
ar
X

iv
:2

20
6.

03
46

8v
1 

 [
cs

.I
T

] 
 7

 J
un

 2
02

2

Rate Distortion Tradeoff in Private Read Update

Write in Federated Submodel Learning

Sajani Vithana Sennur Ulukus
Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742

spallego@umd.edu ulukus@umd.edu

Abstract—We investigate the rate distortion tradeoff in private
read update write (PRUW) in relation to federated submodel
learning (FSL). In FSL a machine learning (ML) model is divided
into multiple submodels based on different types of data used for
training. Each user only downloads and updates the submodel
relevant to its local data. The process of downloading and
updating the required submodel while guaranteeing privacy of
the submodel index and the values of updates is known as PRUW.
In this work, we study how the communication cost of PRUW
can be reduced when a pre-determined amount of distortion is
allowed in the reading (download) and writing (upload) phases.
We characterize the rate distortion tradeoff in PRUW along
with a scheme that achieves the lowest communication cost while
working under a given distortion budget.

I. INTRODUCTION

The increased use of machine learning (ML) in a wide

variety of applications requires a large amount of data owned

by various parties in order to train the ML models. This gives

rise to processing power limitations in central servers and

privacy concerns of users whose data is being used in model

training. Federated learning (FL) [1]–[4] was introduced as a

solution to these issues, where each user trains a local model

using its local data and shares only the gradients (updates),

and not the data itself. This solves user privacy issues to a cer-

tain extent, and decentralizes processing power requirements.

However, the communication cost of FL is significantly high,

since millions of users iteratively communicate the updates and

model parameters with the central server. Different methods

of reducing the communication cost have been proposed in the

literature [5]–[10]. One of them is federated submodel learning

(FSL) where a federated learning (FL) model is divided into

multiple submodels based on different types of data used

to train the central model. In FSL, a given user downloads

(reads) an arbitrary submodel and writes back to the same

submodel. This reduces the communication cost and makes

the learning process more efficient by eliminating unnecessary

downloads/uploads and processing at the users end, since the

users only update the set of parameters that can be updated by

its local data. However, since the submodels are directly linked

to different types of data, the index of the submodel updated

by a given user leaks users privacy. Moreover, the updates

sent in the writing phase also leak information about users

local data according to [11]–[14]. Therefore, the updating

submodel index and the values of the updates in FSL need

to be kept private from the databases in order to guarantee

user privacy. This is achieved by private read update write

(PRUW) [15]–[21], where a user privately downloads (reads)

the required submodel and uploads (writes) the corresponding

updates while guaranteeing information-theoretic privacy of

the submodel index and the values of updates.

The lowest known reading cost CR and writing cost CW

achieved by a PRUW scheme is C∗
R = C∗

W = 2
1− 2

N

, where

N ≥ 3 is the number of non-colluding databases in which

the model is stored [18]. This can be reduced further by

introducing a given amount of distortion to the downloads

and uploads. In FL/FSL, a given amount of distortion, based

on the number of users and the nature of the model can be

allowed without harming the performance of the model [5]–

[7], [22]. Note also that the existing methods of reducing

the communication cost in FL such as sparsification and

quantization already result in distorted uploads and downloads.

In this work, we introduce a PRUW scheme for FSL

that achieves reduced reading and writing costs, compared

to C∗
R and C∗

W , by introducing a given amount of distortion

independently specified for the reading and writing phases.

One practical instance of this setting is gradient sparsification

in learning with different sparsification rates in the uplink

and in the downlink. Typically the sparsification rate in the

uplink is lower than that of the downlink due to the limited

communication capabilities of users compared to servers. In

this case, a pre-determined amount of updates are allowed

to be zero in the uplink, and a pre-determined amount of

parameters are set to zero in the downlink, resulting in some

amount of distortion while achieving a lower communication

cost. The proposed scheme guarantees information-theoretic

privacy of the updating submodel index and the values of the

updates. The scheme also does not reveal the indices of the

distorted parameters/updates. The distortion in reading and

writing phases is defined based on the Hamming distance

between the actual and downloaded/uploaded data.

