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Abstract—Recovering a signal x∗ ∈ Rn from a sequence of
linear measurements is an important problem in areas such as
computerized tomography and compressed sensing. In this work,
we consider an online setting in which measurements are sampled
one-by-one from some source distribution. We propose solving
this problem with a variant of the Kaczmarz method with an
additional heavy ball momentum term. A popular technique for
solving systems of linear equations, recent work has shown that
the Kaczmarz method also enjoys linear convergence when ap-
plied to random measurement models, however convergence may
be slowed when successive measurements are highly coherent.
We demonstrate that the addition of heavy ball momentum may
accelerate the convergence of the Kaczmarz method when data
is coherent, and provide a theoretical analysis of the method
culminating in a linear convergence guarantee for a wide class
of source distributions.

I. INTRODUCTION

A. The Kaczmarz Method

Recovering a signal x∗ ∈ Rn from a collection of linear
measurements is an important problem in computerized to-
mography [1], sensor networks [2], compressive sensing [3],
[4], machine learning subroutines [5], and beyond. When the
collection of linear measurements is finite, say of size m, and
accessible at any time, the problem is equivalent to solving
a system of linear equations Ax = b with A ∈ Rm×n and
b ∈ Rm, which has been well-studied. A popular method for
solving this classical problem is the Kaczmarz method [6]:
beginning with an initial iterate x0, at each iteration a row
of the system is sampled and the previous iterate is projected
onto the hyperplane defined by the solution space given by
that row. More precisely, if the row a>i x = bi is sampled at
iteration k, the update has the form

xk = xk−1 −
〈ai, xk−1〉 − bi
‖ai‖2

ai.

The original method proposed cycling through rows in order,
such that i = k mod m. In [7] it was observed empirically
that randomized row selection accelerates convergence, and in
the landmark work [8] it was proven that selecting rows at
random with probability proportional to their Euclidean norm
yields linear convergence in expectation.

In this work, we consider an online model in which at each
discrete time t = 1, 2, . . . a linear measurement (ϕt, yt) ∈
Rn × R is received. We assume that each measurement is
noiseless, i.e. 〈ϕt, x

∗〉 = yt for all t, and that measurements
are streamed through memory and are not stored. Note that
the linear system setting described above is a special case of
this model, but we now allow for measurements to be sampled

from a more general source. The Kaczmarz method is well-
suited to this setting as it requires access to only a single
measurement at each iteration. See, for example, [9], where
measurement data is viewed as being sampled i.i.d. from some
distribution D on Rn. We assume the noiseless, i.i.d. setting
throughout this paper. A Kaczmarz update in this setting has
the following form, when initialized with some arbitrary x0:
at discrete times t = 1, 2, . . . , a measurement (ϕt, yt) ∈ Rn×
R is received, where ϕt ∼ D, and a Kaczmarz iteration is
computed

xt = xt−1 −
〈ϕt, xt−1〉 − yt
‖ϕt‖2

ϕt.

In [9] it was shown that under certain conditions on D,
the method enjoys linear convergence in expectation. Further
related works have placed online Kaczmarz in the context of
learning theory [10], and have analyzed sparse online variants
[11], [12]. Random vector models have also appeared in
analyses of Kaczmarz methods for phase retrieval [13] and
for sparsely corrupted data [14].

B. Heavy Ball Momentum

Heavy ball momentum is a popular addition to gradient
descent methods, in which an additional step is taken in the di-
rection of the previous iteration’s movement. Proposed initially
in [15], it has proven very popular in machine learning [16],
[17], [18], [19], with a guarantee of linear convergence for
stochastic gradient methods with heavy ball momentum proven
in [20] (improving on earlier sublinear guarantees in [21],
[22]). A gradient descent method itself [23], the Kaczmarz
method may be modified with heavy ball momentum to give
updates of the following form:

xt+1 = xt −
〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt + β(xt − xt−1),

where β ≥ 0 is a momentum parameter. In [20] it was shown
that when applied to a linear system (i.e., when each ϕt is
sampled from the rows of a matrix A), the Kaczmarz method
with heavy ball momentum converges linearly in expectation.
Experimental results indicate accelerated convergence com-
pared to the standard Kaczmarz method on a range of datasets,
while the momentum term does not affect the order of the
computational cost.

In this work, we propose an online variant of the Kacz-
marz method with heavy ball momentum. We prove that our
method converges linearly in expectation for a wide range
of distributions D, and offer particular examples. This theory
is supported by numerical experiments on both synthetic and
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real-world data, which in particular demonstrate the benefits of
adding momentum when measurements are highly coherent.

