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Abstract—Inspired by the results from quantum information
processing, spatial-mode demultiplexing offers resolution of ob-
jects at the quantum limit, below the well-known Rayleigh-
Abbe diffraction limit. An intriguing aspect of these results is
that, while the analysis leading to the ultimate sub-diffraction
limit is quantum, semi-classical devices can be used to build
“super-resolving” sensors that achieve this limit. Therefore,
these developments have potential to significantly improve the
quality of imaging systems in the near term. However, these
quantum-inspired systems are sensitive to fluctuation in nuisance
parameters, whether they are natural or adversarial. In this
paper we analyze the impact of such fluctuations and provide
methods to mitigate it. We focus on a problem of resolving two
point sources, which has immediate practical applications in, e.g.,
space situation awareness.

I. INTRODUCTION

Imaging systems operating in the far field are often under-
stood to have a “fundamental” limit on the optical resolution
due to diffraction. Consider a problem of resolving two weak
incoherent monochromatic point sources (e.g., two distant stars
or two small cellular features). “Rayleigh-Abbe criterion” [1],
[2] (or “Rayleigh criterion”) describes the minimum angu-
lar separation between these sources that can be accurately
estimated using a reasonable number of observations. It is
a function of the wavelength λ of the detected light and
the numerical aperture of the imaging system (which, for
distant objects, can be approximated using the diameter of
the entrance pupil) [4]. However, this limit implicitly assumes
“direct detection” imaging, that is, intensity measurement of
the optical image on the focal (image) plane.

It has long been known that more information about the
scene can be extracted from the incident optical wavefront by
considering other measurement instruments [5, Chapter 30,
Footnote 2]. In the last few years, quantum estimation theory
[6] has shown mathematically that the diffraction limit is not
fundamental, and is an artifact of choosing the direct detection
measurement. In fact, it disappears when spatial-mode re-
solving measurements such as “spatial mode demultiplexing”
(SPADE) [7], [8].

SPADE requires precise alignment to the centroid of the
scene. Existing solutions estimate the centroid assuming that
it is static [9]. In this paper, we study the impact of scene
dynamics, focusing on random perturbations of the scene

centroid. We find that perturbations increase the mean squared
error (MSE) of SPADE’s source separation estimate, as do
other types of noise [10], [11]. Although we offer a partial
correction for the errors introduced by the perturbations, we
note that SPADE is surprisingly robust: unless perturbations
are extreme, it outperforms direct detection even without our
correction! That being said, our study motivates investigating
alternative measurements that further improve on SPADE’s
performance in dynamic regimes.

In the next section, we present the mathematical details of
the two-source separation problem and the quantum-inspired
approach that enables resolving these sources beyond the
Rayleigh-Abbe limit. In Section III we explore the impact of
scene dynamics analytically and via Monte Carlo simulation,
and in Section IV we conclude.

II. PRELIMINARIES

A. Angular Resolution of Two Point Sources

Consider the problem of estimating the angular separation
s between the two equal-relative-brightness point sources in
a single dimension, as depicted in Fig. 1(a). The radiant
emittance of the two point sources is described mathematically
using two Dirac delta functions:

r(y; s, c) =
1

2
[δ (y − y0) + δ (y − y1)] , (1)

where
y0 = c+ s/2, y1 = c− s/2, (2)

c is the spatial centroid of the imaging system, and y is the
object plane coordinate [4, Ch. 7]. In the far-field diffraction-
limited regime, the point spread function (PSF) ψ(x) is
the Fourier transform of the aperture function. The spatial
distribution of energy in the image plane is the convolution
of the object radiant emittance function and |ψ(x)|2:

I(x; s, c) =

∫ +∞

−∞
r(y; s, c)|ψ(x− y)|2 dy, (3)

where x is the image plane coordinate scaled with respect
to the magnification factor of the imaging system [4, Ch. 7].
I(x; s, c) can also be interpreted as the probability density
function of measuring a photon at position x [4, Ch. 8].



