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Abstract—We discuss possible definitions of structural balance
conditions in a network with preference orderings as node
attributes. The main result is that for the case with three
alternatives (A,B,C) we reduce the (3!)3 = 216 possible
configurations of triangles to 10 equivalence classes, and use these
as measures of balance of a triangle towards possible extensions
of structural balance theory. Moreover, we derive a general
formula for the number of equivalent classes for preferences
on n alternatives. Finally, we analyze a real-world data set and
compare its empirical distribution of triangle equivalence classes
to a null hypothesis in which preferences are randomly assigned
to the nodes.

I. INTRODUCTION

In network science, nodes and edges may be associated
with attributes that encode various properties. An important
example of a node attribute is when each node is assigned a
particular type. Various homophily measures, with modularity
as the most important example [1], are then available to quan-
tify whether edges between nodes of the same type are more
prevalent than edges between nodes of different types. Edge
attributes may consist of, for example, a weight that describes
how strongly two nodes are connected, or a sign (+/−) that
determines whether the the relation between two nodes is
friendly or antagonistic. For complete networks with signed
edges, a celebrated result is the structural balance theorem
[2]. This theorem states that if every triangle in a (complete)
network has the signs either +++ or +−−, then the network
can be partitioned into two subnetworks A and B, such that
all edges within A are +, all edges within B are +, but all
edges between A and B are − (as illustrated in Figure 1). The
network is then said to be balanced. The popular interpretation
is that the “enemy’s enemy is a friend”: in a balanced network
either all three nodes in every triangle are friends, or two team
up against a third, common, enemy. Thus, in signed networks
balance means polarization, i.e., there are two camps of friends
with mutual antagonism between them.

In this paper we are concerned with extensions of the
structural balance concept that go beyond signed networks.
Specifically we consider networks where nodes have pref-
erence orderings as attributes. A preference ordering is de-
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Fig. 1. A balanced network with subnetworks A, induced by the nodes v1
and v2, and B, induced by v3 and v4. All edges within A and B have positive
signs, but the edges between A and B have negative signs.

fined in terms of a strict linear order of alternatives (e.g.,
A � B � C) and may be interpreted as an expression
of the opinion that A is preferable to B, which in turn is
preferable to C, and so on. The extent to which two neighbors’
preference orderings differ can be viewed as a measure of
agreement or disagreement. In the extreme cases when a pair
of neighbors have the exact same preferences or maximally
different preferences (e.g., according to some distance metric),
it would be quite natural to associate their edge with a +
or −, respectively. In the case of partial disagreement, one
could either extend the number of edge weights or argue for
a way to project the partial disagreements onto the two signs
+/−. In view of this intuitive connection between preference
orderings as node attributes and signed edges, one might ask a
more general question: Can triangles of nodes with preference
orderings as node attributes be associated with a notion of
balance? We approach, and partially answer this question by
enumerating all possible combinations of preference orderings
that can appear in a triangle, and categorize them into classes
that are equivalent in a certain sense.

A. Related Work

1) Preference Orderings as Node Attributes: The motiva-
tion for studying networks with preference orderings is clear.
For example, it is reported in the literature that the use of pref-
erence orderings to express opinions is superior to the use of
numerical scores [3], [4]. In the field of collaborative filtering-
based recommender systems, several papers have leveraged on
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users’ preference orderings data [5]–[7], and in social choice
theory, an important problem is how to aggregate preference
orderings in a group of people [8], with applications in the
design of voting methods and ethical AI systems [9].