The main contributions of this work include, 1) characteri-

zation of the rate distortion tradeoff in PRUW, 2) introduction

of a PRUW scheme that achieves the lowest known commu-

nication cost for a given amount of distortion allowed.

II. PROBLEM FORMULATION

Consider a PRUW setting with N non-colluding databases

storing M independent submodels {W1, . . . ,WM} of size L
each. At each time instance t, a user updates an arbitrary

http://arxiv.org/abs/2206.03468v1


submodel without revealing its index or the values of updates.

Each submodel consists of symbols from a finite field Fq.

Each user downloads the required submodel privately in the

reading phase, and uploads the updates privately in the writing

phase. Pre-determined amounts of distortion are allowed in the

reading and writing phases given by D̃r and D̃w, respectively,

in order to reduce the communication cost.

Distortion in the reading phase: A distortion of no more

than D̃r is allowed in the reading phase, i.e., Dr ≤ D̃r, with

Dr =
1

L

L
∑

i=1

1Wθ,i 6=Ŵθ,i
(1)

where Wθ,i, Ŵθ,i are the actual and downloaded versions of

the ith bit of the required submodel Wθ .

Distortion in the writing phase: A distortion of no more

than D̃w is allowed in the writing phase, i.e., Dw ≤ D̃w, with

Dw =
1

L

L
∑

i=1

1∆θ,i 6=∆̂θ,i
(2)

where ∆θ,i and ∆̂θ,i are the actual and uploaded versions of

the ith bit of the update to the required submodel.

The goal of this work is to find a scheme that results in

the lowest total communication cost under given distortion

budgets in the reading and writing phases in the PRUW setting

considered. Note that the PRUW setting requires the user

required submodel index as well as the values of the updates

to be kept private from the databases.

Privacy of the submodel index: No information on the index

of the submodel being updated θ is allowed to leak to any of

the databases, i.e., for each n,

I(θ[t];Q[t]
n , U [t]

n |Q[1:t−1]
n , S[1:t−1]

n , U [1:t−1]
n ) = 0, (3)

where Q
[t]
n and U

[t]
n are the query and updates sent by the user

to database n at time t in the reading and writing phases and

S
[t]
n is the storage of database n at time t.
Privacy of the values of updates: No information on the

values of updates is allowed to leak to any of the databases,

i.e., for each q̃ ∈ Fq and i ∈ {1, . . . , L},

P (∆
[t]
θ,i = q̃|Q[1:t]

n , U [1:t]
n ) = P (∆ = q̃), (4)

for each database n, where ∆
[t]
θ,i is the update of the ith

parameter of submodel θ generated by a given user at time t.
P (∆ = q̃), q̃ ∈ Fq is the globally known apriori distribution

of any given parameter update given by,1

P (∆ = q̃) =

{

D̃w + 1−D̃w

q
, if q̃ = 0,

1−D̃w

q
, for each q̃ 6= 0.

(5)

Security of submodels: No information on the submodels is

allowed to leak to any of the databases, i.e., for each n,

I(W
[t]
1:M ;S[t]

n ) = 0, (6)

1The apriori distribution assumes a uniform distribution on the correctly
uploaded updates and zero valued distorted updates.

where W
[t]
k is the kth submodel at time t.

In the reading phase, users privately send queries to down-

load the required submodel and in the writing phase, users

privately send updates to be added to the existing submodels,

i.e., W
[t]
θ = W

[t−1]
θ + ∆

[t]
θ , while ensuring the distortions

in the two phases are within the allowed budgets (D̃r, D̃w).

The reading, writing and total costs are defined as CR = D
L

,

CW = U
L

and CT = CR + CW , respectively, where D is the

total number of bits downloaded, U is the total number of bits

uploaded, and L is the size of a submodel.

