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Abstract—In this work, we consider both channel estima-
tion and reflection coefficient design problems in point-to-point
reconfigurable intelligent surface (RIS)-aided millimeter-wave
(mmWave) MIMO communication systems. First, we show that
by exploiting the low-rank nature of mmWave MIMO channels,
the received training signals can be written as a low-rank multi-
way tensor admitting a canonical polyadic (CP) decomposition.
Utilizing such a structure, a tensor-based RIS channel estimation
method (termed TenRICE) is proposed, wherein the tensor factor
matrices are estimated using an alternating least squares method.
Using TenRICE, the transmitter-to-RIS and the RIS-to-receiver
channels are efficiently and separately estimated, up to a trivial
scaling factor. After that, we formulate the beamforming and RIS
reflection coefficient design as a spectral efficiency maximization
task. Due to its non-convexity, we propose a heuristic non-
iterative two-step method, where the RIS reflection vector is
obtained in a closed form using a Frobenius-norm maximization
(FroMax) strategy. Our numerical results show that TenRICE
has a superior performance, compared to benchmark methods,
approaching the Cramér–Rao lower bound with a low training
overhead. Moreover, we show that FroMax achieves a comparable
performance to benchmark methods with a lower complexity.

Index Terms—Reconfigurable intelligent surface, channel esti-
mation, RIS reflection design, CP tensor decomposition.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have been pro-
posed recently as a cost-effective technology for reconfiguring
the propagation channels in wireless communication systems
[1]. An RIS is a 2D surface equipped with a large number
of tunable units that can be realized using, e.g., inexpensive
antennas or metamaterials and controlled in real-time to influ-
ence the communication channels without generating its own
signals. Among its many applications, an RIS can be utilized
as a solution to the signal-blockage problem in millimeter-
wave (mmWave)-based communications by providing alterna-
tive and tunable RIS-aided channels.

Recently, RIS-aided communications have attracted great
attention, due to their potential of improving the efficiency of
wireless mobile communications. RIS reflection design, in par-
ticular, have been extensively investigated under various setups
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and objectives, see [2]–[5] and reference therein. However,
due to the non-convexity of the involved problems, relaxations
and alternating optimization techniques are commonly used to
obtain a locally optimal solution. For example, the authors
in [2] considered the capacity maximization and proposed an
alternating optimization approach to find a locally optimal
solution by iteratively optimizing the transmit covariance
matrix or one of the RIS reflection coefficients with the others
being fixed. However, such an alternating approach increases
the computational complexity and becomes a limiting factor
in practice, especially in a massive RIS setup.

The vast majority of the existing works assume perfect
channel state information (CSI) at the transceivers, see [2]–
[5] , which can never be obtained in practice. Recently, RIS-
aided channel estimation (CE) methods have been proposed,
e.g., in [6]–[9]. These works, however, require that the number
of training subframes is, at least, equal to the number of
RIS reflection units to obtain an accurate CSI estimate, which
increases the training overhead and complexity. To overcome
these issues, several approaches have been studied, e.g., by
exploiting the low-rank nature of mmWave channels and
the multidimensional (i.e., tensor) structure of the received
signals. The former allows the CE to be formulated as a
sparse-recovery problem and solved using compressed sensing
(CS) tools [10]–[12], which are known to require a few
measurements to have an accurate estimate, see [13]–[15].
In [13], by exploiting the low-rank nature of the mmWave
channels, we have proposed the TRICE framework, which
formulates the CE in RIS-aided mmWave MIMO systems
as a two-stage multidimensional sparse-recovery problem. On
the other hand, tensor-based signal modeling and processing
methods offer fundamental advantages over their bilinear (ma-
trix) counterparts, since they have the ability to improve the
identifiability of the parameters due to the powerful uniqueness
properties of tensor decompositions [16]. In [17], it is shown
that the received signals in RIS-aided MIMO communication
systems can be written as a 3-way tensor admitting a canonical
polyadic (CP) decomposition. However, the proposed method
in [17] assumes sub-6 GHz systems and, thus, requires a large
number of training subframes, similarly to [6]–[9].

In this paper, we extend our TRICE framework in [13]
and propose a CP Tensor decomposition method for RIS-
aided CE in mmWave MIMO systems, termed TenRICE,
by jointly exploiting the tensor structure of the received
signals and the low-rank nature of mmWave channels. Using
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the TenRICE method, the transmitter-to-RIS and the RIS-to-
receiver channels can be estimated separately, up to a trivial
scaling factor. After that, we formulate the beamforming and
the RIS reflection coefficient design as a spectral efficiency
(SE) maximization problem. Due to its non-convexity, we
propose a heuristic non-iterative two-step solution, where the
RIS reflection vector is obtained, in contrast to [2], in a
closed form using a Frobenius-norm Maximization (FroMax)
strategy. Our numerical results show that TenRICE has a
superior performance, compared to the TRICE framework,
approaching the Cramér–Rao bound (CRB). Moreover, we
show that FroMax achieves a comparable performance to
benchmark methods with a lower complexity.