II. PROPOSED METHOD & EMPIRICAL RESULTS

We propose an online variant of the Kaczmarz method,
modified to include a heavy ball momentum term β ∈ (0, 1),
which we call OHBK(β) (see Algorithm 1). We note that
our method is a generalization of the momentum Kaczmarz
method for systems of linear equations introduced in [20].
The method requires only a single measurement to be held in
storage at a time, while leveraging information about previous
measurements through the momentum term.

Algorithm 1 Online Heavy Ball Kaczmarz
1: procedure OHBK(β) (Input: initial iterate x0, measure-

ments {(ϕt, yt)}∞t=1, momentum parameter β )
2: Set x1 = x0
3: for t = 1, 2, . . . do
4: Update xt+1 = xt − 〈ϕt,xt〉−yt

‖ϕt‖2
ϕt + β(xt − xt−1)

5: end for
6: end procedure

We test our method on synthetic and real-world data.
For each data source, we compare our method OHBK(β)
for a variety of β to an online Kaczmarz method without
momentum, which we denote by OK (equivalently, OHBK(0)).

We first experiment on synthetic data. We sample x∗ ∈ R50

with standard Gaussian entries, and take {ϕt}∞t=1 to be vectors
of length 50 with U [0, 1] entries. We note that this process pro-
duces particularly coherent data, that is, the vectors {ϕt}∞t=1

have small pairwise inner products. Each yt is then computed
as yt = 〈ϕt, x

∗〉 to ensure measurements are noiseless. In
Figure 2 we perform a parameter search over 100 trials for
β and plot the median error after 100 iterations versus β
with shading for the 25th through 75th percentiles. Introducing
some amount of momentum provides an acceleration, however,
taking β to be too large places too much weight on previous
information and is less effective. In Figure 1 we show con-
vergence down to machine epsilon of OHBK(β) versus online
randomized Kaczmarz (i.e. OHBK(0)) for a selection of β
(averaging over 10 trials), and the acceleration provided by
momentum is clear.

In Figure 3, we investigate the effect of momentum on
highly coherent systems further. We perform 4000 iterations
of OHBK(β) on U [ε, 1] signals of length 50, for ε ∈ [0, 1], for
a range of momentum parameters β (again averaged over 10
trials). We see that momentum provides a significant speedup
in convergence even for highly coherent systems (i.e. for
large ε). However, as ε → 1, recovering the signal becomes
intractable.

We compare the effect of the signal length n on the optimal
momentum parameter β in Figure 4. We perform parameter
searches for signals of length n ∈ {50, 100, 500, 1000} and
mark the optimal values of β. The optimal choice of β does
not appear to vary significantly with n.

In Figure 5 we use a system generated from the Wisconsin
Diagnostic Breast Cancer (WDBC) dataset, where each mea-
surement is computed from a digitized image of a fine needle
aspirate of a breast mass and describes characteristics of the
cell nuclei present [24]. We stream through each measurement
of the 699-row, 10-feature dataset once to replicate the online
model, and again see that the addition of momentum provides
a noteworthy acceleration to convergence.
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Fig. 1. Error versus iteration for OHBK(β) applied to U [0, 1] signals of
length 50.
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Fig. 2. ‖x100 − x∗‖ versus β for a range of β ∈ [0, 0.6], for U [0, 1] signals
of length 50.

III. THEORETICAL RESULTS

Throughout our theory, we assume that {ϕt}∞t=1 is a se-
quence of independent samples from some distribution D. We
provide a general linear convergence (in expectation) result
with a rate depending on the matrix W := ED

[
ϕϕ>

‖ϕ‖2

]
, in
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Fig. 3. log ‖x4000 − x∗‖ versus ε for OHBK(β) applied to U [ε, 1] signals
of length 50.
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Fig. 4. log ‖x4000 − x∗‖ versus β for OHBK(β) applied to U [0, 1] signals
of length n. The gray verticals show the value of β yielding the minimum
error.

particular on its smallest and largest singular values σmin(W )
and σmax(W ).

Theorem 1 (Convergence in Expectation of OHBRK). Sup-
pose that measurement vectors {ϕt}∞t=1 are sampled inde-
pendently from D, and W = ED

[
ϕϕ>

‖ϕ‖2

]
. Then if β is small

enough such that

4β + 4β2 − (1 + β)σmin(W ) + βσmax(W ) < 0,

the iterates produced by OHBK(β) satisfy the following guar-
antee: for some δ > 0, q ∈ (0, 1), we have

E[‖xt − x∗‖2] ≤ qt(1 + δ) ‖x0 − x∗‖2 .
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Fig. 5. Error versus iteration for OHBK(β) applied to the WDBC dataset.

