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Fabian Göttsch˚, Noboru Osawa:, Takeo Ohseki:, Yoshiaki Amano:, Issei Kanno:, Kosuke Yamazaki:, Giuseppe Caire˚
˚Technical University of Berlin, Germany

:KDDI Research Inc., Japan
Emails: {fabian.goettsch, caire}@tu-berlin.de, {nb-oosawa, ohseki, yo-amano, is-kanno, ko-yamazaki}@kddi-research.jp

Abstract—We consider a user-centric scalable cell-free massive
MIMO network with a total of LM distributed remote radio unit
antennas serving K user equipments (UEs). Many works in the
current literature assume LM " K, enabling high UE data rates
but also leading to a system not operating at its maximum perfor-
mance in terms of sum throughput. We provide a new perspective
on cell-free massive MIMO networks, investigating rate allocation
and the UE density regime in which the network makes use of its
full capability. The UE density K approximately equal to LM

2
is

the range in which the system reaches the largest sum throughput.
In addition, there is a significant fraction of UEs with relatively
low throughput, when serving K ą LM

2
UEs simultaneously. We

propose to reduce the number of active UEs per time slot, such that
the system does not operate at “full load”, and impose throughput
fairness among all users via a scheduler designed to maximize a
suitably defined concave componentwise non-decreasing network
utility function. Our numerical simulations show that we can tune
the system such that a desired distribution of the UE throughput,
depending on the utility function, is achieved.

Index Terms—User-centric, cell-free massive MIMO, fairness,
scheduling, user density.

I. INTRODUCTION

Based on multiuser MIMO and Marzetta’s massive MIMO
[1]–[3], distributed MIMO architectures have been promoted
throughout the last years for beyond 5G networks to serve the
growing number of wireless devices (see [4] for an overview).
User-centric scalable cell-free massive MIMO is a branch of
distributed MIMO, where each user equipment (UE) k P rKs1

is associated to its own finite size set Ck of remote radio units
(RUs), and each RU ` P rLs, equipped with M antennas, serves
a finite size set U` of UEs. Many works on cell-free massive
MIMO consider LM " K, i.e., there are many more RU
antennas than UEs being served on the same time-frequency
resource. This needs to be carefully discussed since 1) in this
regime the network is not working at full capability and 2) the
deployment of more RU antennas than UEs being served by the
network is not practical, costly, and often infeasible. A popular
system performance metric is the distribution of the achievable
ergodic user rates, but fairness is often not addressed as an
optimization goal. In this work, we investigate the optimal user
load at which the maximum sum throughput is achieved, where
the throughput is the long-term average service rate considering
information outage. When users are scheduled on a slot-by slot

1We denote the set of the first positive N integers by rNs “ t1, . . . , Nu.

basis, rate allocation is necessary and an important factor for the
system performance. Ergodic rates are thus not as meaningful,
so that we consider the sum throughput under rate allocation and
information outage. The maximum sum throughput is achieved
with K « LM

2 , where a user load K ą LM
2 results in a non-

negligible number of UEs suffering from relatively low rates.
Therefore, we propose to keep the network at a user load

for which the network does not operate at “full load”, i.e., the
number of active UEs on any time slot is chosen such that
each UE is expected to experience a relatively large data rate.
Since not all users are active in each time slot, we need to
impose some form of throughput fairness. The actual supported
instantaneous user service rate is a random variable and we
operate in the outage rate regime, which means that an allocated
transmission rate may or may not correspond to a successful
transmission. Thus, the scheduler must select the set of active
users and their transmission rates, as these depend on the active
user itself.