II. SYSTEM MODEL

In this paper1, we consider an RIS-aided mmWave MIMO
communication system as depicted in Fig. 1, where a transmit-
ter (TX) with MT antennas is communicating with a receiver
(RX) with MR antennas via an RIS-aided MIMO channel.
The direct channel between the TX and the RX is assumed
unavailable or too weak, e.g., due to blockage. The RIS
has MS inexpensive reflecting elements arranged uniformly
with half-wavelength inter-element spacing on a rectangular
surface with M v

S vertical and M h
S horizontal elements such

that MS = M v
S ·M h

S .
Let HT ∈ CMS×MT be the TX to RIS channel and HR ∈

CMR×MS be the RIS to RX channel with E{‖HT‖2F} = MSMT
and E{‖HR‖2F} = MSMR. We assume a block-fading channel
scenario, where HT and HR remain constant during every
channel coherence block and change from block to block. We
assume that every block is divided into two sub-blocks: one
for CE and another for data transmission (DT), see Fig. 2.

In the CE phase, we conduct a channel training procedure
that occupies K = KT ·KS subframes. The received signal at
the RX at the (s, t)th subframe is given as

ys,t = W HHRdiag{φs}HTf̃tst +W Hzs,t ∈ CKR , (1)

where W ∈ CMR×KR is a fixed training decoding matrix
with KR beams, f̃t ∈ CMT is the tth training vector of the
TX with ‖f̃t‖22 = 1, t ∈ {1, . . . ,KT}, φs ∈ CMS is the
sth training vector of the RIS with

∣∣[φs][m]

∣∣ = 1√
MS
,∀m,

s ∈ {1, . . . ,KS}, st ∈ C is the unit-norm pilot symbol,
and zs,t ∈ CMR is the additive white Gaussian noise vector

1Notation: The transpose, the conjugate transpose (Hermitian), the Moore-
Penrose pseudoinverse, the Kronecker product, and the Khatri-Rao product
are denoted as AT, AH, A+, ⊗, and �, respectively. Moreover, 1N is the
all ones vector of length N , IN is the N×N identity matrix, diag{a} forms
a diagonal matrix A by putting the entries of the input vector a in its main
diagonal, undiag{A} is the reverse of the diag operator, vec{A} forms a
vector by staking the columns of A over each other, and the n-mode product
of a tensor A ∈ CI1×I2×...,×IN with a matrix B ∈ CJ×In is denoted as
A×nB. Throughout this paper, we assume that the singular values of a given
diagonal singular matrix are arranged in a decreasing order. Moreover, the
following properties are used: Property 1: vec{ABC} = (CT⊗A)vec{B}.
Property 2: AB�CD = (A⊗C)(B�D). Property 3: (A⊗C)(B⊗D) =
AB ⊗ CD. Property 4: Let A1 ∈ CJ1×L1 and A2 ∈ CJ2×L2 . Then
A1⊗A2 = A1Ω1�A2Ω2, where Ω1 = IL1

⊗1T
L2

and Ω2 = 1T
L1
⊗IL2

so that Ω1 �Ω2 = IL1L2 . Property 5: vec{Adiag{b}C} = (CT �A)b.

RIS with       elements

TX with       antennas RX with       antennas

Fig. 1. An RIS-aided MIMO mmWave communication system.

Phase 1: Channel Estimation (CE) Phase 2: Data Transmission (DT)
No. of subframes: No. of data-streams: 

. . . . . .

. . .. . . . . .

. . .

Fig. 2. One channel coherence block.

having zero-mean circularly symmetric complex-valued entries
with variance σ2. We stack {ys,t}KT

t=1 on top of each other as
ys = [yT

s,1, . . . ,y
T
s,KT

]T and after that we stack {ys}KS
s=1 next

to each other as Y = [y1, . . . ,yKS ]. Then, using Properties 2
and 5, the above measurement matrix Y can be written as

Y = (F T ⊗W H)HcΦ +Z ∈ CKRKT×KS , (2)

where Hc = HT
T �HR represents the cascaded channel matrix,

Z = [z1, . . . ,zKS ], zs = [(W Hzs,1)T, . . . , (W Hzs,KT)T]T,
F = [f̃1s1, . . . , f̃KTsKT ], and Φ = [φ1, . . . ,φKS ]. Given the
measurement matrix Y , the main goal of Section III is to
obtain an accurate estimate of HT and HR, while keeping the
number of training subframes K as small as possible.

