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Abstract—We describe the orchestration of a decentralized
swarm of rotary-wing UAV-relays, augmenting the coverage and
service capabilities of a terrestrial base station. Our goal is to
minimize the time-average service latencies involved in handling
transmission requests from ground users under Poisson arrivals,
subject to an average UAV power constraint. Equipped with rate
adaptation to efficiently leverage air-to-ground stochastics, we
first derive the optimal control policy for a single relay via
a semi-Markov decision process formulation, with competitive
swarm optimization for UAV trajectory design. Accordingly, we
detail a multiscale decomposition of this construction: outer
decisions on radial wait velocities and end positions optimize the
expected long-term delay-power trade-off; consequently, inner
decisions on angular wait velocities, service schedules, and UAV
trajectories greedily minimize the instantaneous delay-power
costs. Next, generalizing to UAV swarms via replication and
consensus-driven command-and-control, this policy is embedded
with spread maximization and conflict resolution heuristics. We
demonstrate that our framework offers superior performance
vis-à-vis average service latencies and average per-UAV power
consumption: 11× faster data payload delivery relative to static
UAV-relay deployments and 2× faster than a deep-Q network
solution; remarkably, 1 relay with our scheme outclasses 3 relays
under a joint successive convex approximation policy by 62%.

Index Terms—UAV-relays, Rate Adaptation, SMDP, CSO

I. INTRODUCTION

With sustained device proliferation, enterprises across sec-
tors have stepped-up their adoption of Unmanned Aerial
Vehicles (UAVs) to gather data, survey infrastructure, monitor
operations, and automate logistics [2]. Inevitably, this has
fostered varied academic research and industrial R&D on
drone-augmented beyond line-of-sight connectivity and traffic
offloading in cellular networks: the coverage and service
capabilities of an extant terrestrial radio access network are
enhanced by the mobility and maneuverability of these au-
tonomous aerial relays [3]. Unsurprisingly, the pervasive po-
tential of such hybrid networks brings along a plethora of chal-
lenges in real-world deployments [3]: specifically, on-board
energy constraints of these aerial platforms impacting mission
times, stringent Quality-of-Service (QoS) mandates for reliable
connectivity, channel characteristics of Air-to-Ground (A2G)
links in highly-mobile settings, and computational feasibility
challenges in trajectory design brought on by the inherently
large state and action spaces. Ergo, several works in the state-
of-the-art have tried to tackle these challenges using tools
from optimization theory, machine learning, and reinforcement
learning—however, various problems remain unsolved and
various challenges are left unaddressed.
Related Work: Perusing single UAV-relay formulations in
current literature, we observe non-adaptive schemes [4]–[6]
designed for applications where the IoT devices possess local
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storage or aggregation capabilities allowing for deterministic
arrivals of data packets. Yet, practical deployments involve
dynamically-generated traffic from miscellaneous sets of users,
each with varying degrees of QoS mandates and technological
prowess. Unlike these works, we consider dynamic traffic
generation from random deployments of ground users, thereby
constructing a control strategy that is receptive to uncertain
system dynamics. Furthermore, these works solve for the op-
timal service schedules and associated trajectories via Succes-
sive Convex Approximation (SCA) [4]–[6], which apart from
being computationally infeasible to accommodate dynamic
traffic due to prohibitively large convergence times, relies on
first-order Taylor approximations of the optimization problem
to enforce convexity, thereby introducing inaccuracies into the
model. On another note, these works employ Free Space Path-
Loss (FSPL) models that fail to account for the A2G channel
characteristics inherent in UAV-assisted wireless networks;
moreover, their approximations in the traffic delivery con-
straint preclude the adoption of rate adaptation which allows
the transmitters in the network to leverage channel stochastics
to maximize throughput. In this paper, in addition to accurately
modeling A2G channel characteristics and employing rate
adaptation at all the transmitters to efficiently exploit said
characteristics, there are no such underlying approximations.

Pivoting to the path-planning problem for a single relay,
a Competitive Swarm Optimization (CSO) [7] approach is
proposed in this paper to bypass the computational infeasibility
seen in [4]–[6]. Unlike SCA, which employs approximations
to enforce convexity, CSO does not depend on the specific
problem structure to work effectively. Contrary to the limited
update scope of Particle Swarm Optimization (PSO) [8],
CSO exhibits superior performance on large-scale optimiza-
tion benchmarks [7], since it involves more efficient updates
wherein pair-wise competition is invoked between particles—
permitting the winners to advance and the loser particles to
learn from the winners. Unreasonably, works that employ PSO,
either optimize static hovering positions only [9], or impose
impractical path and velocity restrictions [5], [10].