Yet, only scattered results are available in the literature
on networks with preference orderings as node attributes. In
[4], opinion diffusion processes were considered and it was
concluded that the outcome of a diffusion process depends
both on the structure of the social network (e.g., directed
or undirected; cyclic or acyclic) and on the properties of
the initial preferences of each agent, for example whether
the initial preference profiles satisfy the Condorcet condition
or not. In [10] (with results refined in [11]), preference
aggregation via a form of “emphatic” voting was considered,
taking into account the connections between nodes in addition
to their opinions in the aggregation. In [12], two closely
related problems were tackled: Preference inference and group
recommendation based on partially observed ranking data.
The main idea was to utilize the underlying social network
structure under the assumption that the homophily and/or
social influence shapes the network dynamics. The proposed
models were tested empirically on several data sets, one of
which was the Flixter data set [13], consisting of a social
network of movie watchers and their ratings of movies. Based
on the ratings for each user, the relative number of movies
of each genre watched by a specific user was calculated, and
from these so-called user-genre scores, ranking data of movie
genres was constructed. However, due to the sparsity typical
of movie ratings, only partial orders could be constructed in
a this manner. Finally, in [14], two models were proposed for
capturing how preferences are distributed among nodes in a
typical social network. By sampling a small subset of represen-
tative nodes, the algorithms can harness the network structure
to effectively construct an aggregate preference of the entire
network population, and for preferences related to personal
topics (such as lifestyle choices), the proposed approach was
shown to be advantageous over traditional random polling. The
said papers also connect to the (relatively rich) literature on
preference aggregation and voting theory. However, network
aspects seem to be rarely considered in that context, and we
are only aware of [10]–[12] and [14].

2) Structural Balance: The discovery of the structural
balance theorem in 1956 [2] has spawned a large literature on
empirical analysis of real-world networks [15]–[18], analysis
of dynamic processes [19], [20], partially balanced networks
[21], and perhaps most importantly in the current context,
extensions to cases beyond the canonical signed-link +/−
setup. The most representative extensions are [22] and [23].
In [22], the edge weights can be any real number drawn from
a total ordering. A distance metric is defined such that the
negative (positive) are mapped to large (small) distances. A
triangle is then said to be structurally balanced if the three
distances involved satisfy the metric triangle inequality. In
[23], the authors considered signed digraphs and redefine
structural balance as a local node property: A node is called
structurally balanced if a ceratin subgraph related to the node

can be bipartitioned such that all directed edges within a
partition have non-negative weights, and all directed edges
between partitions have non-positive weights.

Another interesting direction of research is the generaliza-
tion of structural balance in networks with node attributes. For
example, in [24], the authors defined balance in fully signed
networks, i.e., networks where both the edges and the nodes
have signs. Such a network is then said to be balanced if
and only if it can be partitioned into clusters, within which
nodes have identical attributes and all edges are negative. The
authors provide an energy function whose minimum is taken
as a measure of partial network balance, and they also propose
an algorithm for the efficient computation of this value. In [25]
the method was further generalized to fully signed networks
in which the number of attributes for each node is arbitrary
(that is, not only + or −).

However, none of the existing literature on balance, to our
knowledge, has dealt with networks with preference orderings
as attributes.

B. Contributions

In this paper we discuss possible definitions of structural
balance in a network with preference orderings as node
attributes. The main result (Theorem 1) is that for the three-
alternative case (A,B,C) we reduce the (3!)3 = 216 possible
configurations of triangles to 10 equivalence classes. These 10
classes represent the 10 different types of triangles that can
occur in a network, and based on them, a notion of balance
can be defined. We also give a general formula for the number
of equivalence classes for the n-alternative case (Theorem
2). Finally, we examine numerically the data set in [14] and
compare its empirical distribution of the equivalence classes to
a null hypothesis in which preference orderings are randomly
assigned to the nodes.

II. MAIN RESULTS

We define a preference ordering on n alternatives, n ≥ 2,
as a permutation σ on n elements. A preference triangle on
n alternatives, Pn, is then defined to be a complete graph
on 3 nodes (i.e., K3), where each node is associated with a
preference ordering. We introduce a relation R and we say
that two preference triads P 1

n and P 2
n are related if P 1

n can be
transformed into P 2

n by relabeling its nodes and by applying
the same permutation of the elements to all nodes (which
corresponds to to relabeling the elements). This is denoted
by P 1

n ∼ P 2
n .

For example, the two preference triads depicted in Fig-
ure 2 are related: In P 1

3 , change the node labels v1, v2, v3
to w3, w2, w1, respectively, and let elements A and B swap
places in all three permutations to obtain P 2

3 .
It is easy to see that the relation R is an equivalence

relation: Let P 1
n , P

2
n and P 3

n be preference triads. Clearly
P 1
n ∼ P 1

n since no transformation is needed, so R is reflexive.
Furthermore, if P 1

n ∼ P 2
n , then we can recover P 1

n from
P 2
n by reversing the swaps and undo the relabeling, so R is

symmetric. Finally, if P 1
n ∼ P 2

n and P 2
n ∼ P 3

n we can first
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Fig. 2. Two equivalent preference triads on 3 alternatives: P 1
3 ∼ P 2

3 .

transform P 1
n into P 2

n , and then transform P 2
n into P 3

n , so R
is transitive.