Scheduling in cell-free massive MIMO has been considered
in a number of other works, among others [5]–[8]. User
scheduling in co-located and cell-free massive MIMO systems
using the framework of [9] is studied in [5], where all UEs are
connected to all RUs. Beamforming with power allocation and
user scheduling in a distributed manner based on a signal to
leakage, interference and noise ratio metric is done in [6]. In
this paper, we start with an investigation of the optimal user
load per time slot for a dense user-centric scalable cell-free
network, where Kact is approximately the optimal number of
simultaneously active UEs. The scheduler is thus designed to
select Kact simultaneously active UEs per time slot. Compared
to previous works, this is the first work on scheduling in cell-
free massive MIMO considering rate allocation under slot-by-
slot coding and decoding, i.e., the receiver can only decode a
rate provided that no information outage occurs. In addition, we
propose an online scheme to learn the allocated rates, aiming to
maximize the expected service rates. The expected service rates
are given by the product of the expected data rate to be provided
to a UE and the probability that the data rate can be provided
without information outage. We use the framework of [9] to
develop a hard fairness scheduler (HFS) and a proportional
fairness scheduler (PFS). The results show that the schedulers
can improve fairness among users compared to random, round-
robin and max-sum-rate scheduling.
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II. SYSTEM DESCRIPTION

We refer the reader to our previous work [10] for a detailed
system model description, and provide a summary in the follow-
ing. We consider a cell-free wireless network in TDD operation
mode with L RUs, each equipped with M antennas, and K
single-antenna UEs. Both RUs and UEs are distributed on a
squared region on the 2-dimensional plane. As a result of the
cluster formation scheme in [10] with SNR threshold η, each
UE k is connected to a cluster Ck Ď rLs of RUs and each
RU ` has a set of associated UEs U` Ď rKs. The UE-RU
association is described by a bipartite graph G with two classes
of nodes (UEs and RUs) such that the neighborhood of UE-
node k is Ck and the neighborhood of RU-node ` is U`. The
set of edges of G is denoted by E , i.e., G “ GprLs, rKs, Eq. We
assume OFDM modulation and that the channel in the time-
frequency domain follows the standard block-fading model [3],
[4], [11]. The channel vectors from UEs to RUs are random
but constant over coherence blocks of T signal dimensions in
the time-frequency domain, of which τp dimensions are used
for the finite-dimensional uplink (UL) pilot signal, leading to
a spectral efficiency factor of 1 ´

τp
T . The described methods

are formulated for one RB, so the RB index is omitted for
simplicity.

We let H P CLMˆK denote the channel matrix between all
the K UE antennas and all the LM RU antennas on a given
RB, formed by M ˆ 1 blocks h`,k in correspondence of the
M antennas of RU ` and UE k. Let F denote the M ˆ M

unitary DFT matrix with pm,nq-elements rFsm,n “
e´j 2π

M
mn

?
M

for m,n “ 0, 1, . . . ,M ´ 1, and consider the angular support
set S`,k Ď t0, . . . ,M´1u obtained according to the single ring
local scattering model (see [14]). Then, the channel between
RU ` and UE k is

h`,k “

d

β`,kM

|S`,k|
F`,kν`,k, (1)

where, using a Matlab-like notation, F`,k
∆
“ Fp:,S`,kq denotes

the tall unitary matrix obtained by selecting the columns of F
corresponding to the index set S`,k, β`,k is a LSFC including
pathloss, blocking effects, and shadowing, and ν`,k is an
|S`,k| ˆ 1 i.i.d. Gaussian vector with components „ CN p0, 1q.
We focus on UL results in this work, since by duality, the UL
and downlink data rates and thus the system performance are
almost identical [13].

A. Uplink decoding under scheduling

We assume that UL pilot allocation for channel estimation
and cluster formation are carried out in each time slot after
making the scheduling decisions, where the pilot allocation and
cluster formation follow the semi-overloaded pilot assignment
scheme from [12], such that an RU can assign a pilot to
multiple UEs under the condition that the UEs’ channels are
in orthogonal subspaces. We let hk denote the k-th column
of H. Based on the set of active UEs Kact of cardinality
Kact, the columns hk corresponding to inactive UEs, i.e., UEs
k P rKs : k R Kact, contain the identically zero vector 0, since
the inactive UEs do not transmit neither UL pilots nor data.