More interpretable conditions on β may be obtained for
particular classes of distribution D. In particular, if ϕ/ ‖ϕ‖ is
distributed uniformly on the unit sphere (which is the case if
D itself is the uniform distribution on the unit sphere, or if D
is the standard n-dimensional Gaussian), then W = 1

nI and
we require

β + β2 <
1

4n

to guarantee linear convergence in expectation.

IV. PROOF OF MAIN RESULT

In this section we prove Theorem 1 by following the steps of
([20], Theorem 1), making modifications for the online case
and simplifications to some of the constants for our special
case. First we present a lemma from [20] which we will use
in our convergence proof.

Lemma 2 ([20], Lemma 9). Let {Ft}t≥0 be a sequence of
non-negative real numbers with F0 = F1 that satisfies the
relation Ft+1 ≤ a1Ft+a2Ft−1 for all t ≥ 1, with a2 > 0 and
a1 + a2 < 1. Then the following inequality hold for all t ≥ 1

Ft+1 ≤ qt(1 + δ)F0,

where q = a1+
√

a2
1+4a2

2 < 1, δ = q − a1 and q ≤ a1 + a2.

A proof of this lemma can be found in [20].
We begin our convergence analysis by writing the squared

L2 error at the (t+1)th iteration and substituting the OHBK(β)
update into it,

‖xt+1 − x∗‖2 =

∥∥∥∥∥xt − 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt + β(xt − xt−1)− x∗
∥∥∥∥∥
2

.



Next, we group our equation into three terms:

‖xt+1 − x∗‖2 =

∥∥∥∥∥xt − x∗ − 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt

∥∥∥∥∥
2

+β2 ‖xt − xt−1‖2

+2β〈xt − x∗ −
〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt − xt−1〉

(1)

We bound the first term of Equation (1) by following a
standard Kaczmarz convergence argument and the fact that
yt = 〈ϕt, x

∗〉. We have that

∥∥∥∥∥xt − x∗ − 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt

∥∥∥∥∥
2

= ‖xt − x∗‖2 +

∥∥∥∥∥ 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt

∥∥∥∥∥
2

−

2

〈
〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt − x∗
〉

= ‖xt − x∗‖2 +
(〈ϕt, xt〉 − yt)2

‖ϕt‖2
− 2

(〈ϕt, xt〉 − yt)2

‖ϕt‖2

= ‖xt − x∗‖2 −
(〈ϕt, xt〉 − yt)2

‖ϕt‖2
.

We bound the second term of Equation (1) by first adding
and subtracting x∗

β2 ‖xt − xt−1‖2 = β2 ‖(xt − x∗) + (x∗ − xt−1)‖2 .

Then by applying the fact that ‖a+ b‖2 ≤ 2 ‖a‖2+2 ‖b‖2 we
have that

β2 ‖(xt − x∗) + (x∗ − xt−1)‖2

≤ 2β2 ‖xt − x∗‖2 + 2β2 ‖xt−1 − x∗‖ .

Thus we have that

β2 ‖xt − xt−1‖2 ≤ 2β2 ‖xt − x∗‖2 + 2β2 ‖xt−1 − x∗‖ .

Finally we bound the third term of Equation (1) as

2β

〈
xt − x∗ −

〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt − xt−1

〉
=

2β〈xt − x∗, xt − xt−1〉+

2β

〈
〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt−1 − xt

〉
= 2β ‖xt − x∗‖2 + 2β〈xt − x∗, x∗ − xt−1〉+

2β

〈
〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt−1 − xt

〉
= β ‖xt − x∗‖2 + β ‖xt − xt−1‖2 − β ‖xt−1 − x∗‖2 +

2β

〈
〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt−1 − xt

〉
≤ β ‖xt − x∗‖2 + β ‖xt − xt−1‖2 − β ‖xt−1 − x∗‖2−

β〈 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt − x∗〉+

β〈 〈ϕt, xt−1〉 − yt
‖ϕt‖2

ϕt, xt−1 − x∗〉.

Combining the three bounds, we have

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 −
(〈ϕt, xt〉 − yt)2

‖ϕt‖2

+2β2 ‖xt − x∗‖2 + 2β2 ‖xt−1 − x∗‖2

+β ‖xt − x∗‖2 + β ‖xt − xt−1‖2 − β ‖xt−1 − x∗‖2−

β〈 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt − x∗〉+

β〈 〈ϕt, xt−1〉 − yt
‖ϕt‖2

ϕt, xt−1 − x∗〉.