This relation restricts the number of unique preference
triangles. Our first theorem states that R reduces the number
of preference triangles on 3 alternatives to 10 cases.

Theorem 1. The (3!)3 = 216 possible preference triads on
3 alternatives can be partitioned into 10 equivalence classes
induced by the relation R.

Proof. There are (3!)3 = 216 possible preference triads on
3 alternatives, A,B,C, but since we always can swap the
alternatives such that one of the preferences is A � B � C
(abbreviated ABC), the 216 cases can first be reduced to
(3!)2 = 36 cases. These 36 cases are listed in Table Ia, where
the three rows in each case represent the three nodes in the
corresponding preference triad. The top row is always ABC.
Thus, a swap of two rows is equivalent to letting the two
corresponding nodes change labels with each other.

The equivalence relationR partitions the cases into different
equivalence classes: Consider for example Case 2. We can list
all of its possible transformations,

ABC ABC ABC
ABC ACB ACB
ACB ABC ACB,

where the middle matrix is obtained by swapping rows 2 and
3, and the last matrix is obtained by first swapping rows 1 and
3 and then swapping B and C in all three rows. We identify
the middle matrix as Case 7, and the last matrix as Case 8, so
Case 2 is related to both of these cases under R. On the other
hand, it is not related to any other case, for example Case 23.
To see this, we can list all possible transformations of case
23, to obtain

ABC ABC
BCA CAB
CAB BCA,

and note that none of these matrices matches the transfor-
mations of Case 2. By proceeding in this manner for all 36
cases, it can be shown by exhaustion that there are exactly
10 equivalence classes, highlighted in color in Table Ia. The
equivalence classes with their representatives are listed in
Table Ib.

A natural question is if it is possible to define a notion of
a balanced preference triangle. In classical balance theory, a

TABLE
(A) THE EQUIVALENCE CLASSES ON 3 ELEMENTS, AND (B) THEIR

PARTITIONING OF THE POSSIBLE PREFERENCE TRIADS.
Sheet1

Page 1

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC
ABC ACB BAC BCA CAB CBA

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
ABC ABC ABC ABC ABC ABC
ACB ACB ACB ACB ACB ACB
ABC ACB BAC BCA CAB CBA

Case 13 Case 14 Case 15 Case 16 Case 17 Case 18
ABC ABC ABC ABC ABC ABC
BAC BAC BAC BAC BAC BAC
ABC ACB BAC BCA CAB CBA

Case 19 Case 20 Case 21 Case 22 Case 23 Case 24
ABC ABC ABC ABC ABC ABC
BCA BCA BCA BCA BCA BCA
ABC ACB BAC BCA CAB CBA

Case 25 Case 26 Case 27 Case 28 Case 29 Case 30
ABC ABC ABC ABC ABC ABC
CAB CAB CAB CAB CAB CAB
ABC ACB BAC BCA CAB CBA

Case 31 Case 32 Case 33 Case 34 Case 35 Case 36
ABC ABC ABC ABC ABC ABC
CBA CBA CBA CBA CBA CBA
ABC ACB BAC BCA CAB CBA

(a) The possible preference triads on 3 elements, with the 10 equivalence
classes induced by the relation R marked in color.

