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Abstract—Cell-free massive MIMO is a promising technology
for beyond-5G networks. Through the deployment of many
cooperating access points (AP), the technology can significantly
enhance user coverage and spectral efficiency compared to
traditional cellular systems. Since the APs are distributed over a
large area, the level of favorable propagation in cell-free massive
MIMO is less than the one in colocated massive MIMO. As a
result, the current linear processing schemes are not close to
the optimal ones when the number of AP antennas is not very
large. The aim of this paper is to develop nonlinear variational
Bayes (VB) methods for data detection in cell-free massive MIMO
systems. Contrary to existing work in the literature, which
only attained point estimates of the transmit data symbols, the
proposed methods aim to obtain the posterior distribution and
the Bayes estimate of the data symbols. We develop the VB
methods accordingly to the levels of cooperation among the APs.
Simulation results show significant performance advantages of
the developed VB methods over the linear processing techniques.

Index Terms—Cell-free, inference, massive MIMO, variational
Bayes.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO) is

considered as a promising technology for powering beyond-5G

networks. The key idea of a cell-free massive MIMO system

is to distributively deploy a large number of access points

(APs) coherently serving all users in the system. As illustrated

in Fig. 1, the APs in a cell-free system can be randomly

located all over the coverage area and are connected to one or

several central processing units (CPUs). Due to this distributed

deployment, any user is highly likely to be close to at least one

AP. A cell-free system can effectively resolve the poor cover-

age issue in cell-edge areas of conventional cellular systems

[1]–[3]. In addition, a cell-free system enables different levels

of cooperation among the APs with certain levels of joint

signal processing at the CPU, ranging from fully centralized

processing (Level 4), to partially distributed processing (Levels

3 and 2), and to a fully distributed processing (Level 1)

[4]. Joint signal processing at the system’s CPU allows a

cell-free system to better address the inter-cell interference,

which becomes more severe in cellular systems with small cell

deployments. Therefore, cell-free massive MIMO systems can

offer significant enhancements in user coverage and energy

CPU

Fronthaul

Access Point

Fig. 1: Diagram of a cell-free massive MIMO system with multiple distributed
APs connected to a CPU.

efficiency compared to traditional cellular systems [1], [4],

[5].

The majority of existing research on uplink cell-free massive

MIMO has focused on spectral and energy efficiency analysis

with linear signal processing methods, such as maximum-

ratio combining (MRC) [1], zero-forcing (ZF) [1], and linear

minimum mean-squared error (LMMSE) [4]. While such

approaches have relatively low complexity, linear methods

do not perform well in systems with low level of favorable

propagation (e.g. when the number of AP antennas is small or

is not much larger than the number of UEs, or the channels

are highly correlated). Nonlinear signal processing is thus a

promising alternative approach that can offer higher spectral

efficiency [4] or lower bit error rate (BER) [6]. The recent

work in [6] proposed a nonlinear optimization-based algorithm

for joint channel estimation and data detection in cell-free

massive MIMO. However, the approach in [6] can only provide

point estimates of the data symbols of interest. Different from

these papers, the focus of this paper is on devising efficient

algorithms to obtain Bayesian estimates of the data symbols.

Unfortunately, realizing the exact posterior distributions of

the data symbols is intractable, even in a conventional sin-

gle cell MIMO system. We, therefore, develop variational

Bayes (VB) inference methods for approximating intractable

posterior distributions of data symbols, which are then used

to detect the symbols. We investigate the VB methods for

joint data detection with fully centralized processing at the

http://arxiv.org/abs/2301.04260v1


CPU, as well as for distributed data detection at the APs. For

fully centralized processing, we assume that full knowledge of

the channel state information (CSI) is available at the CPU.

Likewise, for distributed processing at each AP, we assume

that CSI knowledge for the channel from the users to that

AP is locally available. Simulation results show significant

performance advantages of the developed VB methods over

the LMMSE processing techniques in [4].