Each RU ` computes locally the channel estimates ph`,k for UEs
k P U`, obtained by subspace projection channel estimation,
where perfect subspace knowledge is assumed (see [15] for
details).

We define the partial CSI regime where each RU ` has
knowledge of the channel vector estimates ph`,k for k P U`.
In this regime, the part of the channel matrix H known at the
decentralized processing unit serving cluster Ck is denoted by
pHpCkq. This matrix has the same dimensions of H, such that
the p`, jq block of dimension M ˆ 1 of pHpCkq is equal to ph`,j
for all p`, jq P E , where ` P Ck, and to 0 otherwise.

Based on the channel estimates tph`,k : k P U`u, RU ` locally
computes a unique receiver combining vector v`,k for each
associated UE k P U`, where a linear MMSE principle is used.
We define the combining coefficient w`,k of RU-UE pair p`, kq
and the receiver unit norm vector vk P CLMˆ1 formed by
M ˆ 1 blocks w`,kv`,k : ` “ 1, . . . , L, such that v`,k “ 0 if
p`, kq are not associated. The coefficients w`,k are optimized by
cluster Ck to maximize the UL SINR (see [10] for details).

III. UPLINK DATA TRANSMISSION

Let all active UEs transmit with the same average energy
per symbol P ue, and we define the system parameter SNR

∆
“

P ue{N0, where N0 denotes the complex baseband noise power
spectral density. The received LMˆ1 symbol vector at the LM
RU antennas for a single channel use of the UL is given by

y “
?
SNR Hs` z, (2)

where s P CKˆ1 is the vector of information symbols trans-
mitted by the UEs (zero-mean unit variance and mutually
independent random variables) and z is an i.i.d. noise vector
with components „ CN p0, 1q. The goal of cluster Ck is to
produce an effective channel observation for symbol sk, the
k-th component of the vector s, from the collectively received
signal at the RUs ` P Ck. Using the receiver vector vk, the
corresponding scalar combined observation for symbol sk is
given by ŝk “ vH

ky. The instantaneous mutual information is
given by

Ik pvk,Hq
a

“ log p1` SINRkq , (3)
where

SINRk “
|vH
khk|

2

SNR´1
`
ř

j‰k |v
H
khj |

2
(4)

is the instantaneous signal to Interference plus noise ratio
(SINR) value.

A. Rate allocation
We consider outage rates as the effective UL data rates.

Under slot-by-slot coding and decoding, the receiver can reli-
ably decode an allocated rate rk for UE k provided that no
information outage occurs (see [16] and references therein).
This condition holds if the allocated rate rk is smaller than
the mutual information Ik pvk,Hq. The effective UL service
rate of UE k in time slot t, under consideration of the spectral
efficiency factor 1´

τp
T , is thus given by [17]

Rkptq “

#

p1´
τp
T qRk, if xk “ 1,

0, if xk “ 0,
(5)
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Fig. 1. Example empirical CDF of Ik
´

vk,H
¯

of UE k.

where
Rk

a

“ Rk pvkptq,Hptqq “ rk ˆ 1 trk ă Ik pvkptq,Hptqqu ,
(6)

1 tAu is the indicator function of an event A, vkptq and Hptq
are the realizations of vk and H in time slot t, and xk is the
activity variable for UE k, which is equal to 1 (0, respectively)
if UE k is scheduled (not active, respectively). Note that Hptq is
generated independently in each time slot according to (1). The
channel estimates and vkptq for all k P Kact are functions of
the realization of Hptq under estimation noise. The scheduling
schemes are evaluated in terms of the UE throughput given by