Equivalence class Cases
1 1
2 2, 7, 8
3 9, 11, 14, 16, 21, 26
4 10, 12, 20, 30, 32, 35
5 3, 13, 15
6 17, 18, 24, 27, 33, 34
7 4, 19, 29
8 5, 22, 25
9 6, 31, 36
10 23, 28

(b) The10 equivalence classes and their represen-
tatives.

triangle is either balanced or unbalanced. There is no obvious
analog to this idea for preference triangles since, by Theorem
1, each such triangle falls into one of 10 different equivalent
classes. However, if the equivalence classes could be totally
ordered, it might be possible to define balance so that the
order could be interpreted as ranging from “most balanced” to
“least balanced”. This is motivated by the fact that there seems
to be at least one intuitive partial order on the equivalence
classes: In case 1 in Table Ia, all nodes agree perfectly on the
preference orderings, which could be interpreted as positive
relations between all three nodes, i.e., a + + + triangle in



terms of classical balance theory. The cases 2, 3, 4, 5 and 6
(and their equivalents) might be interpreted as +−− triangles,
with further refinement of the internal order possible since in
case 2 all preference orderings starts with A, while in cases
3 to 6 only two preference orderings start with A. Similarly,
in cases 9, 10, 17 and 23 (and their equivalents), none of the
preference orderings are identical, which might be interpreted
as − − − triangles, and again the internal order might be
further refined since in case 9 and 10 two of the preferences
start with A. In case 23 the preference orderings are in fact
maximally different, so in some sense this could be seen as
the “least balanced” preference triangle. A triangle reminiscent
of + + − in classical balance theory does not exist. This is
an important observation, since it leaves only − − − as a
possible unbalanced triangle. However, it has been argued (see,
e.g., [26]) that the definition of balance should be generalized
to permit also the triangle − − − as a balanced triangle, in
which case one talks about weak balance theory. Therefore, in
view of the above mapping from preference triangles to signed
triangles, all triangles are weakly balanced.

Consequently, a notion of balance for preference triangles
is perhaps best defined in terms of partial balance, a concept
discussed in [21], since the equivalence classes intuitively can
be partially ordered. However, we have been unsuccessful in
finding a total order for the equivalence classes, and even
though several partial orderings can be constructed if one
allows ties, we have not found an objective argument for
preferring one partial ordering over another. Therefore we have
not addressed this question in detail in the current paper, and
while we may not have a firm answer, it might be an interesting
direction to explore further.

Another natural question is if Theorem 1 can be generalized
to the case with n alternatives, with n ≥ 2. In the appendix we
derive a closed form expression for the number of equivalence
classes induced by R, and show that it can be expressed as a
function of n (the number of elements in the permutations).
In particular, we prove the following theorem.

Theorem 2. Let n ∈ N with n ≥ 2, let S denote the set of all
preference triads on n elements and let [x] denote the integer
part of x ∈ R. Then the number of equivalence classes of S
induced by the relation R is

|S/R| = n!(n! + 3) + 2(`n + 1)

6
,

where

`n =

[n
3

]
∑
m=1

n!

(n− 3m)!m!3m
. (1)

Since the number of equivalence classes increases super-
exponentially with n (for n = 4, 5, 6, . . . there are
111, 2467, 86787, . . . number of equivalence classes, respec-
tively), it quickly becomes impractical to explicitly list all of
them. Therefore this paper is confined to the minimal non-
trivial case, n = 3.

III. EXPERIMENTAL RESULTS

In this section, we analyze an authentic social network
with preferences as node attributes. In the standard theory
of structural balance, a complete signed network is said to
be balanced if all of its triangles are balanced. We extend
this idea to preference triangles and enumerate all such tri-
angles into the different equivalence classes described in the
previous section. The aim is to determine if the distribution
of equivalence classes of preference triangles is significantly
different from what one would expect by chance: Specifically
we construct synthetic networks by performing randomized
degree-preserving edge-rewirings [27, Chapter 4] on the real-
world network, where the nodes have preferences that follow
the empirical distribution of the authentic data set. The null
hypothesis is that there is no significant difference between the
distribution of equivalence classes for the authentic network
and those of the synthetic networks.

The data set, shared with us by the authors of [14], was
collected from a specially designed Facebook app where users
were asked to rank their preferences on 8 topics, with each
topic containing 5 items, see [14, Table VI, Appendix A]
for details. Thus the data set consists of each individual’s
preferences on each topic together with the underlying social
network (there is a link between two users if they are friends
on Facebook). The network consists of 844 nodes, 6129 edges
and the fraction of closed triangles is 0.4542. [14, Table 1]

The data is analyzed as follows: For each of the 8 topics,
we pick a subset of 3 out of the 5 available items, giving us
8
(
5
3