Next, shifting our attention to swarm orchestration frame-
works, we find inefficient solutions such as centralized deploy-
ments [11], [12] in which an aggregation center coordinates
the operations of the UAV-relays; or either joint multi-relay
optimization methods [12], [13] or model-free formulations
consisting of combined state and action spaces [14], [15]. Cen-
tralized swarm deployments bring in the need for additional
CAPEX and OPEX; and joint multi-UAV constructions lead
to prohibitively large solution spaces resulting in unnecessary
overhead in policy convergence times, which when scaled to
larger swarms result in intractability. Thus, we present an
orchestration framework suitable for decentralized UAV-relay
swarms by embedding our single UAV-relay policy with multi-
agent heuristics and replicating it across the swarm.
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A previous version of this research [16] focused only on
single UAV-relay deployments, assumed an FSPL channel
model, and employed PSO for trajectory optimization: the
challenges associated with these have been discussed above.
Novelties: In this paper, with rate adaptation to exploit A2G
channel stochastics, we first constrain our study to single relay
settings, wherein the problem of minimizing the time-average
service delay subject to an average UAV power constraint,
is formulated as a Semi-Markov Decision Process (SMDP).
We derive a multiscale decomposition to this formulation:
optimizing the long-term delay-power costs yields outer de-
cisions on radial wait velocities and service positions (via
value iteration); consequently, greedily minimizing the instan-
taneous delay-power costs yields inner actions on angular wait
velocities (via exhaustive search) and service trajectories (via
competitive swarm optimization). Post single relay policy con-
vergence, with an overlaid command-and-control network, we
supplement this control strategy with multi-agent heuristics—
namely, spread maximization and consensus-driven conflict
resolution—and replicate it across the swarm.
Extensions: Further developments to this research include
M/G/x queue management heuristics for link-layer prescient
scheduling, a hierarchical variant of CSO to facilitate efficient
scalability to higher-dimensional trajectory design, and viabil-
ity analyses via emulations and real-world flight-tests on NSF
AERPAW (OFDM PHY radio + MAVLink vehicle control).

The rest of the paper is structured as follows: Sec. II outlines
the system model; Sec. III elucidates our SMDP formulation
for single relay settings; Sec. IV details our swarm extensions;
Sec. V chronicles our numerical evaluations; Sec. VI lists our
conclusions.

II. SYSTEM MODEL

In this section, we model the processes involved in the
non-terrestrial augmentation of conventional radio ecosystems,
aided in their coverage and service capabilities by UAV-relays.
Deployment Model: Consider a generalized deployment in
which a swarm of NU rotary-wing Unmanned Aerial Vehicles
(UAVs)—each equipped with an on-board transceiver chain—
operate as cellular relays to supplement the coverage and
service capabilities of a terrestrial Base Station (BS) by
relaying data traffic dynamically-generated by Ground Nodes
(GNs). The BS is located at the center of the circular cell
of radius a, at height HB , while the UAVs operate at a
fixed height of HU . The GNs are distributed uniformly at
random throughout the cell, with a density of λG [GNs per
unit area]. The BS utilizes k orthogonal channels to serve the
GNs simultaneously via an Orthogonal Frequency Division
Multiple Access (OFDMA) strategy; on the other hand, the
UAV-relays are restricted to serve one GN at a time through a
decode-and-forward scheme. All channels are assumed to have
a bandwidth of B. Without any loss of generality, studying
uplink transmissions only, these GNs generate random data
traffic that is to be transmitted to the BS, either directly or by
using one of the UAVs in the swarm as a relay.
Communication Model: Each GN generates uplink trans-
mission requests of L bits, according to a Poisson process
with rate λR|G [requests per GN per unit time]. Coupled
with the random deployment of GNs, uplink requests arrive in
time according to a Poisson process with rate λR=λG·λR|G

[requests per unit time per unit area]. Thus, Λ,λRπa2 [re-
quests per unit time] is the overall request arrival rate over
the circular cell. Since a new request is uniformly distributed
in the cell area, its angular coordinate θ is uniform in [0, 2π)
and the probability density function of its radial coordinate
is fR(r)= 2r

a2 I(r≤a), where I(·) is the indicator function.
Allocating the band-edges of the spectrum under use as
control channels, a fully-connected mesh network is overlaid
on the BS and the UAVs to establish a command-and-control
network. Since the packets exchanged among the mesh nodes
over the control channel constitute short frames relative to the
large data payloads generated by the GNs (and communicated
over orthogonal data channels), it is reasonable to neglect
the latencies involved in these control operations. When a
GN decides to upload its data, it informs the BS—over the
control channel—about the need for an uplink transmission of
L bits, and includes its physical location in this preliminary
request for service. Considering potential delay-power costs
for this request, the BS and the UAVs coordinate over the
control network to arrive at a consensus on the best scheduling
decision: if direct transmission is chosen, the BS assigns a
data channel k∈{1, 2, . . ., NB} to the GN and instructs it to
begin transmission; else, if relaying the data payload through
UAV i is determined to be the most efficient choice, the UAV
instructs the GN to begin transmission over its designated pre-
determined data channel kUi