(a) Unperturbed scene (b) Perturbed scene

Fig. 1: Resolution of two incoherent monochromatic objects
with separation s and centroid c imaged through a Gaussian
aperture with diameter D. In Fig. 1(b), the centroid is per-
turbed randomly by δc. We sketch the resulting image plane
energy distributions, and show their Gaussian components.

We assume an apodized Gaussian aperture to reduce the
diffraction patterns around the intensity peaks, with PSF [12]:

ψ(x) =

(
1

2πσ2

) 1
4

exp

(
−x2

4σ2

)
. (4)

We expect the results that follow to not change significantly for
the more practical circular apertures [13]. For distant objects,
the width of the PSF σ can be approximated by σ ≈ λ

D , where
D is the diameter of the 1-D Gaussian aperture of the imaging
system and λ is the source center wavelength. Combining (1),
(3), and (4), we obtain:

I(x; s, c) =
1

2
√
2πσ2

[
e−

(x−y0)2

2σ2 + e−
(x−y1)2

2σ2

]
, (5)

where yi is the location of the ith point source defined in (2).
For a lossless, passive, and monochromatic imaging system

employing direct detection measurement (photo-detection), the
Cramér-Rao bound on the MSE of any unbiased estimator š
of the angular separation s is [14]–[16]:

MSE(š) ≥ 1

NH(s)
, (6)

where N is the total mean photon number and H(s) is the
Fisher information (FI) per photon [7], [13]:

H(s) =

∫ +∞

−∞

1

I(x; s, c)

(
∂I(x; s, c)

∂s

)2

dx. (7)

The well-known Rayleigh-Abbe criterion describes the limit
of resolving two spatially incoherent sources. Specifically, it
states that the MSE of estimating separation s substantially
increases when s falls below ∼ λ

D , necessitating more obser-
vations to resolve the objects. Since MSE is proportional to
σ2 and is inversely proportional to N , we consider the nor-
malized MSE×N/(4σ2). The corresponding CRB is similarly
normalized. Fig. 2 illustrates the degradation of performance
by showing that the normalized CRB for the MSE of direct

Fig. 2: Normalized CRB for the MSE of estimating separation
s vs. normalized separation s/σ showing the performance
limits for direct imaging and mode-sorting measurements.

detection increases substantially as the normalized separation
s
σ tends to zero [14], [17].

B. Quantum-inspired Super-resolution

Despite the fact that here we only consider classical light,
quantum information processing provides insights to reach
beyond the Rayleigh-Abbe limit. We can describe the quantum
state of a photon from source i ∈ {0, 1} after exiting the
aperture using a pure state with the Gaussian PSF:

|ψ(yi)⟩ =
∫

dxψ(x− yi) |x⟩

=
1

(2πσ2)
1
4

∫
dx e−

(x−yi)
2

4σ2 |x⟩ ,
(8)

where yi is the location of the ith point source defined in
(2) and |x⟩ is the image plane spatial basis. Therefore, the
density operator describing the quantum state (wave-function)
of a photon on the image plane is a mixed state:

ρ̂(s) =
1

2

∑
i=0,1

|ψ(yi)⟩ ⟨ψ(yi)| . (9)

In order to estimate s, one must measure the quantum
state ρ̂(s). Quantum mechanics allows for a rich choice of
measurements, with direct detection being one of the choices.
The ultimate quantum limit on the MSE is the quantum CRB
[6], which optimizes the classical CRB over all the possible
quantum measurements:

MSE(š) ≥ 1

NH(s)
≥ 1

NQ(s)
, (10)

where Q(s) is the quantum FI [6]:

Q(s) = Tr
[
ρ̂(s)L̂2

s

]
. (11)



Here L̂s is the symmetric logarithmic derivative (SLD) [18]
with respect to the angular separation s, represented implicitly
by the Lyapunov equation [19]:

∂ρ̂(s)

∂s
=

1

2
(L̂sρ̂(s) + ρ̂(s)L̂s). (12)

As seen in Fig. 2, quantum CRB does not degrade with s.
Thus, Rayleigh-Abbe limit is not fundamental and is entirely
due to the choice of direct detection measurement. Resolution
of objects beyond Rayleigh-Abbe limit, or super-resolution is,
therefore, possible with another measurement.