In the DT phase, given the estimated channels ĤR and
ĤT, the TX first designs the precoding matrix P ∈ CMT×Ns ,
the decoding matrix Q ∈ CMR×Ns , and the RIS reflection
coefficient vector ω ∈ CMS with

∣∣[ω][m]

∣∣ = 1√
MS
,∀m, to

transmit the vector s ∈ CNs of Ns data streams with E[ssH] =
INs to the RX. Therefore, the received signal vector at the RX
is given as

y = QHHePs+QHz ∈ CNs , (3)

where He = HRdiag{ω}HT is the effective channel matrix.
The system SE is given as

SE = log2 det(INs +R−1QHHePP
HHH

e Q), (4)

where R = σ2QHQ is the noise covariance matrix. In
Section IV, we propose a non-iterative beamforming and
RIS reflection coefficient design method to maximize the SE,
where the RIS reflection vector is obtained in a closed form
using a FroMax strategy.

Channel model: In mmWave-based communications [18],
it was observed that the number of paths LT and LR for HT
and HR respectively, are very small compared to the number
of antenna elements. This implies that rank{HT} ≤ LT and
rank{HR} ≤ LR. Therefore, similarly to [13], by assuming
that the TX and the RX employ uniform linear arrays (ULAs)2,

2The extension of the proposed methods to scenarios where the TX
and/or the RX are equipped with uniform rectangular arrays (URAs) is
straightforward.



HT and HR follow the geometric channel model, which can
be written as

HT =
1√
LT

LT∑
`=1

gT,`v2D(µv
T,`, µ

h
T,`)v1D(ψT,`)

T = BTGTA
T
T ,

HR =
1√
LR

LR∑
`=1

gR,`v1D(ψR,`)v2D(µv
R,`, µ

h
R,`)

T = ARGRB
T
R ,

(5)

where gX,` ∼ CN (0, 1) is the `th path gain, ψT,` ∈ [0, 2π]
is the `th direction-of-departure (DoD) spatial frequency from
the TX, ψR,` ∈ [0, 2π] is the `th direction-of-arrival (DoA)
spatial frequency at the RX, µh

T,` ∈ [0, 2π] and µv
T,` ∈ [0, π] are

the `th horizontal and vertical DoA spatial frequencies at the
RIS, while µh

R,` ∈ [0, 2π] and µv
R,` ∈ [0, π] are the `th horizon-

tal and vertical DoD spatial frequencies from the RIS. In (5),
the 1D and the 2D array steering vectors are given as v1D(ν) =
[1, ejν , . . . , ej(M−1)ν ]T ∈ CM and v2D(νv, νh) = v1D(νv) �
v1D(νh), respectively, where v1D(νv) ∈ CM v

and v1D(νh) ∈
CM h

. Moreover, HT and HR are written in a compact form by
letting AX = [v1D(ψX,1), . . . ,v1D(ψX,LX)] ∈ CMX×LX , BX =

Bv
X �Bh

X, BY
X = [v1D(µY

X,1), . . . ,v1D(µY
X,LX

)] ∈ CMY
S ×LX , and

GX = 1√
LX

diag{gX,1, . . . , gX,LX} for X ∈ {T, R}, Y ∈ {v, h}.

III. PHASE 1: THE PROPOSED CE METHOD (TENRICE)

In this section, we propose our Tensor-based RIS-aided CE
(TenRICE) algorithm by jointly exploiting the low-rank nature
of mmWave channels and the tensor structure of received
signals. By utilizing the channels model in (5), the cascaded
channel matrix Hc = HT

T �HR in (2) can be written as

Hc = (ATGTB
T
T �ARGRB

T
R )

(a)
= (AT ⊗AR)GB, (6)

where G = GT ⊗ GR ∈ CL×L, B = BT
T � BT

R ∈ CL×MS ,
L = LR · LT, and (a)

= is obtained from Property 2. In
[13], we have shown that B can be expressed as B =
(Bv �Bh)T, where Bv = [v1D(µv

1), . . . ,v1D(µv
L)] ∈ CM v

S×L,
Bh = [v1D(µh

1), . . . ,v1D(µh
L)] ∈ CM h

S×L, µv
n = µv

T,` + µv
R,k,

µh
n = µh

T,` + µh
R,k, ` ∈ {1, . . . , LT}, k ∈ {1, . . . , LR}, and

n = (` − 1) · LR + k ∈ {1, . . . , L}. Then, using Property 2,
(6) can be rewritten as