Notation: Upper-case and lower-case boldface letters denote

matrices and column vectors, respectively. The transpose and

conjugate transpose are denoted by [·]T and [·]H , respectively.

CN (µ,Σ) represents a complex Gaussian random vector

with mean µ and covariance matrix Σ; CN (x;µ,Σ) =
(

1/
(

πK |Σ|
))

exp
(

− (x − µ)HΣ−1(x − µ)
)

denotes the

probability distribution function (PDF) of a length-K random

vector x ∼ CN (µ,Σ). Ep(x)[x] and Varp(x)[x] are the mean

and the variance of x with respect to its distribution p(x); 〈x〉
and σ2

x denote the mean and variance of x with respect to a

variational distribution q(x).

II. SYSTEM MODEL

We consider an uplink cell-free massive MIMO system with

L distributed APs, each equipped with N antennas, serving

K randomly located single-antenna users. It is assumed that

N ≤ K ≤ NL. Denote hiℓ ∈ CN as the uplink channel

from the i-th user and the ℓ-th AP and Hℓ = [h1ℓ, . . . ,hKℓ].
We assume a block Rayleigh fading scenario in which the

channel hiℓ remains constant for T time slots and is normally

distributed as CN (0, βiℓRiℓ). Here, βiℓ is the large-scale

fading coefficient and Riℓ is the normalized spatial correlation

matrix whose diagonal elements equal to one. Due to the

random user deployment, the large-scale fading coefficient βiℓ

is different from one user to another user, resulting in a non-

i.i.d. channel matrix Hℓ. We assume that the channel vectors

{hiℓ} are independent of each other for each user-AP pair.

Let xt = [x1,t, . . . , xK,t]
T be the transmitted symbol vector

at time slot t, in which the transmitted symbol xi,t from the i-
th user is drawn from a complex-valued discrete constellation

S such that E[xi,t] = 0 and E[|xi,t|2] = ρi. The prior

distribution of xi,t is thus given by

p(xi,t) =
∑

a∈S

paδ(xi,t − a), (1)

where pa corresponds to the known prior probability of the

constellation point a ∈ S. The received signal vector yℓ,t ∈
CN at the ℓ-th AP can be modeled as

yℓ,t =

K
∑

i=1

hiℓxi,t + nℓ,t = Hℓxt + nℓ,t, (2)

where nℓ,t is the noise vector whose elements are independent

and identically distributed (i.i.d.) as CN (0, N0). The interest

of this paper is to obtain an estimated x̂t of xt from multiple

observed signal vectors yℓ,t’s across the L distributed APs

with minimum mean squared detection error E
[

‖xt − x̂t‖2
]

.

III. FOUR LEVELS OF CELL-FREE MASSIVE MIMO

SIGNAL PROCESSING USING LMMSE FILTERING

To frame the discussion on the developed VB methods, we

revisit the 4 levels of signal processing in cell-free systems

using LMMSE filtering as studied in [4]. Since the processing

is based on a per time slot basis, without loss of generality,

we drop the time index t.

A. Level 4: Fully Centralized Processing

At this level, the APs do not process their received signals.

Instead, the received signals are forwarded to the CPU for

fully centralized processing, including the data detection task.

The signals forwarded from the L APs can be stacked into

y = Hx+ n, (3)

where y = [yT
1 , . . . ,y

T
L ]

T , H = [HT
1 , . . . ,H

T
L]

T , and n =
[nT

1 , . . . ,n
T
L]

T . The processing for cell-free massive MIMO

in this level is similar to the processing at a conventional co-

located MIMO receiver. The CPU detects x = [x1, . . . , xK ]T

using the received signal vector y and the channel matrix

H. Among the linear detectors, the LMMSE detector max-

imizes the signal-to-interference-and-noise ratio (SINR) and

also achieves the best detection performance [4]. With the full

knowledge of H, the LMMSE estimate x̂ is formed as

x̂ =
(

HHH+N0IK
)−1

HHy, (4)

which is then element-wise projected onto S. We note that the

LMMSE filter in the presented form requires the inverse of a

K ×K-dimensional matrix.