III. MAIN RESULT

Theorem 1 For a PRUW setting with N non-colluding

databases containing M independent submodels, where D̃r

and D̃w amounts of distortion are allowed in the reading and

writing phases, respectively, the following reading and writing

costs are achievable,

(CR, CW ) =

(

2

1− 2
N

(1 − D̃r),
2

1− 2
N

(1− D̃w)

)

. (7)

Remark 1 The total communication cost decreases linearly

with the increasing amounts of distortion allowed in the

reading and writing phases.

IV. OVERVIEW OF THE PROPOSED SCHEME

The proposed scheme is an extension of the scheme pre-

sented in [18] and [20]. The scheme in [18] with non-colluding

databases considers ⌊N
2 ⌋ − 1 bits of the required submodel at

a time (called subpacketization) and reads from and writes to

⌊N
2 ⌋ − 1 bits using a single bit in each of the reading and

writing phases with no error. In this paper, we consider larger

subpackets with more bits, i.e., ℓ ≥ ⌊N
2 ⌋ − 1, and correctly

read from/write to only ⌊N
2 ⌋−1 selected bits in each subpacket

using single bits in the two phases. The rest of the ℓ−⌊N
2 ⌋+1

bits in each subpacket account for the distortion in each phase,

which is maintained under the allowed distortion budgets. The

privacy of the updating submodel index as well as the values of

updates are preserved in this scheme, while also not revealing

the indices of the distorted uploads/downloads.

The distortion in the proposed scheme is a result of reading

and writing zeros (nothing) at a predetermined number of

selected parameters in each subpacket based on distortion

budget. Thus, the proposed scheme can also be viewed as

an efficient private FSL scheme that performs sparsification.

[21] presents a private FSL scheme with sparsification, where

sparsification is performed across subpackets, while this paper

performs sparsification within each subpacket.

The proposed scheme consists of the following three tasks:

1) Calculating the optimum reading and writing subpacketiza-

tions ℓ∗r and ℓ∗w based on the given distortion budgets D̃r and

D̃w. 2) Specifying the scheme, i.e., storage, reading/writing

queries and single bit updates, for given values of ℓ∗r and ℓ∗w.

3) In cases where the subpacketizations calculated in task 1

are non-integers, the model is divided into two sections and

two different integer-valued subpacketizations are assigned to

the two sections in such a way that the resulting distortion



is within the given budgets. Then, task 2 is independently

performed at each of the two sections.

For task 2, note that the scheme in [18] allocates distinct

constants fi, i ∈ {1, . . . , ℓ} to the ith bit of each subpacket in

all submodels (see (8)) in the storage, which makes it possible

to combine all parameters/updates in a given subpacket to a

single bit in a way that the parameters/updates can be correctly

and privately decomposed. However, in this scheme, since

there may be two subpacketizations in the two phases, we

need to ensure that each subpacket in both phases consists

of bits with distinct associated fis. In order to do this, we

associate distinct fis with each consecutive max{ℓ∗r, ℓ
∗
w} bits

in a cyclic manner so that each subpacket in both phases have

distinct fis. The scheme is explained in detail next.

V. PROPOSED SCHEME

The scheme is defined on a single subpacket in each of the

two phases, and is applied repeatedly on all subpackets. Since

the number of bits correctly downloaded/updated remains

constant at ⌊N
2 ⌋−1 for a given N , the distortion in a subpacket

of size ℓ is
ℓ−⌊N

2 ⌋+1

ℓ
. Note that this agrees with the definitions

in (1) and (2) since the same distortion is resulted by all

subpackets. Therefore, the optimum subpacketizations in the

two phases, ℓ∗r and ℓ∗w, are functions of D̃r, D̃w and N ,

and will be calculated in Section V-C. First, we describe the

general scheme for any given ℓ∗r and ℓ∗w.

Storage: The storage of y = max{ℓ∗r , ℓ
∗
w} bits of all

submodels in database n, n ∈ {1, . . . , N} is given by,

Sn =



























1
f1−αn







W1,1

...

WM,1






+
∑⌊N

2 ⌋−1
j=0 αj

nI1,j

...

1
fy−αn







W1,y

...