A measurement that projects the wave-function ρ̂(s) of the
photon on the image plane into spatial Hermite-Gaussian (HG)
mode basis {|ϕq⟩ ⟨ϕq|}, q = 0, 1, . . ., and directly detects the
photons on each mode saturates the second inequity of (10)
[7]. The HG modes are orthonormal and are given by:

|ϕq⟩ =
(

1

2πσ2

) 1
4 1√

2qq!

∫
dxHq

(
x√
2σ

)
e−

x2

4σ2 |x⟩ ,
(13)

where Hq(x) is a polynomial – an eigenfunction of the
Gaussian function. This spatial mode projection followed
by photo-detection is called spatial mode demultiplexing or
SPADE. In fact, a projection into a binary spatial mode
set {|ϕ0⟩ ⟨ϕ0| , I − |ϕ0⟩ ⟨ϕ0|} followed by photo-detection on
each of the two modes (called B-SPADE) also saturates the
quantum limit in (10) [7], [9]. We will thus analyze B-SPADE
in the remainder of the paper.

C. Two-stage B-SPADE Receiver

Knowledge of the centroid value c is necessary to align the
spatial mode projection to the scene. An adaptive two-stage
approach depicted in Fig. 3 was proposed in [9]. In the first
stage N1 photons are directly-detected. Then, the positions of
photon detection are averaged, producing an unbiased estima-
tor ĉ. It is used to construct B-SPADE in the second stage
to estimate separation s using the remaining N2 = N − N1

photons. Maximum likelihood estimation (MLE) employed on
the output of the detectors yields an asymptotically consistent
estimator of s that achieves quantum CRB as N → ∞. In
[9], the authors optimize N1. We employ a simplification
inspired by [20, Ch. 6], [21], [22] and set N1 =

√
N . This

simplified adaptive multistage imaging system saturates the
quantum CRB in (10) for large N .

III. IMPACT OF SCENE DYNAMICS

A. Random Centroid Perturbations

Authors of [9] assume that the scene is static. In particular,
while the centroid is unknown, it is assumed not to move
as measurements are performed. However, in many practical
scenarios, the centroid location changes randomly, e.g., due
to the vibration of the sensing platform. Here we explore
the impact of the centroid perturbations on resolving the two
incoherent point sources. We employ a simplified model of
centroid dynamics: each photon arrives independently with
probability 1 − p from an unperturbed scene with unknown
centroid c and with probability p from a centroid moved to

Fig. 3: Two-stage receiver design. We set N1 =
√
N and

N2 = N −
√
N .

c+ δc, for δc > 0. This is described in Fig. 1(b). The spatial
distribution of energy on the image plane from the perturbed
scene is:

Ip(x; s, c, p, δc) = (1− p)I(x; s, c) + pI(x; s, c+ δc), (14)

where I(x; s, c) is defined in (5) and subscript “p” denotes
“perturbed.” The corresponding quantum state of a photon is:

ρ̂p(s) =
1

2
(1− p)

∑
i=0,1

|ψ(yi)⟩ ⟨ψ(yi)|

+
1

2
p

∑
i=0′,1′

|ψ(y′i)⟩ ⟨ψ(y′i)| ,
(15)

where

y′0 = (c+ δc) + s/2, y′1 = (c− δc)− s/2. (16)

Consider using the two-stage imaging system from [9]
as described in Section II-C without adjusting for centroid
dynamics. Then, the perturbations degrade resolution by 1)
introducing bias into the estimate of centroid location ĉ, and 2)
causing misalignment of the mode sorter. Suppose both p and
δc are known (e.g., from the understanding of the underlying
physical properties of the system). Then, the naı̈ve centroid
estimator ĉ described in Section II-C can be corrected to return
the unperturbed value in expectation as follows:

ču = č− pδc. (17)

Although this is a partial solution, it ameliorates the perfor-
mance degradation due to perturbations, as we show in our
numerical study that follows.