)
= 80 sets of preferences, where each set contains 844

individual preferences (one per node). The internal order of
these partial preferences is preserved, so for example if one of
the original preferences is ADCEB and we select {A,B,E}
as our subset of items, then the extracted preference becomes
AEB. For each of the 80 so-obtained preference sets, we
calculate the empirical distribution of all possible preferences
over the nodes. We then construct 10 synthetic networks by
randomly rewiring the edges in the network such that the node
degrees are preserved. For each of the 80 preference sets,
we let the preferences of the nodes in the synthetic networks
follow the same empirical distribution as the authentic data.
Finally, we calculate the distribution of the 10 equivalence
classes for both the authentic and synthetic networks. Thus we
obtain 80 sets of real-world data, where each set is compared
to 10 artificially constructed networks in order to test our null
hypothesis.

In our analysis we were unable to find a sufficient significant
difference to reject the null hypothesis, as illustrated by Figure
3: The histograms of equivalence classes for the 10 synthetic
networks and that of the authentic network overlap to a high
extent, and we found similar results for all of the 80 preference
sets. As noted in Section I, research on preference orders as
node attributes in a network is scarce, and we are currently
not aware of any other available data sets. Therefore it is
at this point unclear whether this negative result is due to
the particular data set or if it is indicative of a more general



Fig. 3. Histograms over equivalence classes of preference triads for the au-
thentic network compared with 10 random degree-preserving edge-rewirings
of said network (R1-R10), where the distribution of preferences in the rewired
networks follow the empirical distribution of the authentic network. Here,
the topic is “Facebook activity”, and the alternatives are “Viewing posts”,
“Chatting” and “Games/Apps’

phenomenon.

IV. CONCLUSIONS AND DISCUSSION

We have characterized the triangles that can occur in net-
works with preference orders as node attributes. Specifically,
for preference orders with three alternatives, we showed in
Theorem 1 that there are only 10 unique preference triangles.
We have also analyzed numerically an authentic data set
and compared its empirical distribution of unique preference
triangles with a null hypothesis with randomized preference
orderings. We hope that these results will stimulate others to
explore variations of the framework presented here, and collect
data that can be used for further quantitative studies. Some
open problems include the following:

• Is it possible to find a total order for the equivalence
classes?

• Is there an objective argument for choosing a particular
partial order for the equivalence classes? While we are not
aware of any literature that addresses this particular issue,
a recent paper [28] proposed a partial order of the set of
preference profiles between individuals. Another paper
of potential interest is [29], where combinatorial Hodge
theory was proposed as a tool for statistical analysis of
ranking data through minimization of pairwise ranking
disagreement. To the best of our knowledge, it is an open
problem for both of these approaches whether or not they
are generalizable to comparisons between groups of n ≥
2 preferences per group (with n = 3 being the special
case of interest in our setting).

• Given an order of equivalence classes, how should the
different classes map to structural balance? That is, how
should such a mapping be formally defined?

• Does the distribution of equivalence classes differ sig-
nificantly between real-world networks and synthetic
networks? More samples of authentic networks with
preferences as node attributes are needed for a robust
analysis.

As a final remark, note that by pairing the two node attributes
associated with a particular edge, a network with node at-
tributes could always be mapped onto a network with edge
attributes. In particular, in an attempt to interpret structural
balance in terms of node preferences, one could consider
networks with two different types of nodes, representing two
different opinions (A and B, say) and define an edge to be “+”
if it connects two nodes of type A or two nodes of type B, and
“−” otherwise. Unfortunately, this does not lead anywhere as
the resulting network is always balanced (in fact, it has the
natural partitioning in two parts consisting of A-nodes and B-
nodes, respectively). In order to map node attributes to edge
attributes in a way that leads to non-trivial results, one must
go beyond binary node attributes. The path we explored in
this paper has been to associate preference orderings with the
nodes. Future work may consider other possibilities.

APPENDIX

In order to prove Theorem 2, we first need a lemma.

Lemma 1. Let `n denote the number of elements of order 3
in the symmetric group Sn. Then

`n =

[n
3

]
∑
m=1

n!