Hc = (AT ⊗AR)G(Bv �Bh)T, (7)

which is characterized by the following spatial frequency
vectors: ψR = [ψR,1, . . . , ψR,LR ]T, ψT = [ψT,1, . . . , ψT,LT ]T,
µh = [µh

1, . . . , µ
h
L]T, and µv = [µv

1, . . . , µ
v
L]T that define AR,

AT, Bh, and Bv, respectively. Therefore, to obtain an estimate
ofHc, it is sufficient to obtain an estimate of the above vectors
from the measurement matrix Y in (2), including the path
gains vector g = undiag{G}. In [13], we have proposed a
two-stage framework, termed TRICE, which estimates ψR and
ψT in the first stage as well as µh, µv, and g in the second
stage using any efficient multidimensional sparse-recovery
technique, like CS [12] and ESPRIT [19]. To further improve
the performance of the TRICE framework, we propose in
the following the TenRICE method by exploiting the tensor
structure of the measurement matrix Y .

We assume that the RIS reflection coefficient matrix during
the training phase has a Kronecker structure given as Φ =
Φv⊗Φh, where Φv ∈ CM v

S×Kv
S , Φh ∈ CM h

S×Kh
S , and Kv

S ·Kh
S =

KS. By substituting (6) into (2), the vectorized form of Y , i.e.,
y = vec{Y } can be written as

y
(a)
= vec{(F TAT ⊗W HAR)G(Bv �Bh)TΦ}+ z
(b)
= vec{(F TATΩT �W HARΩR)G(Bv �Bh)TΦ}+ z
(c)
= (ΦT

vBv �ΦT
hBh � F TATΩT �W HARΩR)g + z, (8)

where z = vec{Z} and g = undiag{G}. Moreover, (a)
=, (b)

=, and
(c)
= are obtained by applying Properties 1,2, and 4, where ΩT

def
=

ILT ⊗ 1T
LR

and ΩR
def
= 1T

LT
⊗ ILR . From (8), we observe that

y is the vectorized form of the transposed 4-mode unfolding
of a 4-way tensor Y ∈ CKR×KT×Kh

S×Kv
S , i.e., y = [Y ]T(4) that

admits a constrained CP decomposition as [16], [20]

Y = I4,L ×1 ĀRΩR ×2 ĀTΩT ×3 B̄h ×4 B̄v + Z, (9)

where Z is the noise tensor, I4,L ∈ CL×L×L×L is a super-
diagonal tensor with ones on the super diagonal, and

ĀR = W HAR = W H[v1D(ψR,1), . . . ,v1D(ψR,LR))], (10)

ĀT = F TAT = F T[v1D(ψT,1), . . . ,v1D(ψT,LT))], (11)

B̄h = ΦT
hBh = ΦT

h [v1D(µh
1), . . . ,v1D(µh

L)], (12)

B̄v = ΦT
vBvG = ΦT

v [v1D(µv
1), . . . ,v1D(µv

L)]G. (13)

The n-mode unfoldings of tensor Y , for n ∈ {1, 2, 3, 4}
can be expressed as

[Y ](1) = ĀRΩR(B̄v � B̄h � ĀTΩT)T + [Z](1) (14)

[Y ](2) = ĀTΩT(B̄v � B̄h � ĀRΩR)T + [Z](2) (15)

[Y ](3) = B̄h(B̄v � ĀTΩT � ĀRΩR)T + [Z](3) (16)

[Y ](4) = B̄v(B̄h � ĀTΩT � ĀRΩR)T + [Z](4). (17)

Given the measurement tensor Y , the CE task boils down to
first estimating the tensor factor matrices. Several techniques
have been proposed to achieve this end, e.g., in [21]–[23].
One of these techniques is the alternating least squares (ALS)
[24], which minimizes the data fitting error with respect to
one of the factor matrices, with the other three being fixed.
For example, to estimate ĀR, assuming that ĀT, B̄h, and B̄v
are fixed, the problem can be formulated as

ĀR = arg min
ĀR

∥∥∥[Y ](1) − ĀRΩR(B̄v � B̄h � ĀTΩT)T
∥∥∥2

F
, (18)

which is a convex problem and can be solved using the LS
method. Using the same methodology, ĀT, B̄h, and B̄v can be
estimated similarly to (18). Therefore, an ALS-based method
can be used to estimate the four factor matrices as summarized
in Algorithm 1 (from step 3 to step 9), which is guaranteed
to converge monotonically to a local optimum point [24].