∈{1, 2, . . ., NU}. A Decode-and-
Forward (D&F) strategy underlies the communication process
encountered in the latter case: while moving along a designed
trajectory (a sequence of way-points and velocities), UAV i
first receives the entire data payload from the GN over channel
kUi

(decode) and subsequently transmits it to the BS over the
same channel (forward). Crucially, inherent in these scheduling
decisions is the A2G channel model underlying the GN→BS,
GN→UAV, and the UAV→BS links.
A2G Channel Model: For a generic link, we denote the
flat-fading channel coefficient as h,

√
βg, where β captures

the large-scale channel variations, and g with E
[
|g|2
]

=1 is
the small-scale fading component. We model the large-scale
component as β=βLoS(d),β0d

−α for line-of-sight (LoS) and
β=βNLoS(d),κβ0d

−α̃ for non-LoS (NLoS) links, where β0

is the pathloss referenced at a distance of 1 m, 2≤α≤α̃ are
the LoS and NLoS path-loss exponents, κ∈(0, 1] captures the
additional NLoS attenuation, and d is the Euclidean distance
between the transmitter (Tx) and the receiver (Rx) [4]. We
model the LoS and NLoS probability as a function of the
elevation angle ϕ∈(0, 90o], i.e.,

PLoS(ϕ)=
1

1+z1e−z2[ϕ−z1]
;PNLoS(ϕ)=1−PLoS(ϕ), (1)

where z1 and z2 are environment-specific parameters. The
distribution of the small-scale fading component g also de-
pends on the LoS or NLoS link state—specifically, for LoS,
we model g as Rician fading with a ϕ-dependent K-factor,
i.e., K(ϕ)=k1 exp (k2ϕ), where coefficients k1 and k2 are
determined by the propagation environment [6]; for NLoS,
we model g as Rayleigh fading (Rician with K=0) [6]. Given
h, the link capacity is C(h)=B· log2

(
1+ |h|

2PT

N0BΓ

)
, where PT

is the transmission power, N0 is the noise power spectral
density at the receiver, B is the channel bandwidth, and Γ



is the Signal-to-Noise Ratio (SNR) gap between practical
modulation-and-coding schemes and theoretical Gaussian sig-
naling [6]. We assume that other sources of signal degradation,
such as the Doppler effect, are well-compensated at the
receiver [17]. Since the large-scale components typically vary
slowly relative to the rate of acquisition of Channel State
Information (CSI), we assume that the current large-scale pa-
rameters (β,K) are known at the transmitter’s side throughout
the communication process, which enables rate control at the
transmitter; on the other hand, small-scale fading conditions
vary on a much faster timescale, hence cannot be tracked at
the transmitter, which may result in outages when the selected
rate exceeds the channel capacity C(h). Thus, given (β,K)
and a transmission rate of Υ [bits per second], we define the
outage probability Pout(Υ, β,K) , P(C(

√
βg)<Υ)|β,K) =

P
(
|g|2<u(Υ, β)

)
, where u(Υ, β),N0BΓ(2Υ/B−1)/(βPT ).

Since 2(K+1)|g|2 has a non-central χ2 distribution with 2
degrees of freedom and a non-centrality parameter 2K, we
can write the outage probability as

Pout(Υ, β,K) = 1−Q1

(√
2K,

√
2(K + 1)u(Υ, β)

)
, (2)

where Q1(·, ·) is the standard Marcum Q-function [6]. Note
that when K=0 (Rayleigh fading NLoS link), the function
specializes to Q1

(
0,
√

2u(Υ, β)
)

= exp(−u(Υ, β)). We as-
sume that the small-scale fading is averaged out across time
and space, yielding the expected throughput

R(Υ, β,K) = Υ ·Q1

(√
2K,

√
2(K + 1)u(Υ, β)

)
. (3)

In our model, we permit rate adaptation at the transmit-
ter based on the large-scale parameters (β,K), coordinated
through the control channel via CSI feedback. The transmis-
sion rate Υ is chosen to maximize the expected throughput
given (β,K), i.e., Υ∗(β,K), arg maxΥ≥0R(Υ, β,K). Let

Z,
√

2βPT

N0BΓu(Υ, β), so Υ=B log2

(
1+ 1

2Z
2
)
,f(Z),

Υ∗(β,K)=f(Z∗(β,K)), Z∗(β,K), arg min
Z≥0

g(Z),

g(Z),− ln f(Z)− lnQ1

(
√

2K,

√
(K+1)N0BΓ

βPT
Z

)
. (4)

Since the function g(Z) is convex, Z∗(β,K) can be found
efficiently using a bisection method. Upon determining the
optimal transmission rate Υ∗(β,K), we define the optimized
throughput, as a function of the large-scale conditions, as
R∗(β,K) , R(Υ∗(β,K), β,K). Assuming that the LoS and
NLoS conditions are averaged out in the temporal and spatial
dimensions, we compute the average link throughput coupled
with rate adaptation as

R̄(d, ϕ) , PLoS(ϕ) ·R∗(βLoS(d),K(ϕ)) +

PNLoS(ϕ) ·R∗(βNLoS(d), 0), (5)

which is then specialized to the three distinct communication
links by expressing the transmission powers, the environment-
specific parameters z1, z2, k1, and k2, the large-scale
parameters (β,K), and the LoS or NLoS probabilities (1)
based on the spatial configuration, i.e., Tx-Rx distance and
elevation angle. Specifically, for the GN→BS link, we let

Fig. 1: Single UAV-relay specialization of our generalized deployment setting.