B. Level 3: Local Processing & Large-Scale Fading Decoding

At this level, each AP pre-processes its received signal by

computing a local estimate of x that are forwarded to the CPU

for final decoding [4]. Assuming full knowledge of channel

matrix Hℓ at the ℓ-th AP, the local LMMSE estimate x̌ℓ =
[x̌iℓ, . . . , x̌Kℓ]

T of x can be found as

x̌ℓ = HH
ℓ

(

HℓH
H
ℓ +N0IN

)−1
yℓ. (5)

We note that the LMMSE filter in this presented form requires

the inverse of a N×N -dimensional matrix. The CPU then can

linearly combine the local estimates {x̌iℓ : ℓ = 1, . . . , L} to

obtain the estimate

x̂i =

L
∑

ℓ=1

aiℓx̌iℓ, (6)

which is eventually used to decode xi. Here, the weighting

coefficient vector ai = [ai1, . . . , aiL]
T relies only on channel

statistics and can be optimized by the CPU. This combining

method is also known as the large-scale fading decoding

(LSFB) strategy in the context of cellular massive MIMO.

We note that no instantaneous CSI of any channel is required

at the CPU.



C. Level 2: Local Processing & Simple Centralized Decoding

At this level, the CPU forms an estimate of xi by simply

taking the average of the local estimates [4]. This yield an

estimate x̂i as

x̂i =
1

L

L
∑

ℓ=1

x̌iℓ. (7)

We note that no statistical parameters of CSI are needed at the

CPU at this level of centralized signal processing.

D. Level 1: Small-Cell Network

At this level, each user signal is decoded by only one AP

that gives the highest spectral efficiency to the user, i.e., the

highest SINR [4]. LMMSE filtering can be applied to obtain

the local estimate of the user signal. Since only one estimate

per user is forwarded to the CPU, no centralizing decoding is

required.

IV. VARIATIONAL BAYES FOR CELL-FREE DETECTION

In this paper, we focus on developing VB-based methods for

data detection in cell-free massive MIMO systems that require

certain levels of centralized processing, i.e., Levels 4, 3, and

2. For Level 4 processing, we assume that the symbol vectors

are estimated independently at each time slot. However, for

Levels 3 and 2 processing, we assume that the symbol vectors

are first estimated locally over the whole fading block. As

explained later in the section, this method of processing helps

reduce the amount of signaling to the CPU, where the local

estimates are aggregated to obtain the final estimate.

A. Background on VB

We first present the background on VB for approximate

inference that will be exploited for solving the data detection

in cell-free systems. VB inference is a powerful framework

from machine learning that approximates intractable posterior

distributions of latent variables with a known family of simpler

distributions through optimization. The goal of VB inference

is to find an approximation for a computationally intractable

posterior distribution p(x|y) given a probabilistic model that

specifies the joint distribution p(x,y), where y represents the

set of all observed variables and x is a set of m latent variables

and parameters. The VB inference method aims at finding

a density function q(x) with its own setting of variational

parameters within a family Q of density functions that makes

q(x) close to the posterior distribution of interest p(x|y).
VB inference amounts to solving the following optimization

problem:

q(x) = arg min
q(x)∈Q

KL
(

q(x)‖p(x|y)
)

= arg min
q(x)∈Q

Eq(x)

[

ln q(x)
]

− Eq(x)

[

ln p(x|y)
]

, (8)

where KL
(

q(x)‖p(x|y) is the Kullback-Leibler (KL) di-

vergence from q(x) to p(x|y). Minimizing the KL diver-

gence is equivalent to maximizing the evidence lower bound

(ELBO) [7], which is defined as

ELBO(q) = Eq(x)

[

ln p(x,y)
]