Let ˆ̄AR, ˆ̄AT, ˆ̄Bh, and ˆ̄Bv denote the estimated factor ma-
trices at the convergence of the iterative steps of Algorithm 1.
Then, the parameters associated with each factor matrix can
be recovered, e.g., via a simple correlation-based scheme. For



Algorithm 1 Tensor-based RIS-aided CE (TenRICE)

1: Input: Measurement tensor Y ∈ CKR×KT×Kh
S×Kv

S and Imax

2: Output: Estimated channels ĤT and ĤR

3: Initialization: ˆ̄B
(0)
v , ˆ̄B

(0)

h , and ˆ̄A
(0)

T , e.g., randomly
4: while not converged or i < Imax do
5: ˆ̄A

(i)

R = [Y](1)

[
ΩR( ˆ̄B

(i−1)

v � ˆ̄B
(i−1)

h � ˆ̄A
(i−1)

T ΩT)T
]+

6: ˆ̄A
(i)

T = [Y](2)

[
ΩT( ˆ̄B

(i−1)

v � ˆ̄B
(i−1)

h � ˆ̄A
(i)

R ΩR)T
]+

7: ˆ̄B
(i)

h = [Y](3)

[
( ˆ̄B

(i−1)

v � ˆ̄A
(i)

T ΩT � ˆ̄A
(i)

R ΩR)T
]+

8: ˆ̄B
(i)

v = [Y](4)

[
( ˆ̄B

(i)

h � ˆ̄A
(i)

T ΩT � ˆ̄A
(i)

R ΩR)T
]+

9: end while
10: Recover ψ̂R, ψ̂T, µ̂h, µ̂v using, e.g., (19) or NOMP [25]
11: Compute ĝ =

[
ΦT

v B̂v �ΦT
h B̂h � F TÂTΩT �W HÂRΩR

]+
y

12: Reconstruct Ĥc = (ÂR ⊗ ÂT)diag{ĝ}(B̂v � B̂h)
T

13: Estimate ĤT and ĤR from Ĥ using [17, Algorithm 1]

example, the kth entry of ψR, i.e., ψR,k associated with the
kth column vector of ˆ̄AR, i.e., ˆ̄aR,k can be recovered as

ψ̂R,k = arg max
ψ∈[0,2π]

|ˆ̄aH
R,kW

Hv1D(ψ)|
‖ˆ̄aR,k‖‖W Hv1D(ψ)‖

, (19)

which can be efficiently implemented by first employing a
coarse grid and then gradually refining it around the maxi-
mizing grid points. Alternatively, (19) can be interpreted as
an off-grid sparse recovery problem, where efficient methods
like, Newtonized OMP (NOMP) [25] can be readily applied
to recover ψ̂R,k with high accuracy and low complexity. A
similar approach can be used to recover the vectors ψT, µh,
and µv from ˆ̄AT, ˆ̄Bh, and ˆ̄Bv, respectively.

Next, using the estimated vectors ψ̂R, ψ̂T, µ̂h, and µ̂v in
step 10, we reconstruct ÂT, ÂT, B̂h, and B̂v. Then, the path
gain vector g can be estimated from (8) (or [Y ]T(4)) using a
LS method as shown by step 11. Finally, the cascaded channel
matrix Ĥc can be reconstructed as in step 12, which can be
used to estimate ĤT and ĤR, up to trivial scaling factors,
using the LS Khatri-Rao factorization (LSKRF) method [17].

Uniqueness and identifiability conditions: It is well
known that the CP decomposition is unique up to scaling
and permutation ambiguities under mild conditions [24], [26]–
[29]. In general, the uniqueness of a CP decomposition is
guaranteed by Kruskal’s condition [27], which is also known
as the k-rank. However, due to the definitions of ΩR and
ΩT, the first two factor matrices, i.e., ĀRΩR = ÅR and
ĀTΩT = ÅT contain repeated columns, where every column
of ÅR is repeated LT times and every column of ÅT is
repeated LR times. This implies that the k-rank of ÅR and ÅT
is equal to one. Therefore, the sufficient condition of [27] fails
[29]. As for Algorithm 1, which is an ALS-based algorithm,
the identifiability in the LS sense requires that each of the
following matrices: CR = ΩR(B̄v � B̄h � ĀTΩT)T ∈ CLR×JR ,
CT = ΩT(B̄v � B̄h � ĀRΩR)T ∈ CLT×JT , Ch = (B̄v � ĀTΩT �
ĀRΩR)T ∈ CL×Jh

S , and Cv = (B̄h � ĀTΩT � ĀRΩR)T ∈
CL×Jv

S to have a unique right Moore-Penrose pseudo-inverse,

i.e., full row-rank, where JR = KTKS, JT = KRKS, Jh
S =

KRKTK
v
S , and Jv

S = KRKTK
h
S . This requires that JR ≥ LR,

JT ≥ LT, Jh
S ≥ L, and Jv

S ≥ L, where L = LR · LT. Since
LR and LT are practically very small (i.e., max{LR, LT} ≈ 3
[18]), the above conditions are easily satisfied. For example,
assuming that the TX is in line-of-sight with the RIS, we have
that LT = 1, as it has been assumed in [8].