R̄k “ lim
TsÑ8

1

Ts

Ts
ÿ

t“1

Rkptq, (7)

where Ts is the total number of time slots.
The allocated rates are computed with a semi-analytical

scheme, where we assume that the decoder has knowledge of the
instantaneous mutual information. Further assume that we have
knowledge of a large set of realizations of Ik pvk,Hq for UE
k. We construct an empirical cumulative distribution function
(CDF) of the mutual information and, considering (5), we can
compute the allocated rate rk that maximizes the expected
outage rate of UE k, i.e.,

rk “ arg max
R

Rˆ PkpRq, (8)

where PkpRq “ PpR ă Ik pvk,Hqq and P pAq is the
probability of an event A. This is depicted in Fig. 1, where
PkpRq “ 1´FIkpRq, and FIkpRq is the value of the empirical
CDF of Ik pvk,Hq at R.

IV. SYSTEM OPTIMIZATION

We consider a network in the UL with a total number of
K UEs, which operates at its optimal load, when serving
Kact ă K UEs. Further, we assume an “infinite backlog”
situation, where all data to be transmitted is available at the UEs.
By scheduling at most Kact UEs per time slot, a concave entry-
wise non-decreasing utility function gp¨q of the user individual
ergodic rates R̄ “

`

R̄1, . . . , R̄K
˘

shall be maximized. The
problem to be solved is

maximize gpR̄q, subject to R̄ P R, (9)
where R is the achievable ergodic rate region [9]. The solution
of (9) is denoted by R̄‹, which is generally very hard to find,
since R is not characterized easily [17]. However, we can use the
framework of [9] to find a scheduling scheme that approximates

R̄‹. For this aim, we use “virtual queues” driven by “virtual
arrival processes”, such that the arrival rates approximate R̄‹

(see e.g. [9], [17]).
Specifically, in time slot t, the arrival processes are given by

Akptq “ ak, where a “ pa1, . . . , aKq is the solution to the
convex optimization problem

maximize
a

V gpaq ´
ř

kPrKsQk ptq ak

subject to 0 ď ak ď Amax, @k P rKs.
(10)

where V, Amax are suitably chosen constant parameters that
determine the behavior of the algorithm, and Qk ptq is the virtual
queue of user k in time slot t. The virtual queues are updated
in each time slot after computing the arrivals Akptq and service
rates Rkptq according to

Qkpt` 1q “ max tQkptq ´Rkptq, 0u `Akptq. (11)

A. Uplink scheduling scheme

In time slot t, we solve the optimization problem (10)
yielding the arrivals Akptq, and use the virtual queues Qkptq
as weights in the scheduling problem. Having defined Kact as
the desired number of simultaneously active UEs, we solve

maximize
x

ÿ

kPrKs

QkptqE rRksxk (12a)

subject to
ÿ

kPrKs

xk ď Kact, (12b)

xk P t0, 1u , (12c)
where E rRks “ rkˆPkprkq is the expected service rate of UE
k and rk is given by (8). Since Qkptq and E rRks are known,
this problem can be solved by simply scheduling the Kact UEs
with the largest product QkptqE rRks. This results in the service
rates Rkptq given by (5) and (6). The virtual queues are then
updated with the computed arrivals Akptq and the service rates
Rkptq according to (11).

B. Proportional fairness and hard fairness scheduling

We consider PFS and HFS, leading to different solutions
to the optimization problem (10). In case of considering PFS,
we have gpaq “

ř

kPrKs log ak and the convex optimization
problem

maximize
a

V
ÿ

kPrKs

log ak ´
ÿ

kPrKs

Qk ptq ak (13a)

subject to 0 ď ak ď Amax, @k, (13b)
which can be solved using Lagrange-KKT conditions yielding
the arrivals

ak “ min

"

V

Qkptq
, Amax

*

. (14)

For HFS, we have gpaq “ min
kPrKs

ak and the convex optimization

problem
maximize

a
V κ´

ÿ

kPrKs

Qk ptq ak (15a)

subject to 0 ď κ ď ak ď Amax, @k P rKs, (15b)
where κ is an auxiliary variable. In this case, the solution is
given by [17]

ak “

#

Amax, if V ą
ř

kPrKsQkptq,

0, else.
(16)
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Fig. 2. Sum throughput vs. K for different τp (left). The empirical CDF of
the user throughput for K “ t40, 60, 100u (right).
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Fig. 3. HFS (left) and PFS (right) with different V .