R̄GB(r) be the throughput with the GN in position (r, θ),
computed by setting the GN-BS distance as d=

√
H2
B+r2

and the elevation angle as ϕ= sin−1 (HB/d) in (5). Similarly,
for the GN→UAV link, we let R̄GU (rGU ) be the throughput
when the GN-UAV distance (projected onto the x−y plane) is
rGU , computed by setting the GN-UAV Euclidean distance as
d=
√
r2
GU+H2

U and the elevation angle as ϕ= sin−1 (HU/d)
in (5). Finally, for the UAV→BS link, we let R̄UB(rUB) be
the throughput when the x−y projected UAV-BS distance is
rUB , computed by setting the GN-UAV Euclidean distance
as d=

√
r2
UB+(HU−HB)2 and ϕ= sin−1

(
(HU−HB)

d

)
in (5).

III. THE SMDP FORMULATION

In this section, we specialize the generalized deployment,
communication, and channel models detailed in Sec. II to
single UAV-relay settings. Accordingly, we describe the math-
ematical constructions involved in the design of our solution
framework to minimize the time-average service delay experi-
enced by the GNs in the cell, subject to an average UAV mo-
bility power constraint via a Semi-Markov Decision Process
(SMDP) formulation. The effective traffic rate experienced
by a single UAV is Λ

NU
[requests per unit time], which is

assumed in this section in place of the overall rate Λ. Let
qU (t)=(rU (t), θU (t)) be the polar coordinate of the UAV at
time t, projected onto the x−y plane, where rU (t)∈[0, a] and
θU (t)∈[0, 2π) denote the UAV’s radius and angle with respect
to the BS (cell center). This setup is depicted in Fig. 1.

We note that the operations of the UAV-relay can be split
into the following phases. In the waiting phase, no GN requests
are being served by the UAV, which thus moves according
to a waiting policy, until a new request is received. When
a new GN request is received, say from position (r, θ), the
system transitions to the request scheduling phase, where the
system decides if the GN should transmit its data payload
directly to the BS, or relay it through the UAV. If direct
transmission is selected, the system immediately re-enters
the waiting phase, as the UAV remains free to serve other
requests; else, the system enters the UAV-relay phase, in which
the GN relays its data payload through the UAV using the
D&F protocol; upon the completion of this relay service, the
system re-enters the waiting phase. Note that the BS can
accommodate simultaneous transmissions (see Sec. II): new
requests received during the UAV-relay phase are directly
served by the BS. Under a given policy µ, averaged out over
Mt decision intervals, we denote the expected average service
delay for scheduled requests as W̄ (s)

µ , the expected average
UAV energy expenditure as Ēµ, and the expected average
operational duration as T̄µ. With this setup, the optimization



problem given by minµW̄
(s)
µ s.t. Ēµ−PavgT̄µ≤0, will be the

subsequent focus of our analyses. To solve it, consider

g(ν)=min
µ

W̄ (s)
µ + ν(Ēµ − PavgT̄µ), (6)

where ν is the dual variable, optimized by solving
maxν≥0 g(ν). We now demonstrate that for a given ν≥0, (6)
can be cast as an SMDP and solved via dynamic programming.
States: The state is defined by the UAV position qU , taking
value from the set QUAV , [0, a]×[0, 2π) (polar coordinates),
and the position of an uplink transmission request qG, taking
values fromQGN,[0, a]×[0, 2π) (polar coordinates). The state
space is then S=Swait∪ Scomm, where Swait=QUAV is the
set of waiting states and Scomm=QUAV×QGN is the set of
communication states. Crucial to the definition of the SMDP
is how the system is sampled in time to define Markovian
dynamics in the evolution of the sampled states. Accordingly,
next, we define the actions available in each state s∈S and
the transition probabilities, along with the duration T (s;a),
the UAV energy usage E(s;a), and the communication delay
∆(s;a) metrics accrued in state s under action a.
Waiting actions and transitions: If the UAV is in the
waiting state sn=qU∈Swait at time t, then the actions avail-
able are to move the UAV with radial (referred outward)
and angular (referred counter-clockwise) velocity components
(vr, θc), over an arbitrarily small duration ∆0�1/Λ. Under
a maximum velocity constraint Vmax, the action space is
then Await(rU ),