Complexity analysis: Assuming that the complexity of cal-
culating the Moore-Penrose pseudo-inverse of a n×m matrix
is on the order of O(min{n,m}3). Then, the complexity of
the ALS steps in Alg. 1 is on the order of O

(
Imax(L3

R +
L3

T +2L3)
)
. Moreover, assuming that the NOMP method from

[25] is used in step 10, then the complexity of recovering the
channel parameters is on the order of L̄(LR + LT + 2L))

)
,

where L̄ denotes the number of grid points used by NOMP
in the sparse-coding stage. In comparison, the complexity
of TRICE-CS [13] is on the order of O(L(KRKT(L̄2 +
L + L2)) + 2L3 + LKSL̄

2) and the Joint-CS method [14]
is on the order of O(L(NRKTKS(L̄4 + L + L2)) + L3).
Clearly, TenRICE has a much lower complexity compared
to both methods. The main reason is that TRICE and Joint-
CS require multidimensional (xD) dictionaries (2D for TRICE
and 4D for Joint-CS) compared to the 1D dictionary required
by TenRICE. Moreover, in contrast to the TenRICE, TRICE
and Joint-CS methods require a dictionary orthogonalization
operation during the parameter recovery [30], which is very
complex especially with large dictionaries.

IV. PHASE 2: THE PROPOSED RIS REFLECTION DESIGN
METHOD (FROMAX)

In this section, given the estimated channels ĤR and ĤT,
we design the TX and the RX beamforming matrices and the
RIS reflection coefficient vector as a solution to the following
SE maximization problem:

max
Q,P ,ω

log2 det(INs +R−1QHĤePP
HĤH

e Q)

s.t. ‖P ‖2F ≤ Pmax and
∣∣[ω][m]

∣∣ = 1/
√
MS,∀m,

(20)

where Ĥe
def
= ĤRdiag{ω}ĤT and Pmax is the transmit power

at the TX. Note that (20) is non-convex, since the objective
function is non-concave over ω and the constant modulus
constraints are non-convex functions. Moreover, P , Q, and ω
depend on each other, which makes (20) a difficult problem
to solve. In the following, we propose a non-iterative solution
to (20), which has a comparable performance to that of [2],
but with a much lower complexity.

Initially, it is not hard to see that for any given ω, (20)
reduces to a single-user multi-stream MIMO communication
system. Let Ĥe = U

Ĥe
Σ

Ĥe
V H
Ĥe

be the singular value de-

composition (SVD) of Ĥe. Then, the optimal fully-digital3

3Here, we note that in mmWave-based communications, hybrid analog-
digital (HAD) beamforming architectures [31]–[34] are generally assumed to
reduce the power consumption. However, since in this section we focus on
the RIS reflection coefficient design, we assume fully-digital beamforming
architectures at the TX and the RX, to simplify the exposition.



solutions to Q and P , for fixed ω, are given as

Q = Us and P = Vsdiag{√p1, . . . ,
√
pNs}, (21)

where Us = [U
Ĥe

][:,1:Ns], Vs = [V
Ĥe

][:,1:Ns], and {pi}Ns
i=1

are the power allocations found using the waterfilling method
[35] such that

∑Ns
i=1 pi = Pmax. Consequently, QHQ = INs ,

Σs = UH
s ĤRdiag{ω}ĤTVs = diag{α1, . . . , αNs}, and the

SE expression in (4) simplifies to

SE =

Ns∑
i=1

log2(1 +
1

σ2
α2
i pi), (22)

where αi is the ith dominant singular value in Σ
Ĥe

. In the
following, we turn our attention to the RIS reflection coeffi-
cient design and propose an efficient non-iterative solution to
find ω based on a FroMax design strategy.