(n− 3m)!m!3m
. (2)

Proof. Any element g ∈ Sn can be written as a product of
disjoint cyclic permutations, and the order of g is the least
common multiple of the orders of these cycles. Thus g has
order 3 only if its cyclic decomposition consists of identities
and 3-cycles. The latter will be constructed from a subset with
3m elements, for some positive integer m such that 3m ≤ n,
and there are

(
n
3m

)
ways of choosing such a subset. From this

set we can create m disjoint 3-cycles in (3m)! ways to obtain
a product of the form

(a2a3a3)︸ ︷︷ ︸
3-cycle

(a4a5a6)︸ ︷︷ ︸
3-cycle

. . . (a3m−2a3m−1am)︸ ︷︷ ︸
3-cycle︸ ︷︷ ︸

m 3-cycles

(3)

Since these cycles are disjoint, there are m! ways to permute
them. In turn, each 3-cycle can be permuted in 3!/2 = 3
unique ways, giving us 3m ways to arrange them in total.

Putting this together, we have the following result. For any
positive integer m ≤ [n/3], the number of elements of order
3 in Sn is equal to(

n

3m

)
(3m)!

m!3m

=
n!(3m)!

(3m)!(n− 3m)!m!3m

=
n!

(n− 3m)!m!3m

(4)



TABLE I
REPRODUCTION OF TABLE VI IN [14, APPENDIX A]

Personal Social
Hangout Chatting Facebook Lifestyle Website Government Serious Leader

place app activity visited investment crime
Friend’s place WhatsApp Viewing posts Intellectual Google Education Rape N. Modi (India)

Adventure park Facebook Chatting Exercising Facebook Agriculture Terrorism B. Obama (USA)
Trekking Hangouts Posting Social activist Youtube Infrastructure Murder D. Cameron (UK)

Mall SMS Games/Apps Lavish Wikipedia Military Corruption V. Putin (Russia)
Historical place Skype Marketing Smoking Amazon Space explore Extortion X. Jinping (China)

The result follows by summing over all m such that
1 ≤ m ≤ [n/3].

Now we proceed to prove the Theorem 2.

Proof of Theorem 2. Note that we can always relabel the
nodes and swap elements in the permutations such that the
permutation associated with one of the nodes is the identity
permutation, denoted by ε. Therefore we only need to consider
ordered lists of the form (ε, σ, π), where σ and π are arbitrary
permutations on n elements. Four cases can occur:

(ε, ε, ε) (5a)

(ε, ε, σ) ∼ (ε, σ−1, σ−1) ∼ (ε, σ, ε), σ 6= ε (5b)

(ε, σ, σ2) ∼ (ε, σ2, σ),

{
σ 6= ε

σ3 = ε
(5c)

(ε, σ, σπ) ∼ (ε, σπ, σ) (5d)

∼ (ε, σ−1, π) ∼ (ε, π, σ−1)

∼ (ε, π−1, σ−1π−1) ∼ (ε, σ−1π−1, σ−1),


σ 6= ε

π 6= ε

σ 6= π.

In cases (5b) to (5d) we can obtain equivalent lists by multi-
plying the permutations with an inverse permutation that takes
one of them to the identity (e.g. (ε, ε, σ) can be multiplied
with σ−1 resulting in (ε, σ−1, σ−1)). By relabeling the nodes
we can also obtain additional equivalent lists: (ε, ε, σ) is
equivalent to (ε, σ, ε). By doing so we get 1, 3, 2 and 6
possibilities for cases (5a), (5b), (5c) and (5d), respectively.

The number of equivalence classes will be equal to the sum
of the number of unique representatives in each case. In case
(5a) there is only one possibility. In case (5b) there are n!− 1
possibilities since σ can be any permutation on n symbols
except the identity. In (5c) we require σ to be of order 3, and by
Lemma 1 the number of possibilities for such permutations is
`n. It follows that the number of possibilities is `n/2. Finally,
note that the number of ways to arrange (ε, σ, π) is equal to
(n!)2. Therefore we can deduce that the number of possibilities
for (5d) must be equal to

(n!)2 − 1− 3(n!− 1)− 2`n/2

6
. (6)

Thus the total number of equivalence classes is

|S/R| = 1 + (n!− 1) +
`n
2

+
(n!)2 − 1− 3(n!− 1)− 2`n/2

6

=
n!(n! + 3) + `n/2

6
.

(7)
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