B. Numerical Results

We employ Monte-Carlo simulations to study the impact of
centroid perturbations. We simulate the estimation of angular
separation s using the direct-detection imaging, the naı̈ve two-
stage B-SPADE measurements, and the two-stage B-SPADE



(a) p = 0.05 δc = 0.05 (b) p = 0.05 δc = 0.2 (c) p = 0.05 δc = 0.7

(d) p = 0.2 δc = 0.05 (e) p = 0.2 δc = 0.2 (f) p = 0.2 δc = 0.7

(g) p = 0.7 δc = 0.05 (h) p = 0.7 δc = 0.2 (i) p = 0.7 δc = 0.7

Fig. 4: Normalized MSE of estimating separation s vs. normalized separation s/σ. The total mean photon number is N = 105.
CCRB and QCRB are normalized classical and quantum Cramér-Rao bounds. We evaluate the MSE at 201 equally-spaced
values of s/σ ∈ [0, 2]. Each data point is an average of n = 5×103 results from Monte-Carlo simulations. The 95% confidence
intervals are negligibly small and not reported.

with perturbation bias removed from the estimator č of the
centroid location c using (17). These are described in Sec-
tions II-A, II-C, and III-A, respectively. We also evaluate the
corresponding classical and quantum CRBs. Our total mean
photon number is N = 105 and we average over the results of
n = 5×103 Monte-Carlo simulation trials to obtain each data
point. Both n and N are limited by our computing capabilities.
Recall that the MLE used on the output of photodetectors
that follow the mode sorters are inherently biased at finite

N . Thus, while increasing n would not change our results
significantly (our 95% confidence intervals are negligible),
increasing N would be beneficial.1 Our perturbation param-
eters are p ∈ {0.05, 0.2, 0.7} and δc ∈ {0.05, 0.2, 0.7}. We
normalize MSE and CRB via multiplication by N/(4σ2) as
described in Section II-A.

1The “humps” in the MSE curves, such as those found for the MSEs in both
naı̈ve and updated receivers for p = 0.2 and δc = 0.7 around s/σ ≈ 1.5 in
Fig. 4(f) are due to the MLE bias. We expect larger N to reduce their size.



The plots on Fig. 4 reveal that the bias in centroid estimation
as well as the misalignment of the mode sorter increases the
MSE for B-SPADE measurement. However, B-SPADE still
outperforms direct detection for all except very large centroid
perturbations in Fig. 4(i)! Furthermore, the bias correction in
(17) decreases MSE substantially, although it does not achieve
the quantum CRB. Additionally:

• The effect of even large centroid perturbations in Fig. 4(i)
on the direct detection imaging is insignificant.

• On the other hand, centroid perturbations increase the
quantum CRB for resolution MSE substantially. This is
especially noticeable at small s and δc, when the perturba-
tions introduce false excitations that are indistinguishable
from the ground truth. Qualitatively similar results hold
when mode sorting is afflicted with intermodal cross-talk
[10] and thermal noise [11].

• However, when δc gets large, the quantum CRB for res-
olution MSE decreases. This is evident from comparing
Figs. 4(a), 4(d), and 4(g) to Figs. 4(c), 4(f), and 4(i).
We conjecture that this is because, when δc is large,
the perturbation component I(x; s, c + δc) of the spatial
distribution of energy Ip(x; s, c, p, δc) given in (14) can
be distinguished from the ground truth I(x; s, c).

Finally, we note that, although centroid perturbations can
severely degrade the performance of B-SPADE, it still uni-
formly outperforms direct detection in all but the most severe
perturbation scenario in Fig. 4(i). However, reaching quantum
CRB is likely to require a more complicated design.

IV. CONCLUSION

Although we show that B-SPADE is surprisingly robust to
centroid perturbations, this paper motivates the development
of the measurements that achieve the quantum CRB in the
perturbed scenario. Incorporation of scene dynamics is also
a natural extension of the adaptive Bayesian super-resolution
imaging [23]. Furthermore, we assumed full knowledge of the
statistical characteristics of perturbations, which is generally
unavailable in practice. Receivers that include the estimation of
these characteristics need to devised. Finally, the perturbation
model needs to be expanded to account for richer set of
scene dynamics and include variation in angular separation
in addition to centroid.
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