WM,y






+
∑⌊N

2 ⌋−1
j=0 αj

nIy,j



























, (8)

where Wi,j is the jth bit of submodel i and the Is are random

noise vectors of size M × 1. The scheme is studied under two

cases, 1) y = ℓ∗w ≥ ℓ∗r, and 2) y = ℓ∗r > ℓ∗w.

A. Case 1: y = ℓ∗w ≥ ℓ∗r

Reading phase: In this case, the user considers subpackets

of size ℓ∗r and only downloads ⌊N
2 ⌋−1 bits of each subpacket.

Note that each consecutive y = ℓ∗w bits in storage are

associated with distinct fis, which makes each consecutive set

of ℓ∗r (reading subpacket size) fis distinct as well. However,

not all reading subpackets have the same fi allocated to their

ith bit due to the definition of the storage structure (cyclic

allocation of ℓ∗w distinct values of fi). Therefore, we cannot

define the reading query on a single subpacket and use it

repeatedly, since the reading queries depend on fis. Thus, we

define γr =
lcm{ℓ∗r ,ℓ

∗
w}

ℓ∗r
queries to read any γr consecutive

subpackets. Note that the super subpacket which consists of

any γr consecutive reading subpackets have the same set of

fis that occur in a cyclic manner in the storage. Therefore,

the γr queries can be defined once on a super subpacket, and

can be used repeatedly throughout the process. An example

setting is given in Fig. 1, where the reading and writing

subpacketizations are given by ℓ∗r = 6, ℓ∗w = 8 and the

storage structure repeats at every y = 8 bits. Each square in

Figure 1 corresponds to a single bit of all submodels associated

with the corresponding value of fi. It shows three consecutive

storage/writing subpackets on the top row. The same set of

bits are viewed as γr = lcm{6,8}
6 = 4 reading subpackets, each

of size ℓ∗r = 6 in the bottom row. Note that each reading

subpacket contains distinct fis, which are not the same across

the four subpackets. However, it is clear that the structure of

the super subpacket which contains the four regular subpackets

keeps repeating with the same set of fis in order. The reading

phase has the following steps.

The user sends the following queries to database n, n ∈
{1, . . . , N} to obtain each of the arbitrary sets of ⌊N

2 ⌋−1 bits

of each subpacket in each set of γr =
lcm{ℓ∗r ,ℓ

∗
w}

ℓ∗r
consecutive,

non-overlapping subpackets. Let J
[s]
r be the set of ⌊N

2 ⌋ − 1
parameter indices that are read correctly from subpacket s for

s ∈ {1, . . . , γr}. The query to download subpacket s is,

Qn(s) =









eM (θ)1
{1∈J

[s]
r }

+(fg((s−1)ℓ∗r+1) − αn)Z̃s,1

...

eM (θ)1
{ℓ∗r∈J

[s]
r }

+(fg(sℓ∗r) − αn)Z̃s,ℓ∗r









, (9)

and the corresponding subpacket s is,

S[s]
n =































1
fg((s−1)ℓ∗r+1)−αn









W
[s]
1,1
...

W
[s]
M,ℓ∗r









+
∑⌊N

2 ⌋−1
j=0 αj

nI
[s]
1,j

...

1
fg(sℓ∗r )−αn









W
[s]
1,ℓ∗r
...

W
[s]
M,ℓ∗r









+
∑⌊N

2 ⌋−1
j=0 αj

nI
[s]
ℓ∗r ,j































, (10)

where eM (θ) is the all zeros vector of size M × 1 with a 1 at

the θth position, Z̃s are random noise vectors of size M × 1
and the function g(·) is defined as,

g(x) =

{

x mod y, if x mod y 6= 0

y, if x mod y = 0
(11)

Note that Sn = [S
[1]
n , . . . , S

[γr]
n ]T is the concatenation of

lcm{ℓ∗r ,ℓ
∗
w}

y
blocks of the form (8). The γr answers received by

database n, n ∈ {1, . . . , N}, are given by,

An(s) =(S[s]
n )TQn(s), s ∈ {1, . . . , γr} (12)

=

ℓ∗r
∑

i=1

(

1

fg((s−1)ℓ∗r+i) − αn

W
[s]
θ,i

)

1
{i∈J

[s]
r }

+ Pαn
(⌊
N

2
⌋). (13)



writing

reading

y = ℓ
∗

w
= 8

writing subpacketization

ℓ
∗

r
= 6

reading subpacketization

β = 24

f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8

f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8

distinct fis in each subpacket

γw = 4

Fig. 1. An example setting for case 1.