C. Online rate adaptation

The allocated rates rk for all k P rKs are learned online.
We consider a decoder that has knowledge of the instantaneous
mutual information. For each UE k, we consider a memory of
the last N samples of the mutual information. In each time
slot t, in which UE k is scheduled, the mutual information
Ik pvkptq,Hptqq for UE k is saved to the memory and replaces
the oldest sample. By that scheme, we maintain a memory
of the latest N values of Ik pvk,Hq and continuously update
the allocated rates with (8). Note that the allocated rates are
initialized by a “start-up” phase consisting of Ninit time slots,
where in each of the Ninit time slots Kact out of the K UEs
are randomly selected to be active. For each UE, we save the
samples of the mutual information experienced during the start-
up phase and compute the initial allocated rate with (8)2.

V. NUMERICAL EVALUATIONS AND OUTLOOK

We consider a dense cell-free network spanning an area of
50 ˆ 50 m2 with a torus topology to avoid boundary effects,
containing L “ 12 RUs, each with M “ 8 antennas. A
bandwidth of W “ 10 MHz and noise with power spectral
density of N0 “ ´174 dBm/Hz is assumed. The angular support
S`,k contains the DFT quantized angles (multiples of 2π{M )
falling inside an interval of length ∆ placed symmetrically
around the direction joining UE k and RU `. We use ∆ “ π{8
and the maximum cluster size Q “ 10 (RUs serving one UE) in
the simulations. The SNR threshold η “ 1 makes sure that an
RU-UE association can only be established, when β`,k ě η

MSNR .
The UL energy per symbol is chosen such that β̄MSNR “ 1
(i.e., 0 dB), when the expected pathloss β̄ with respect to LOS
and NLOS is calculated for distance 3dL, where dL “

b

A
πL is

the radius of a disk of area equal to A{L. The actual (physical)
UE transmit power is obtained as P ue

tx “ P ueW . This leads to
a certain level of overlap of the RUs’ coverage areas, such that

2We use this constructed “start-up” phase to achieve an allocated rate for
each UE. In practical systems, this may be done on a per UE basis, i.e., when
a UE joins the system, by some admission control scheme.

each UE is likely to be associated to several RUs. The UEs
are randomly dropped in the network area, while the RUs are
placed on 3ˆ 4 rectangular grid. The online rate adaptation is
carried out for all schemes with Ninit “ 500 and N “ 100, and
we consider RBs of dimension T “ 200 symbols.

A. Optimal user load

We start our evaluations by finding the optimal user load
in terms of the sum throughput

řK
k“1 R̄k. For each set of

parameters we generated 50 independent layouts (random uni-
form placement of UEs), and for each layout we simulated
Ts “ 1000 time slots, in which all K UEs are active. The
sum throughput is maximized with approximately K P r40, 60s
simultaneously active UEs, as depicted in Fig. 2, where the
average sum throughput of all topologies is shown. With small
K, the network does not operate at its full capability and thus
a low sum throughput is achieved. For heavily loaded networks
with K " ML

2 , the sum throughput decreases again due to
the high interference. We want to operate the network close
to its maximum throughput, but not at “full load”, where a
not negligible number of UEs experiences a low throughput,
as Fig. 2 shows for K “ t60, 100u. We thus focus on having
Kact “ 40 simultaneously active UEs per time slot and τp “ 20
in the following for the fairness scheduling problem.