{
(vr, θc)∈R2

∣∣∣√v2
r+r2

U ·θ2
c≤Vmax

}
, where

vU=
√
v2
r+r2

Uθ
2
c is the velocity expressed with respect to polar

coordinates. Upon choosing action a=(vr, θc)∈Await(rU ),
the communication delay is ∆(s;a)=0, since there is no
ongoing communication; the duration of a waiting state visit
is T (s;a)=∆0, during which the UAV uses an amount of
energy E(s;a)=∆0Pmob (vU ) to move at velocity vU . The
new state is then sampled at time t+∆0, with the UAV moved
to the new position qU (t+∆0)≈(rU , θU )+(vr, θc)∆0. With
probability e−Λ∆0 , no new request is received in the time
interval [t, t+∆0], so that the new state is a waiting state.
Otherwise, a new request is received from a GN in position
(r, θ), so that the new state is a communication state. Thus,
the transition probability from the waiting state sn=qU under
action an=(vr, θc)∈Await(rU ) is

P(sn+1=qU+an∆0|sn,an)=e−Λ∆0 and (7)

P(sn+1=(qU+an∆0,qG)|sn,an)=
A(F)

πa2
·(1−e−Λ∆0),

where qG∈F and A(F) is the area of region F , ∀F⊆QGN,
since requests are uniformly distributed in the cell.
Communication actions and transitions: Upon reaching
a communication state sn=(qU ,qG)∈Scomm at time t, the
system must serve a GN request at position qG=(r, θ).
The system first determines the best scheduling decision
ξ∈{0, 1}. If ξ=0, the GN transmits directly to the BS, and
the next state immediately after this decision is the wait-
ing state sn+1=qU∈Swait with probability 1. In this case,
the cost metrics under action an=a=(0, [ ]) are computed
as ∆(sn;a)= L

R̄GB(r)
, E(sn;a)=0, T (sn;a)=0, since direct

transmissions occur at throughput R̄GB(r) and the system

moves immediately to the waiting state qU∈Swait resulting
in the action duration and energy expenditure being 0. On
the other hand, if ξ=1, the UAV uses the D&F protocol
described next, while following a trajectory starting from its
current position qU and ending in position q′U . We denote this
action as an=ã=(1,qU→q′U ). In the first phase (of duration
tp) of the D&F protocol, the GN transmits its payload to
the UAV; in the second phase (of duration ∆−tp), the UAV
relays the data payload to the BS. Assuming a move-and-
transmit implementation [4], the trajectory (qU→q′U ) and the
time periods (T1,[0,tp] and T2,(tp,∆]) must satisfy∫

T1

R̄GU (rGU (t+η))dη,

∫
T2

R̄UB(rUB(t+η))dη≥L, (C.1)

i.e., the entire payload of L bits is first transmitted to the
UAV with rate R̄GU (rGU (t+η)), where rGU (t+η) is the
GN-UAV distance (projected onto the x−y plane) at time
t+η; then, the UAV transmits the payload to the BS with
rate R̄UB(rUB(t+η)), where rUB(t+η) is the radial position
of the UAV at time t+η, so that the total communication
delay is ∆. In this case, the cost metrics under action
ã are ∆(sn; ã)=∆, E(sn; ã)=

∫∆

0
Pmob (vU (t+η)) dη, and

T (sn; ã)=∆. Upon completing the D&F protocol, the UAV
enters the waiting phase again, so that sn+1=q′U becomes the
new SMDP state, sampled at time t+∆. Let QqG

(
qU→q′U

)
be the set of feasible UAV trajectories starting in qU , termi-
nating in q′U , to serve a GN located at qG using D&F, i.e.,

QqG

(
qU → qU ′

)
=
{
pU : [0,∆] 7→[0, a]× [0, 2π) s.t. C.1,

pU (0)=qU ,pU (∆)=q′U ,∃∆≥0,∃0≤tp≤∆, (C.2)

vU (η)≤Vmax,∀η∈[0,∆]
}
, (C.3)

where C.2 reflects the trajectory constraints and C.3 re-
flects the maximum velocity constraint. Then, the action
space in state (qU ,qG)∈Scomm when ξ=1 is the set
QqG

(qU ), ∪q′
U∈QUAV

QqG

(
qU→q′U

)
of feasible trajecto-

ries starting in qU that serve the GN at qG via the D&F
protocol. The overall communication action space is then
Acomm(qU ,qG),{0, [ ]}∪{{1}×Qr,θ(rU , θU )}. Here the set
{0, [ ]} is associated with ξ=0 (no trajectory design space);
while the set {{1}×Qr,θ(rU , θU )} is associated with ξ=1,
whose trajectory design space is Qr,θ(rU , θU ).
Policy µ: For waiting states qU∈Swait, the policy se-
lects a velocity (vr, θc) from the waiting action space,
i.e., µ(qU )∈Await(rU ). Likewise, for communication states
(qU ,qG)∈Scomm, the policy selects the scheduling decision
ξ∈{0, 1} and if ξ=1, the trajectory followed in the D&F proto-
col, i.e., µ(qU ,qG)∈Acomm(qU ,qG). With a stationary policy
µ defined, the Lagrangian metric L(ν)