Since |J
[s]
r | = ⌊N

2 ⌋− 1 for each s ∈ {1, . . . , γr}, the required

⌊N
2 ⌋ − 1 bits of each of the γr subpackets can be correctly

downloaded from the N answers above.

Writing phase: Since the subpacketization in the writing

phase is y, which is the same as the period of the cyclic

structure of the storage in (8), a single writing query, specify-

ing the submodel index and the correctly updated bit indices,

defined on a single subpacket suffices to repeatedly update

all subpackets, as the fis in all subpackets are identical. The

writing query sent to database n, n ∈ {1, . . . , N}, is,

Q̃n =









1
f1−αn

eM (θ)1{1∈Jw} + Ẑ1

...
1

fy−αn
eM (θ)1{y∈Jw} + Ẑy









, (14)

where Jw is the set of indices of the ⌊N
2 ⌋ − 1 parameters of

each subpacket, that are updated correctly and Ẑs are random

noise vectors of size M × 1. Since Q̃n is sent only once,

the same set of Jw indices will be correctly updated in all

subpackets. The user then sends a single bit combined update

for each subpacket of the form (8) given by,

Un =
∑

i∈Jw

∆̃θ,i

∏

j∈Jw,j 6=i

(fj − αn) +
∏

j∈Jw

(fj − αn)z, (15)

where ∆̃θ,i =
∆θ,i∏

j∈Jw,j 6=i(fj−fi)
and z is a random noise bit.

Each database then calculates the incremental update as,

Ũn = Un × Q̃n (16)

=









∆θ,1

f1−αn
eM (θ)1{1∈Jw} + Pαn

(⌊N
2 ⌋ − 1)

...
∆θ,y

fy−αn
eM (θ)1{y∈Jw} + Pαn

(⌊N
2 ⌋ − 1)









, (17)

which can be directly added to the existing storage in (8) to

obtain the updated model. The reading and writing costs of

case 1 are given by,

C
[1]
R =

γr ×N

γr × ℓ∗r
=

N

ℓ∗r
, C

[1]
W =

N

ℓ∗w
. (18)

B. Case 2: y = ℓ∗r ≥ ℓ∗w

This case is unlikely to occur in practice in relation to

sparsification, since a higher subpacketization implies higher

allowed distortion, which essentially means a lower sparsifica-

tion rate in the downlink compared to the uplink. Typically, it

is the server that has a higher communication capacity which

makes the downlink sparsification rate larger than that of the

uplink, which is contradicting to this case. Due to smaller

liklelihood of occurring in practice, space limitations here,

and similarities to case 1, we skip the details of the scheme

corresponding to case 2. In summary, the storage is the same as

(8) with y = ℓ∗r , and the reading phase is similar to [18] with

identity functions specifying the non-zero parameter indices.

The writing phase considers super subpackets similar to the

reading phase in case 1 containing γw =
lcm{ℓ∗r ,ℓ

∗
w}

ℓ∗w
subpack-

ets. The writing queries for each of the s, s ∈ {1, . . . , γw}
subpackets, which are sent only once, is,

Q̃n(s) =









1
fg((s−1)ℓ∗w+1)−αn

eM (θ)1
{1∈J

[s]
w }

+ Ẑs,1

...
1

fg(sℓ∗w)−αn
eM (θ)1

{ℓ∗w∈J
[s]
w }

+ Ẑs,ℓ∗w









, (19)

with J
[s]
w being the indices of the correctly updated parameters

of subpacket s. The combined update of each subpacket is,

Un(s) =
∑

i∈J
[s]
w

∆̃
[s]
θ,i

∏

j∈J
[s]
w ,j 6=i

(fg((s−1)ℓ∗w+j) − αn)