B. Utility optimization

We consider the same network as before with a total number
of K “ 100 UEs, where we schedule Kact “ 40 UEs per time
slot. The proposed method using virtual arrivals and queues
for HFS and PFS are compared with random and round-robin
scheduling, as well as with a max-sum-rate scheduler (“Max.
sum rate”). With random scheduling, we randomly pick Kact

UEs per time slot, independent of the previous scheduling
decisions. With round-robin scheduling, we sort the UEs by
their index and schedule them in a subsequent way, such that,
e.g., in the first three time slots the following UEs are active:
t “ 1 : t1, . . . , 40u, t “ 2 : t41, . . . , 80u, t “ 3 : t81, . . . , 20u.
The max-sum-rate scheduler selects in each time slot the Kact

UEs to be active that have the largest expected service rate. We
consider five different topologies, where the UEs are randomly
placed. The empirical CDF plots contain the throughput of the
UEs from all topologies. The average sum log user throughput
is given by computing

ř

kPrKs log
`

R̄k
˘

for each topology
separately, and then taking the average over the topologies. The
simulations are stopped, when the queues of all UEs reach a
steady state.

Fig. 3 shows the empirical CDF of the user throughput with
HFS and PFS for different V . With HFS, V “ t1000, 10000u
yield very similar results, achieving a significant improvement
of the throughput compared to V “ 100. With PFS, increasing
V leads to a larger throughput of most UEs. Specifically, the
throughput of UEs in the upper part of the empirical CDF is
improved, while the throughput of the UEs in the lower part
is quite similar. Compared to the results in Fig. 2, where all
K “ 100 UEs are active in each time slot, the performance of
UEs with low throughput is significantly improved. The network



with K “ 100 simultaneously active UEs is “congested”,
leading to a not negligible fraction of UEs suffering from high
interference. For, example the 10th percentile throughput is
below 0.3 bit/s/Hz with all K UEs active in all time slots,
compared to approximately 0.45 bit/s/Hz achieved by both HFS
and PFS with V “ 10000. This improvement leads to more
fairness, motivating the proposed approaches, but comes at the
cost of a decreased performance of UEs with a large throughput,
especially when HFS is employed.

The better performance with larger V for both HFS and PFS
comes at the cost of more congestion of the queues, such that
more time slots are required until the queues of all UEs reach a
steady state. Both observations are depicted in Fig. 4 and can be
theoretically justified (see [9]). The evolution of the queues for
HFS and V “ t1000, 10000u is shown in Fig. 4, where from
all topologies the hundred queues are shown, which have the
largest values in the last slot. A remarkable observation is that
very few UEs have a long queue in most time slots, while the
queues of the remaining UEs reach a steady state after relatively
few time slots. A similar behavior is observed with PFS, where
the relative difference of the queue sizes is smaller.

The performance of the proposed HFS and PFS schemes are
compared to random, round-robin and max-sum-rate scheduling
in Fig. 5. The corresponding utility function is improved by HFS
and PFS, respectively, compared to the other schemes. Random
and round-robin scheduling achieve very similar results due to
the random locations of the scheduled UEs. If a network aims
at maximizing the sum throughput, the system becomes very
unfair, with a large fraction of UEs with zero throughput. Note
that the networks in previous works, which consider all UEs
to be active with K ă LM , translate in a very unfair system,
when the actual number of UEs in the network is much larger
than the K considered. These systems would not serve the UEs
above the limit of the desired K, i.e., a behavior similar to
“Max. sum rate” in Fig. 5, which is absolutely unacceptable for
a real-world network.

C. Concluding remarks

The proposed methods can increase fairness among users in
a cell-free system compared to random, round-robin and max-
sum-rate scheduling, where the total number of UEs in the
network is larger than the optimal user load. In addition, a fairer
throughput distribution is achieved compared to the approach of
serving all K UEs simultaneously in all time slots, which leads
to a congested network. The user queues with HFS suggest that
a user admission and rejection scheme may improve the overall
system performance, since only a very small fraction of UEs
has long queues, which may prevent the system from serving
the other UEs more frequently. A user admission and rejection
scheme is considered future work. Distributed approaches, and a
less frequent realization of pilot allocation and cluster formation
are other future research points.
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