− Eq(x)

[

ln q(x)
]

. (9)

The maximum of ELBO(q) occurs when q(x) = p(x|y).
Since working with the true posterior distribution is often

intractable, it is more convenient to consider a restricted family

of distributions q(x). Among VB inference methods, the

mean-field approximation enables efficient optimization of the

variational distribution over a partition of the latent variables,

while keeping the variational distributions over other partitions

fixed [7]. The mean-field variational family is constructed such

that

q(x) =

m
∏

i=1

qi(xi), (10)

where the latent variables are mutually independent and each is

governed by a distinct factor in the variational density. Among

all mean-field distributions q(x), the general expression for

the optimal solution of the variational density qi(xi) that

maximizes the ELBO can be obtained as [7]

qi(xi) ∝ exp
{〈

ln p(y|x) + ln p(x)
〉}

, (11)

where 〈·〉 denotes the expectation with respect to all latent

variables except xi using the currently fixed variational density

q−i(x−i) =
∏

j 6=i qj(xj). By iterating the update of qi(xi)
sequentially over all j, the ELBO(q) objective function can be

monotonically improved. This is the basis behind the coordi-

nate ascent variational inference algorithm, which guarantees

convergence to at least a local optimum of ELBO(q) [7], [8].

To this send, we examine how the mean-field VB framework

can be exploited for data detection at different levels of

cooperation in a cell-free system.

B. Level 4: Fully Centralized Processing

At this level, the signals forwarded from the APs can

be stacked into a single large-scale MIMO system as being

shown in (3). In a recent work [9], we developed several

VB-based methods for MIMO data detection. Among them,

the LMMSE-VB algorithm showed superior performance in

MIMO systems with non-i.i.d. channels. Certainly, the algo-

rithm can be adopted for data detection in cell-free systems

with fully centralized processing. In the following, we present

key operations in the algorithm. For details of the algorithm,

we refer the readers to [9].

The LMMSE-VB algorithm floats the background noise

covariance matrix as an unknown random variable, instead

of treating the noise’s variance N0 as known. The postulated

noise covariance matrix Cpost is estimated by the algorithm

itself. For ease of computation, we use W = (Cpost)−1 to

denote the precision matrix and assume a conjugate prior com-

plex Wishart distribution CW(W0, n) for W, where W0 � 0

is the scale matrix and n ≥ NL indicates the degrees of

freedom. The PDF of W ∼ CW(W0, n) satisfies

p(W) ∝ |W|n−Mexp
(

− tr{W−1
0 W}

)

. (12)

The joint distribution p(y,x,W;H) can be factored as

p(y,x,W;H) = p(y|x,W;H)p(x)p(W), (13)



where p(y|x,W;H) = CN (y;Hx,W−1). Given the ob-

servation y, we aim at obtaining the mean-field variational

distribution q(x,W) such that

p(x,W|y;H) ≈ q(x,W) =
K
∏

i=1

qi(xi)q(W). (14)

The optimization of q(x,W) is executed by iteratively updat-

ing {xi} and W as follows.

a) Updating xi. The variational distribution qi(xi) is ob-

tained by expanding the conditional in (13) and taking the

expectation with respect to all latent variables except xi using

the variational distribution
∏K

j 6=i qj(xj)q(W):

qi(xi) ∝ p(xi) CN
(

zi;xi, 1/
(

hH
i 〈W〉hi

))

, (15)

where zi is a linear estimate of xi that is defined as

zi = 〈xi〉+
hH
i 〈W〉

hH
i 〈W〉hi

(

y −H〈x〉
)

. (16)

It is observed in (15) that CN
(

zi;xi, σ̂
2
i

)

with σ̂2
i =

1/
(

hH
i 〈W〉hi

)

can be interpreted as the likelihood function

p
(

zi|xi; σ̂
2
i

)

. In other words, the mean-field VB approximation

decouples the linear MIMO system into K parallel AWGN

channels zi = xi + CN
(

0, σ̂2
i

)

.