+
∏

j∈J
[s]
w

(fg((s−1)ℓ∗w+j) − αn)z, (20)

and the incremental update is calculated by Ũn(s) = Un(s)×
Q̃n(s), for each s ∈ {1, . . . , γw}, which is directly added to

the corresponding γw subpackets in storage. The reading and

writing costs for case 2 are given by,

C
[2]
R =

N

ℓ∗r
, C

[2]
W =

γw ×N

γw × ℓ∗w
=

N

ℓ∗w
. (21)



Remark 2 Note that the cost of sending Qn and Q̃n is not

considered in the above writing cost since they are sent only

once to each database in the entire PRUW process (i.e., not

per subpacket) and the combined cost of Qn and Q̃n given by
M(ℓ∗r+lcm{ℓ∗r ,ℓ

∗
w})

L
is negligible since L is very large.

C. Calculation of Optimum ℓ∗r and ℓ∗w for Given (D̃r, D̃w)

In order to minimize the total communication cost, the user

correctly reads from and writes to only ⌊N
2 ⌋−1 out of each of

the ℓ∗r and ℓ∗w bits in reading and writing phases, respectively.

This results in an error that needs to be kept within the given

distortion budgets of D̃r and D̃w. Note from (18) and (21)

that the reading and writing costs follow a symmetric pattern.

Therefore, the minimization of CT = CR + CW can be

considered as two identical and independent minimizations of

CR and CW , since ℓ∗r and ℓ∗w only depend on D̃r and D̃w,

which are independent. Therefore, due to symmetry, we drop

the subscripts of ℓ and D in the following steps, i.e., we use

a generic ℓ in place of ℓ∗r and ℓ∗w, and similarly a generic D̃
in place of D̃r and D̃w.

For a subpacketization ℓ = ⌊N
2 ⌋−1+i, for some i, the read-

ing/writing cost and the distortion are N

⌊N
2 ⌋−1+i

and i

⌊N
2 ⌋−1+i

,

respectively. Since the reading/writing cost monotonically de-

creases with i, and i needs to satisfy i ≤ D̃

1−D̃

(

⌊N
2 ⌋ − 1

)

,

the optimum i∗ which gives ℓ∗ is thus i∗ = D̃

1−D̃

(

⌊N
2 ⌋ − 1

)

,

which achieves the minimum costs in (7). However, in cases

where i∗ /∈ Z
+, we divide all submodels into two sec-

tions, assign two separate subpacketizations and apply the

scheme on the two sections independently, which achieves

the minimum costs in (7), after using an optimum ratio for

the subsection lengths. To find the optimum ratio, we solve

the following optimization problem. Let λi be the fraction

of each submodel with subpacketization ℓi = ⌊N
2 ⌋ − 1 + i

for some i = η1, η2 ∈ Z
+. Then, based on the average cost

and distortion expressions, the minimum reading/writing cost

under a given distortion budget is obtained by solving,

min
∑

i=η1,η2

λi

N

⌊N
2 ⌋ − 1 + i

s.t.
∑

i=η1,η2

λi

i

⌊N
2 ⌋ − 1 + i

≤ D̃

λη1 + λη2 = 1

λη1 , λη2 ≥ 0. (22)

This problem has multiple solutions that give the same min-

imum total communication cost. As one of the solutions,

consider η1 = 0 and η2 = η, where η = ⌈ D̃

1−D̃
(⌊N

2 ⌋ − 1)⌉,

λ0 = 1−
D̃

η

(

⌊
N

2
⌋ − 1 + η

)

, (23)

λη =
D̃

η

(

⌊
N

2
⌋ − 1 + η

)

. (24)

This gives a minimum cost of Cmin = 2
1−N

2

(1 − D̃), which

matches the terms in (7), with D̃ = D̃r and D̃ = D̃w.