µ ,W̄ (s)
µ +ν(Ēµ−PavgT̄µ)

in (6) is reformulated using Little’s Law as

L(ν)
µ = lim

N→∞
Eµ

[
1
N

∑N−1
n=0 `ν(sn;µ(sn))

1
N

∑N−1
n=0 I(sn ∈ Scomm)

]
=

1

πcomm

∫
S

Πµ(s)`ν(s;µ(s))ds, (8)

where Πµ(s) is the steady-state probability density func-
tion of the SMDP being in a state s under policy µ,



πcomm=
∫
Scomm

Πµ(s)ds is the steady-state probability that
the UAV is in a communication state of the SMDP, and
`ν(s;a),∆(s;a)+ν

(
E(s;a)−PavgT (s;a)

)
is the overall La-

grangian metric in state s under action a. In (8), note that∑N−1
n=0 `ν(sn;µ(sn)) is the total Lagrangian cost accrued dur-

ing the first N SMDP stages, and
∑N−1
n=0 I(sn∈Scomm) is the

number of communication states encountered in the SMDP:
since a new decision interval is initiated after a communication
state, this in turn equals the number of decision intervals.
Therefore, after taking the expectation and the limit N→∞,
L

(ν)
µ represents the expected Lagrangian cost per decision

interval, as expressed in (6). The subsequent right hand
expression in (8) follows by noticing that the SMDP achieves
a steady-state behavior when N →∞. We now specialize the
Lagrangian metric `ν(s;a). Specifically, for waiting states,

`ν(rU , θU ; vr, θc)=ν
(
Pmob

(√
v2
r+r2

Uθ
2
c

)
−Pavg

)
∆0; (9)

for communication states under ξ=0, `ν(rU , θU , r, θ; 0, [ ]) =
L

R̄GB(r)
; and for communication states under ξ=1 with trajec-

tory pU of duration ∆, we obtain

`ν(rU ,θU ,r,θ;1,pU )=(1−νPavg)∆+ν

∫ ∆

0

Pmob (vU (η)) dη.

The minimization problem of (6) can then be expressed as the
average cost-per-stage problem

g(ν) =
1

πcomm
min
µ

∫
S

Πµ(s)`ν(s;µ(s))ds, (10)

solvable via standard dynamic programming approaches, after
discretization of the state and action spaces, followed by
the dual maximization maxν≥0g(ν). Since GN transmission
requests are uniformly distributed in the circular cell with the
BS in the center, the UAV radius information is a sufficient
statistic in decision making for a waiting state (rU , θU ),
which can be thus expressed as s=rU∈Swait; likewise, for
a communication state (rU , θU , r, θ), only the UAV radius,
GN request radius, and the angle ψ∈[0, 2π) between them
suffice to characterize the state—thus, communication states
can be compactly represented as s=(rU , r, ψ)∈Scomm. A
consequence of these sufficient statistics for decision-making
is that the policy affects the SMDP state transitions (hence,
steady-state behavior) only through the UAV radial velocity
vr in the waiting states and the UAV trajectory’s target end
radius position r̂U in the communication states. On the other
hand, the angular velocity θc in the waiting states and the
UAV trajectory’s target end angular coordinate θ̂U in the
communication states do not influence state dynamics, but only
the instantaneous Lagrangian metric `ν . With this observation,
let O(s),vr∈[−Vmax, Vmax] define the radial velocity policy
of the waiting states s∈Swait, specifying the radial veloc-
ity component of a waiting action a=(vr, θc) ∈ Await(s);
let U(s),r̂U∈[0, a] define the next radius position policy
of the communication states s∈Scomm, specifying the end
radius position of a scheduling and communication action
a∈Acomm(s). Under this decomposition, O and U constitute
the outer decisions made by the SMDP and are the only actions
to affect the steady-state distribution, denoted as ΠO,U under
the outer policy (O,U). Thus, the optimization problem (10)

Fig. 2: Algorithmic flow inherent in our single UAV policy optimization.

can be restated as

g(ν) =
1

πcomm
min
O,U

[ ∫
Swait

ΠO,U (s)`∗ν(s;O(s))ds+∫
Scomm

ΠO,U (s)`∗ν(s;U(s))ds
]
, (11)

where `∗ν is the Lagrangian metric optimized with respect
to the inner action components not specified by O and U .
In particular, for waiting states s=rU and radial velocity
O(s)=vr, the inner optimization is performed with respect
to the UAV angular velocity θc, i.e.,

`∗ν(s; vr) =min
θc

ν

(
Pmob

(√
v2
r + r2

Uθ
2
c

)
− Pavg

)
∆0

s.t.
√
v2
r + r2

Uθ
2
c ≤ Vmax. (12)