The variational distribution qi(xi) is realized by normalizing

p(xi) CN
(

zi;xi, σ̂
2
i

)

. The variational mean 〈xi〉 = E[xi|zi]
and variance σ2

xi
are then computed accordingly.

b) Updating W. The variational distribution q(W) is ob-

tained by taking the expectation of the conditional in (13) with

respect to q(x):

q(W) ∝ exp
{〈

ln p(y|x,W;H) + ln p(W)
〉}

. (17)

The variational distribution q(W) is also complex Wishart

with n+1 degrees of freedom [9]. The variational mean 〈W〉
can be computed accordingly. In [9], we also proposed to use

the estimator

〈W〉 =

(

‖y −Hx‖2

NL
INL +HΣxH

)−1

, (18)

where Σx = diag(σ2
x1
, . . . , σ2

xK
).

By iteratively optimizing
{

qi(xi)
}

and q(W) via the up-

dates of {〈xi〉} and 〈W〉, we obtain the CAVI algorithm for

estimating x and the precision matrix W. We refer to this

scheme as the LMMSE-VB algorithm since zi resembles an

LMMSE estimate of xi due to the cancellation of the inter-

user interference and the whitening with the postulated noise

covariance matrix Cpost.

C. Level 3: Local Processing & Nonlinear Decoding

At this level, our proposed VB-based method involves two

operations: 1) Executing the LMMSE-VB algorithm indepen-

dently at each AP to compute local estimates of xt and 2)

Aggregating the local estimates at the CPU for joint nonlinear

decoding of xt. However, we make a minor modification to

the LMMSE-VB algorithm which allow it to operate over the

whole block of T time slots.

1) AP Processing: The signal processing at an AP, say the

ℓ-th AP, is to generate a coarse estimate x̂t of xt, from the ob-

servation yt. We treat the background noise covariance matrix

at the ℓ-th AP as an unknown random variable. The postulated

noise matrix C
post
ℓ has to be estimated as well. We denote the

precision matrix Wℓ = (Cpost
ℓ )−1, Yℓ = [yℓ,1, . . . ,yℓ,T ], and

X = [x1, . . . ,xT ]. The joint distribution p(Yℓ,X,Wℓ;Hℓ)
can be factorized as

p(Yℓ,X,Wℓ;Hℓ) = p(Yℓ|X,Wℓ;Hℓ)p(X)p(Wℓ), (19)

where p(Yℓ|X,Wℓ;Hℓ) =
∏T

t=1 p(yℓ,t|xt,Wℓ;Hℓ) with

p(yℓ,t|xt,Wℓ;Hℓ) = CN
(

yℓ,t;Hℓxt,W
−1
ℓ

)

. Given the ob-

servation Yℓ, we aim at obtaining the mean-field variational

distribution qℓ(X,Wℓ) such that

p(X,Wℓ|Yℓ;Hℓ) ≈ qℓ(X,Wℓ)

=

K
∏

i=1

T
∏

t=1

qiℓ,t(xi,t)q(Wℓ). (20)

The optimization of qℓ(X,Wℓ) is executed by iteratively

updating {xi,t} and Wℓ as follows.

a) Update xi,t: The variational distribution qiℓ,t(xi,t) is

obtained by expanding the conditional in (19) and taking the

expectation with respect to all latent variables except xi,t using

the variational distribution
∏

(j,r) 6=(i,t) qjℓ,r(xj,r)q(Wℓ):

qiℓ,t(xi,t)

∝ exp {〈ln p(yℓ,t|xt,Wℓ;Hℓ) + ln p(xt)〉}

∝ p(xi,t) exp
{〈

−(yℓ,t −Hℓxt)
HWℓ(yℓ,t −Hℓxt)