Precisely, for a setting with given N , D̃r and D̃w, the

reading and writing costs given in (7) are achievable with

corresponding subpacketizations given by,

ℓ∗r=







⌊N
2 ⌋−1, for λ

[r]
0 of submodel,

⌊N
2 ⌋−1+⌈

D̃r(⌊N
2 ⌋−1)

1−D̃r
⌉, for 1−λ

[r]
0 of submodel,

(25)

and

ℓ∗w=







⌊N
2 ⌋−1, for λ

[w]
0 of submodel,

⌊N
2 ⌋−1+⌈

D̃w(⌊N
2 ⌋−1)

1−D̃w
⌉, for 1−λ

[w]
0 of submodel,

(26)

where λ
[r]
0 , λ

[w]
0 are λ0 in (23) with D̃ replaced by D̃r, D̃w.

REFERENCES

[1] H. B. McMahan, E. Moore, et al. Communication efficient learning of
deep networks from decentralized data. AISTATS, April 2017.

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning:
Concept and applications. ACM Trans. on Intelligent Systems and

Technology, 10(2):1–19, January 2019.
[3] T. Li, A. K. Sahu, A. S. Talwalkar, and V. Smith. Federated learning:

Challenges, methods, and future directions. IEEE Signal Processing

Magazine, 37:50–60, May 2020.
[4] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, et al.

Advances and open problems in federated learning. Foundations and

Trends in Machine Learning, 14(1-2):1–210, June 2021.
[5] J. Wangni, J. Wang, et al. Gradient sparsification for communication-

efficient distributed optimization. In NeurIPS, December 2018.
[6] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu. A convergence analysis

of distributed SGD with communication-efficient gradient sparsification.
In IJCAI, August 2019.

[7] S. Li, Q. Qi, et al. GGS: General gradient sparsification for federated
learning in edge computing. In IEEE ICC, June 2020.

[8] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani.
Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization. In AISTATS, August 2020.

[9] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen.
Billion-scale federated learning on mobile clients: A submodel design
with tunable privacy. In MobiCom, April 2020.

[10] S. Ulukus, S. Avestimehr, M. Gastpar, S. A. Jafar, R. Tandon, and
C. Tian. Private retrieval, computing and learning: Recent progress and
future challenges. IEEE JSAC, 40(3):729–748, March 2022.

[11] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller. Inverting
gradients–how easy is it to break privacy in federated learning? In
NeurIPS, December 2020.

[12] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning. In IEEE SSP, May 2019.

[13] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In IEEE SSP, May
2019.

[14] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In NeurIPS,
December 2019.

[15] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen. Se-
cure federated submodel learning. Available online at arXiv:1911.02254.

[16] M. Kim and J. Lee. Information-theoretic privacy in federated submodel
learning. Available online at arXiv:2008.07656.

[17] Z. Jia and S. A. Jafar. X-secure T -private federated submodel learning.
In IEEE ICC, June 2021.

[18] S. Vithana and S. Ulukus. Efficient private federated submodel learning.
In IEEE ICC, May 2022.

[19] S. Vithana and S. Ulukus. Private read update write (PRUW) with
storage constrained databases. In IEEE ISIT, June 2022.

[20] Z. Jia and S. A. Jafar. X-secure T -private federated submodel learning
with elastic dropout resilience. Available online at arXiv:2010.01059.

[21] S. Vithana and S. Ulukus. Private federated submodel learning with
sparsification. In IEEE ITW, November 2022. [ArXiv:2205.15992].

[22] P Han, S. Wang, and K. Leung. Adaptive gradient sparsification for
efficient federated learning: An online learning approach. In IEEE

ICDCS, November 2020.


	I Introduction
	II Problem Formulation
	III Main Result
	IV Overview of the Proposed Scheme
	V Proposed Scheme
	V-A Case 1: y=w*r*
	V-B Case 2: y=r*w*
	V-C Calculation of Optimum r* and w* for Given (r, w)

	References