Since ν≥0, ∆0>0, and Pavg are constant, the optimizer
θ∗c is the angular velocity minimizing the UAV power con-
sumption for a given UAV radial velocity vr and radius
rU , solvable through exhaustive search. For communication
states s=(rU , r, ψ), `∗ν(s; r̂U ) is determined by optimizing over
ξ∈{0, 1} and if ξ=1, the trajectory pU followed by the UAV,
terminating in r̂U . Let `∗ν(s; r̂U , ξ) denote the optimized metric
as a function of ξ∈{0, 1}. For ξ=1 (D&F protocol),

`∗ν(s; r̂U , 1)= min
∆,pU ,tp

(1−νPavg)∆+ (13)

ν

∫ ∆

0

Pmob

(√
r
′
U (η)2+r2

U (η)θ
′
U (η)2

)
dη s.t.

C.1,C.3,pU (0)=(rU , 0), ‖pU (∆)‖2=r̂U (Ĉ.2)

where Ĉ.2 enforces the trajectory constraints. For ξ=0, r̂U=rU
and `∗ν(s; rU , 0)= L

R̄GB(r)
. Hence `∗ν(s; rU ) is obtained by

further minimizing over ξ∈{0, 1}, yielding

`∗ν(s; r̂U )= min
ξ∈{0,1}

`∗ν(s; rU , ξ)I(r̂U=rU )+`∗ν(s; r̂U , 1)I(r̂U 6=rU ).

Thus, if the outer decision selects U(s)=rU , the inner
scheduling decision ξ∈{0, 1} is obtained by greedily mini-
mizing a cost metric that trades off communication delay and
energy consumption, i.e., direct transmission to the BS occurs
if `∗ν(s; rU , 0)<`∗ν(s; rU , 1). Otherwise, the UAV handles the
GN request using the D&F protocol, and the inner decision on
UAV trajectory—designed via Competitive Swarm Optimiza-
tion (CSO) [7]—greedily minimizes the instantaneous delay-
power trade-off, terminating at the target radius of the outer
decision, U(s)=r̂U . Discretizing the trajectory between the
UAV’s initial and final service positions, and using a modified
version of (13) (incorporating time and energy penalties for



data transmission failures during D&F) as the cost function,
CSO invokes pair-wise cost comparisons among a randomly
initialized set of way-points and velocities: specifically, in
each iteration, the winner particles (way-points and velocities
with lower cost function values) advance to the next iteration
while the loser particle values are updated in relation to
these winners; this update process continues until a maximum
number of cost evaluations are performed. We design the outer
policy and compute the average cost-per-stage metric g(ν),
along with the average energy- and time-per-stage metrics
for a given ν, by solving problem (11) via value iteration;
also, the dual maximization problem maxν≥0g(ν) is solved
via projected sub-gradient ascent [18]. Fig. 2 illustrates the
sequence of operations involved in solving for the optimal
policy.

IV. MULTI-AGENT EXTENSIONS

In this section, we remove the specializations considered
for our single relay construction in Sec. III, and extend
the SMDP-based control strategy to our generalized hybrid
wireless network model of NU UAV-relays in the swarm. To
this end, the single relay optimal policy is embedded with
supplementary heuristics and replicated across the swarm.
Command-and-Control: Truly decentralized and coordinated
operations of the UAV-relays in the swarm necessitates the
need for a control network over which the server nodes can
collaborate to ensure collision-free movements among the
UAVs, facilitate consensus-driven decision-making on the best
server to handle a GN uplink transmission request, and guar-
antee resilient fault-tolerant operations by setting-up fallback
mechanisms to handle UAV failures. We designate the band-
edges of the allocated spectrum as control channels, over
which the server nodes in the cell exchange short collaboration
messages: the structure of a control frame in our system is
shown in Fig. 3. A fully-connected distributed mesh topology
(employing these designated control channels) overlaid over
the BS and the UAV swarm constitutes the design of our
command-and-control network. Since each UAV-relay in the
swarm possesses the same optimal waiting and communication
state policies, we embed spread maximization (in the waiting
states) and conflict resolution (in the communication states) to
cooperatively handle their operations.
Spread Maximization: To efficiently position and prime the
idle UAVs for a potential new GN request, in the waiting
states, a UAV-relay in the swarm, in addition to executing the
optimal action, determines the direction of its angular motion
(clockwise or counter-clockwise) based on our spread max-
imization heuristic—wherein each UAV-relay in the waiting
state executes either positive (counter-clockwise) or negative
(clockwise) angular movements in order to maximize the min-
imum distance among them. These coordinated movements
among the UAVs is made possible through periodic exchanges
of control frames over the command-and-control network.
Studying this frame structure in Fig. 3, we note that for
waiting states, the state flag is set to 0, and the GN position
and the cost-of-service fields are empty; UAVs in the waiting
state extract the positional information of their peers from the
GPS event field and apply a maximize-the-minimum-distance
heuristic over other idle UAVs in the cell. This methodology
ensures that a suitable spread is maintained among the UAVs