〉}

∝ p(xi,t) exp
{

−hH
iℓ 〈Wℓ〉hiℓ|xi,t − ziℓ,t|

2
}

∝ p(xi,t) CN
(

ziℓ,t;xi,t, 1/(h
H
iℓ 〈Wℓ〉hiℓ)

)

, (21)

where

ziℓ,t =
hH
iℓ 〈Wℓ〉

hH
iℓ 〈Wℓ〉hiℓ

(

yℓ,t −
K
∑

j 6=i

hjℓ〈xjℓ,t〉
)

= 〈xi,t〉+
hH
iℓ 〈Wℓ〉(yℓ,t −Hℓ〈xt〉)

hH
iℓ 〈Wℓ〉hiℓ

. (22)

It is observed in (21) that CN
(

ziℓ,t;xi,t, σ̌
2
iℓ

)

with σ̌2
iℓ =

1/
(

hH
iℓ 〈Wℓ〉hiℓ

)

can be interpreted as the likelihood function

p
(

ziℓ,t|xi,t; σ̌
2
iℓ

)

. In this case, the mean-field VB approxima-

tion decouples the uplink MIMO channel to the ℓ-th AP into

K parallel AWGN channels ziℓ,t = xi,t + CN
(

0, σ̌2
iℓ

)

. It is

also observed that ziℓ,t is the local LMMSE estimate of xi,t,

while the variance σ̌2
iℓ indicates the reliability of this estimate.

The variational distribution qiℓ,t(xi,t) is realized by normal-

izing p(xi,t)CN
(

ziℓ,t;xi,t, σ̌
2
iℓ

)

. The variational mean 〈xi,t〉 =
E[xi,t|ziℓ,t] and variance σ2

xi,t
can be computed accordingly.

Hereafter, we use x̌iℓ,t instead of 〈xi,t〉 or E[xi,t|ziℓ,t] to

indicate the nonlinear MMSE estimate of xi,t at the ℓ-th AP.

b) Update Wℓ: The variational distribution q(Wℓ) is ob-

tained by taking the expectation of the conditional in (19) with

respect to
∏K

i=1

∏T
t=1 qiℓ,t(xi,t):

q(Wℓ) ∝ exp
{〈

ln p(Yℓ|X,Wℓ;Hℓ) + ln p(Wℓ)
〉}

. (23)



〈Wℓ〉 = (n+ T )

(

W0 + (Yℓ −HℓX)(Yℓ −HℓX)H +
T
∑

t=1

HℓΣx,tHℓ

)−1

. (24)

Assuming a conjugate prior complex Wishart distributed

CW(W0,ℓ, n) for Wℓ, the variational distribution q(W) is

also complex Wishart with n + T degrees of freedom. The

variational mean 〈Wℓ〉 is given in (24), where Σx,t =
diag (σ2

x1,t
, . . . , σ2

xK,t
).

The LMMSE-VB algorithm is executed at the ℓ-th AP by

iteratively optimizing {qiℓ,t(xi,t)} and q(W) via the updates

of {〈xi,t〉} and 〈Wℓ〉. The ℓ-th AP then sends the LMMSE

estimate ziℓ,t and the variance σ̌2
iℓ to the CPU for centralized

decoding. By pre-processing the whole block of T time slots,

σ̌2
iℓ is sent only once for each channel realization. In contrast,

if the LMMSE-VB algorithm is executed on a per time slot

basis, the variance of the LMMSE estimate ziℓ,t has to be

computed and sent for each time slot.

2) CPU Processing: After collecting the local estimates

ziℓ,t and the variance σ̌2
iℓ from the L APs, the CPU can

proceed to decode each of the K symbols independently. Since

ziℓ,t = xi,t+CN
(

0, σ̌2
iℓ

)

, an approximate posterior distribution

p(xi,t|{ziℓ,t}; {σ̌2
iℓ}) can be easily derived. The MAP estimate

x̂i,t of xi,t is obtained as

x̂i,t = arg max
xi,t∈S

(

ln p(xi)−
L
∑

ℓ=1

|ziℓ,t − xi,t|2

σ̌2
iℓ

)

. (25)

We note that the above nonlinear combination of local

estimates and reliability information is significantly different

from the linear combination of local estimates in (6).

