled, from which
the subresidual is computed.

In Fig. 1 we take q = 0.7, β = 0.2, and corrupt
the already noisy system with corruptions taken
from Uniform(−k, k) for a range of k. We see that
when corruptions are large relative to the noise,
they are better detected by the quantile, faster con-
vergence is achieved. When corruptions are small,
they do not disrupt convergence enough to break
the method, and convergence is achieved down to
the error horizon.

Fig. 1: Convergence of QuantileRK(0.7) with
Uniform(−k, k) corruptions, for a range of k, and
Uniform(−0.02, 0.02) noise.

We would like to take q as large as possible so
that we may sample rows yielding large movement,
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Fig. 2: ‖x2000 − x?‖ for a range of corruption rates
β and quantile choices q.

but we must take q < 1 − β to avoid corrupted
rows. In Fig. 2 we plot the normed error after 2000
iterations for a range of q and β, and we see that
we can be very aggressive with our choice of q: we
are able to take it very close to 1 − β, and should
do so to accelerate convergence.

In Fig. 3 we simulate 100 trials, and compare the
error (after 5000 and 10000 iterations respectively)
to the predicted horizon. Indeed, our results show
that the predicted horizon is closely respected.

Fig. 3: Comparing ‖x5000 − x?‖with predicted error
horizon.

IV. CONCLUSION AND FUTURE WORK

We have shown, both theoretically and empir-
ically, that QuantileRK is a powerful method for
solving linear systems where measurement data

has been damaged by both corruptions and noise.
We believe that this method will prove tractable in
practice, as corruption and noise are ubiquitous in
real-world data.

We are interested in pursuing quantile-based
modifications to other projection-based iterative
methods, see [14] for a general framework, and also
in relaxing the conditions placed on our system: see
[13] for some work in this direction.
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