Fig. 3: Structure of the control frames exchanged among the BS and UAVs.

in the waiting states, in order to facilitate faster response times
when a new uplink request is generated.
Consensus-driven Conflict Resolution: When a new uplink
transmission request originates in the cell, the UAVs already
serving a GN continue to do so, i.e., they do no participate in
the consensus-driven conflict resolution process. These relays,
termed unavailable under this context, transition into their
corresponding waiting states upon service completion. On the
other hand, UAVs in the waiting states transition into their
respective communication states. The BS along with these
relays are deemed to be available. Studying the control frame
exchanged by these available server nodes: the state flag is set
to 1, the GN position field is populated with the originating
position of the request under consideration, and the cost-of-
service field constitutes the delay-energy Lagrangian metric,
i.e., L

R̄GB
for the BS and `∗ν(s; r̂U , 1) for an available UAV.

Upon sharing these metrics with each other, the available
nodes arrive at a consensus on the best choice (delay-energy
Lagrangian) for serving the request.

V. NUMERICAL EVALUATIONS

We use a channel bandwidth of B=5 MHz; for all links,
NLoS attenuation constant κ=0.2, 1-meter reference SNR
β0PT

N0BΓ=40 dB, LoS path-loss exponent α=2, NLoS path-
loss exponent α̃=2.8, Rician K-factor parameters k1=1
and k2=0.05, and LoS probability parameters z1=9.61 and
z2=0.16; UAV height HU=200 m; BS antenna height HB=80
m; maximum UAV velocity Vmax=55 m/s; and cell radius
a=1000 m. Our UAV mobility power model uses the relation-
ship and parameters detailed in [4]. We solve an approximation
of problem (11) by discretizing the SMDP state and action
spaces, and applying value iteration; additionally, the optimal
dual variable value is attained via projected sub-gradient ascent
[18]. We discretize the states with Nsp=25 equispaced radii
values; similarly, Rsp=25 corresponds to the equispaced radial
velocity actions.

To analyze the optimal waiting behavior of a UAV-relay
in our control framework, we fix Pavg=1.2 kW and L=1
Mb. Fig. 4 shows that the UAV moves to and waits by
flying around an optimal radius level (≈95 m) to address
two considerations: to be well-positioned for future requests
and to fly at the power-minimizing velocity so as to reduce
its energy consumption. Moreover, we note that the angular
velocity optimization process via exhaustive search adheres to
the observations in [4] about optimizing towards the minimum,
i.e., Pmin corresponding to V=22 m/s.

As depicted in Fig. 4, for uplink transmission requests of
size L=1 Mb from the 300 GNs in the cell, we observe the
following improvements in performance over custom network
deployment heuristics and state-of-the-art frameworks, aver-
aged over 10, 000 requests with a Poisson arrival rate of 1
request every 60 s. Considering only direct transmissions to a



Fig. 4: (a) Optimal waiting state policy for L=1 Mb with Pavg=1.2 kW; (b) Average service latencies vs average power constraints for L=1 Mb.

10-channel OFDMA BS at the cell center, we find a significant
reduction in the average communication delay experienced
by the GNs in the cell, by employing UAVs to relay data
traffic. Also, we observe that employing dynamic UAVs with
optimized trajectories result in lower service delays compared
to static relay deployments—specifically, for a swarm of 3
UAV-relays, with L=1 Mb and a per-UAV power consumption
of 1.37 kW, our solution services uplink transmission requests
from the GNs 11× faster than a static deployment of 3 UAVs
positioned equidistant from the cell center. Furthermore, with
CVXPY implementations of joint multi-agent SCA strategies
[4], [12] involving split conic solvers with 106 iterations and
an accuracy of 10−6, we note that our control system with 1
UAV-relay exceeds the QoS performance offered by 3 relays
under these SCA approaches. Finally, with an average per-
UAV power constraint of 1.1 kW, our solution demonstrates
2× faster service times relative to DDQNs [14].

VI. CONCLUSION

In this paper, we detail the development of an adaptive
framework for the decentralized orchestration of a swarm
of rotary-wing UAV-relays in next-generation non-terrestrial
networks. First, employing rate adaptation to leverage A2G
channel dynamics, we specialize our system model to single
UAV-relay settings and design the optimal request scheduling
and trajectory optimization policy under an SMDP formulation
(via value iteration and CSO). Next, we extend this single
relay policy to distributed deployments of two or more UAVs
by supplementing it with multi-UAV coordination heuristics
and replicating it across the swarm. Numerical evaluations
demonstrate that our solution delivers significant performance
improvements over BS-only strategies, static UAV deploy-
ments, SCA approaches, and DDQN frameworks.
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