D. Level 2: Local Processing & Simple Linear Combining

At this level, only local estimates are fed back to the CPU.

The LMMSE-VB mentioned in Level 3 signal processing can

be used to generate the coarse local estimates. However, the

local nonlinear MMSE estimates x̌iℓ,t is sent, instead of the

LMMSE estimate ziℓ,t and the variance σ̌2
iℓ. We note that x̌iℓ,t

can be computed using ziℓ,t and σ̌2
iℓ, but not the reverse.

A simple estimate of xi,t can be obtained by simply taking

the average of all the estimates x̌iℓ,t as

x̂i,t =
1

L

L
∑

ℓ=1

x̌iℓ,t. (26)

The final detected symbol of xi,t is the constellation point that

is closest to x̂i,t.

V. NUMERICAL RESULTS

This section presents the numerical results comparing the

developed VB-based methods for data detection in cell-free

systems with the LMMSE filtering methods in [4]. We use a

simulation setting and a channel model in urban environments

similar to the work in [4]. In particular, a network area of

1×1 km is considered where the APs are deployed on a square

grid and users are randomly distributed. The large-scale fading

coefficient of the channel between user-i and AP-ℓ (in dB) is

given as

βiℓ = −30.5− 36.7 log10(diℓ) + Fiℓ, (27)

where diℓ (in m) is the distance between user-i and AP-ℓ and

Fiℓ ∼ N (0, 16) is the shadow fading. The correlation between

the shadowing terms from an AP to different users is modeled

as

E[FiℓFi′ℓ′ ] =

{

16× 2−δii′/9, ℓ = ℓ′

0, ℓ 6= ℓ′
(28)

where δii′ (in m) is the distance between user-i and user-i′.
Receive antennas at each AP are arranged in a uniform linear

array with half-wavelength spacing. For spatial correlation, we

use the Gaussian local scattering model with a 15◦ angular

standard deviation [10]. We set the noise as CN (0, 1) and

vary the transmit power of users.

In this work, we compare different data detection methods

assuming perfect CSI and QPSK signalling. We assume that

each AP is equipped with 4 antennas, i.e., N = 4. Fig. 2

presents the symbol error rate (SER) performance of the two

types of methods in a relatively small setting of cell-free

systems with K = 16 and L = 16. As the user transmit power

is increased, the VB-based methods attain much lower SER

than the MMSE filtering methods. Up to 2-dB gain is observed

at Level 4 and 4-dB gain is observed at Level 3 and 2.

Fig. 3 presents the SER performance a cell-free system with

K = 40 and L = 64. The figure clearly indicates the superior

performance of the proposed VB-based methods over the

MMSE filtering methods. It is also observed from both figures

that the more centralized signal processing is carried at the

CPU, the better SER performance can be achieved, especially

in systems with a large number of users, e.g., K = 40.

VI. CONCLUSION

In this paper, we have proposed the VB-based methods for

data detection in cell-free systems at three different levels

of AP cooperation. The proposed methods can achieve much

lower SER than the linear MMSE signal processing methods.

We note that the presented study only considers the case of

perfect CSI available at the CPU (for Level 4) and at the APs

(for Levels 3 and 2). As an extension of this paper, we are

developing novel VB-based methods for data detection with

imperfect CSI and joint channel estimation and data detection

in cell-free systems.
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Fig. 2: SER performance of the VB-based methods (in solid lines) and
LMMSE methods (in dashed lines) versus the user transmit power, with
K = 16, L = 16, and N = 4.
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Fig. 3: SER performance of the VB-based methods (in solid lines) and
LMMSE methods (in dashed lines) versus the user transmit power, with
K = 40, L = 64, and N = 4.
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