FroMax-1: As a baseline method, the RIS reflection vector
is found as a solution to

ω = arg max
ω

‖ĤRdiag{ω}ĤT‖2F = arg max
ω

‖Kω‖22

s.t.
∣∣[ω][m]

∣∣ = 1/
√
MS,∀m,

(23)

where K def
= ĤT

T � ĤR is obtained by applying Property 1.
Note that (23) is non-convex due to the constant modulus
constraints. Therefore, we first seek a solution to the following
relaxed and convex version of (23) given as

ω̊ = arg max
ω̊

‖Kω̊‖22, s.t. ‖ω̊‖2 = 1. (24)

Let K = UKΣKV
H
K be the SVD of K. Then, the

optimal solution to (24) is given as ω̊ = [VK ][:,1]. To satisfy
the constant modulus constraints of (23), we use a simple
projection function, where the mth entry of ω is given as

[ωFroMax-1][m] =
1√
MS
·
(

[ω̊][m]/
∣∣[ω̊][m]

∣∣). (25)

However, using computer simulations, we have observed
that FroMax-1 mainly maximizes the dominant singular value
of Ĥe, which makes it limited to single-stream scenarios.

FroMax-2: From (22), we can clearly see that ω should be
designed so that the singular values αi are maximized. Thus,
we propose to modify (23) as

ω = arg max
ω

‖Σs‖2F = arg max
ω

‖Dω‖22

s.t.
∣∣[ω][m]

∣∣ = 1/
√
MS,∀m,

(26)

where D, due to the diagonal structure of Σs, is given as

D
def
=


[Vs]

T
[:,1]Ĥ

T
T � [Us]

H
[:,1]ĤR

...

[Vs]
T
[:,Ns]

ĤT
T � [Us]

H
[:,Ns]

ĤR

 ∈ CNs×MS . (27)

Similarly to (24), (26) can be relaxed to a convex form as

ω̄ = arg max
ω̄

‖Dω̄‖22, s.t. ‖ω̄‖2 = 1. (28)

However, differently from (24), we propose a solution that
achieves a higher SE, where ω̄ is obtained by taking the

Algorithm 2 FroMax-based methods for RIS reflection design.

1: Input: ĤT, ĤR, and Pmax

2: if FroMax-1 based method then
3: Construct K as in (23) and get ω̊ from VK

4: Obtain ω? ← ωFroMax-1 using (25)
5: else if FroMax-2 based method then
6: Compute Us = [U

ĤR
][:,1:Ns] and Vs = [V

ĤT
][:,1:Ns]

7: Construct D as in (27) and get ω̄ from VD

8: Obtain ω? ← ωFroMax-2 using (29)
9: end if

10: For given ω?, obtain Q and P as in (21)

contributions of the dominant Ns right singular vectors of D.
Specifically, let D = UDΣDV

H
D be the SVD of D. Then, the

proposed solution is given as ω̄ =
[VD ][:,1]+···+[VD ][:,Ns]

‖[VD ][:,1]+···+[VD ][:,Ns]‖2
.

Using ω̄, the RIS reflection vector ω is obtained as

[ωFroMax-2][m] =
1√
MS
·
(

[ω̄][m]/
∣∣[ω̄][m]

∣∣),∀m. (29)

Remark 1: From (27), it is clear that the unitary matrices
Us and Vs are required to construct D. However, since
Us and Vs depend on ω, an iterative two-step algorithm is
required, where we update Us and Vs in one step and ω
in the other step. However, we found that if Us and Vs
are appropriately initialized, then one iteration of such an
algorithm is sufficient to have a comparable SE performance to
that obtained by the iterative method of [2]. Here, we propose
to initialize Us and Vs as follows. Let ĤR = U

ĤR
Σ

ĤR
V H
ĤR

and ĤT = U
ĤT

Σ
ĤT
V H
ĤT

be the SVD of ĤR and ĤT,
respectively. Then, we assume that Us and Vs in (26) are
given as Us = [U

ĤR
][:,1:Ns] and Vs = [V

ĤT
][:,1:Ns].

In summary, the proposed beamforming and RIS reflection
coefficient design method is summarized in Algorithm 2.

Complexity analysis: Let the complexity of calculating the
SVD4 of a n × m matrix on the order of O(nm2). Then,
the complexity of Algorithm 2 steps 3, 6, 7, and 10 is on
the order of O(MRMTM

2
S ), O(MRM

2
S +MSM

2
T ), O(NsM

2
S ),

and O(MRM
2
T ) respectively. Accordingly, the complexity of

FroMax-1 is on the order of O
(
MRMTM

2
S +MRM

2
T

)
and of

FroMax-2 is on the order of O
(
MRM

2
S +MSM

2
T +NsM

2
S +

MRM
2
T

)
. In comparison, the complexity of the alternation

maximization (AltMax) method of [2] is on the order of
O
(
Jmax

(
MS(3M3

R +2M2
RMT +M2

T )+MRM
2
T

))
, where Jmax

is the maximum number of iterations.