Simplifying and grouping like terms we have

‖xt+1 − x∗‖2 ≤ (1 + 2β2 + β) ‖xt − x∗‖2 +
(2β2 − β) ‖xt−1 − x∗‖2−
(〈ϕt, xt〉 − yt)2

‖ϕt‖2
+ β ‖xt − xt−1‖2−

β〈 〈ϕt, xt〉 − yt
‖ϕt‖2

ϕt, xt − x∗〉+

β〈 〈ϕt, xt−1〉 − yt
‖ϕt‖2

ϕt, xt−1 − x∗〉.

Applying the simplification for the second term of Equa-
tion (1) and simplifying the inner products, we have



‖xt+1 − x∗‖2 ≤ (1 + 2β2 + 3β) ‖xt − x∗‖2 +
(2β2 + β) ‖xt−1 − x∗‖2−

(β + 1)
〈ϕt, xt − x∗〉2

‖ϕt‖2
+

β
〈ϕt, xt−1 − x∗〉2

‖ϕt‖2
.

Taking an expectation over our signal of our simplified
equation

E[‖xt+1 − x∗‖2] ≤ (1 + 2β2 + 3β) ‖xt − x∗‖2 +
(2β2 + β) ‖xt−1 − x∗‖2−

(β + 1)E[
(〈ϕt, xt − x∗〉)2

‖ϕt‖2
]+

βE[
(〈ϕt, xt−1 − x∗〉)2

‖ϕt‖2
]

= (1 + 2β2 + 3β) ‖xt − x∗‖2 +
(2β2 + β) ‖xt−1 − x∗‖2−

(1 + β)(xt − x∗)TE

[
ϕtϕ

T
t

‖ϕt‖2

]
(xt − x∗)+

β(xt−1 − x∗)TE

[
ϕtϕ

T
t

‖ϕt‖2

]
(xt−1 − x∗).

Let W := E
[
ϕtϕ

T
t

‖ϕt‖2

]
. We can then bound the above in terms

of the largest and smallest singular values of W :

E[‖xt+1 − x∗‖2] ≤ (1 + 2β2 + 3β) ‖xt − x∗‖2 +
(2β2 + β) ‖xt−1 − x∗‖2−
(1 + β)σmin(W ) ‖xt − x∗‖2 +
βσmax(W ) ‖xt−1 − x∗‖2

= (1 + 2β2 + 3β − (1 + β)σmin(W )) ‖xt − x∗‖2 +
(2β2 + β + βσmax(W )) ‖xt−1 − x∗‖2 .

Finally, we apply Lemma 2, wherein the two coefficients
are given by a1 = 1 + 2β2 + 3β − (1 + β)σmin(W ) and
a2 = 2β2 + β + βσmax(W ). Since we assumed that a1 +
a2 = 1+ 4β2 + 4β + (1+ β)σmin(W ) + βσmax(W ) < 1 and
since β > 0 then a2 = 2β2 + β + βσmax(W ) > 0 thus the
assumptions for Lemma 2 hold, so we have that

E[‖xt − x∗‖2] ≤ qt(1 + δ) ‖x0 − x∗‖2

where q = a1+
√

a2
1+4a1

2 , δ = q − a1 and a1 + a2 ≤ q < 1.
Since q ∈ (0, 1) we have shown that the norm squared error
of the iterates produced by OHBK(β) converges linearly in
expectation.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work we discuss using a Kaczmarz method variant
with momentum to solve an online signal recovery problem.
We leverage a heavy ball momentum term, a classical accel-
eration method, to improve the convergence rate. We prove
a theoretical convergence rate for OHBK(β), and verify this
convergence empirically on both synthetic and real-world data.
We demonstrate empirically that for coherent measurements,
the addition of momentum indeed accelerates convergence,
and provided some initial exploration into the dependence of
the convergence rate on the signal length n and momentum
strength β.

It is notable that in our convergence analysis, we did not
recover a theoretically optimal value for β. Doing so, and
comparing this value to empirically best values, would be
an interesting future direction. Furthermore, we would like
to obtain theoretical parameter relationships: for example,
how the optimal momentum strength depends on the signal
length and coherency of the measurements. It may in fact
be optimal to adaptively adjust the momentum parameter
across iterations based on the current iterate and properties
of incoming measurements. Additionally, we would like to
leverage other accelerated gradient methods such as ADAM
[25]. Finally, we would like to consider solving the online
signal recovery problem in the case where each measurement
is no longer exact, but instead contains some amount of noise
[26]. This could be achieved, for example, using relaxation.
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