V. NUMERICAL RESULTS

In this section, we show simulation results to evaluate the ef-
fectiveness of the proposed methods. In all simulation results,
we assume that MT = 64,MR = 16, and M h

S = M v
S = 16,

i.e., the RIS has MS = 256 reflecting elements.

4Note that the complexity of calculating the SVD of n × m matrix can
be reduced by using the Power Iteration method. However, to simplify the
analysis, we assume that the SVD is calculated using the bidiagonalization
and QR algorithm with a complexity on the order of O(nm2).
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Fig. 3. MSE vs. SNR [LT = LR = 2].
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Phase 1 - CE: In the CE phase, we assume that the training
matrices W , F , Φh, and Φv in (2) are randomly generated
such that the (i, j)th entry of W is given as [W ][i,j] =

1√
MR

ejϕi,j , ϕi,j ∈ [0, 2π] , where F , Φh, and Φv are similarly
generated. We show results in terms of the mean-squared
error (MSE) of ψR defined as MSE(ψR) = E

{
‖ψR − ψ̂R‖22

}
,

where MSE(ψT), MSE(µh), and MSE(µv) are similarly de-
fined, and the normalized MSE (NMSE) of the cascaded
channel is defined as NMSE = E

{
‖Hc − Ĥc‖2F

}
/E
{
‖Hc‖2F

}
.

We define the signal-to-noise ratio (SNR) as SNR =
E
{
‖Y −Z‖2F

}
/E
{
‖Z‖2F

}
. For comparison, we include sim-

ulation results of the two-stage TRICE-CS framework [13],
where the estimation is performed using the classical OMP
technique [30] assuming a 2D dictionary of 128 × 128 grid
points in both stages.

Figs. 3 and 4 show the MSE versus the SNR and the NMSE
versus the SNR results, respectively, averaged over 1,000
channel realizations. From Fig. 3, we can see that TenRICE
provides more accurate parameter estimates, compared to
TRICE-CS, approaching the CRB5 as the SNR increases. The

5The CRB derivation to our 4-way CP tensor is a straightforward extension
of the CRB derivation in [26] for a 3-way CP tensor. Therefore, it has been
omitted here due to brevity.
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Fig. 6. Dominant singular values of a perfect effective channel He =
HRdiag{ω}HT for one channel realization [LT = LR = 2].

main reason is that TenRICE not only exploits the low-rank
nature of mmWave channels, but also the tensor structure
of the received signals when estimating the channel parame-
ters. Moreover, TenRICE employs a high-resolution parameter
recovery method in NOMP, while TRICE-CS suffers from
quantization errors, due to the on-grid assumption. These
advantages lead to more accurate channel estimates, as can
be seen from Fig. 4, with less training overhead and lower
complexity.

Phase 2 - DT: Next, we show simulation results to illustrate
the efficiency of the proposed RIS reflection design method,
FroMax. For comparison, we include results when the RIS
reflection coefficient vector ω is designed according to the
alternating maximization method in [2], termed AltMax, and
Random, where the entries of ω are randomly generated such
that the mth entry is given as [ω][m] = 1√

MS
ejωm , ωm ∈

[0, 2π]. We define the SNR as SNR = Pmax/σ
2.

Fig. 5 shows SE versus SNR results, averaged over 1,000
channel realizations. Clearly, we can see that FroMax-1 has
an equal performance to that of FroMax-2 and AltMax when
Ns = 1. However, FroMax-1 experiences a performance loss
when Ns = 2, since it mainly maximizes the dominant singular
value, as it can be seen from Fig. 6. Differently, the AltMax
and FroMax-2 methods optimize the dominant Ns singular
values of the effective channel such that it maximizes the
system SE. Note that, in the low SNR regime, i.e., below
5 dB, all the simulated methods experience a very low SE
performance, due to the CE errors. Therefore, a preprocessing
denoising step will be required to improve the CE accuracy,
which we leave for future work.



VI. CONCLUSIONS

In this work, we have considered the channel estimation and
the RIS reflection coefficient design problems in point-to-point
RIS-aided mmWave MIMO communication systems. We have
proposed a CP tensor-based channel estimation method termed
TenRICE, which estimates the transmitter to RIS and the RIS
to receiver channels separately, up to a trivial scaling factor.
We have shown that by jointly exploiting the low-rank nature
of mmWave channels and the tensor structure of the received
signals, not only the estimation accuracy can be improved, but
also the training overhead and the complexity can be reduced.
The proposed non-iterative RIS reflection design method based
on a Frobenius-norm maximization (FroMax) design strategy
has a comparable performance to a benchmark method but
with significantly lower complexity.
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