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Abstract—This work considers a Bayesian signal processing
problem where increasing the power of the probing signal may
cause risks or undesired consequences. We employ a market
based approach to solve energy management problems for signal
detection while balancing multiple objectives. In particular, the
optimal amount of resource consumption is determined so as
to maximize a profit-loss based expected utility function. Next,
we study the human behavior of resource consumption while
taking individuals’ behavioral disparity into account. Unlike
rational decision makers who consume the amount of resource to
maximize the expected utility function, human decision makers
act to maximize their subjective utilities. We employ prospect
theory to model humans’ loss aversion towards a risky event. The
amount of resource consumption that maximizes the humans’
subjective utility is derived to characterize the actual behavior
of humans. It is shown that loss attitudes may lead the human
to behave quite differently from a rational decision maker.

Index Terms—Loss aversion, resource consumption, signal
detection, prospect theory, sensor networks.

I. INTRODUCTION

In the areas of wireless communications, target tracking,
spectrum sensing, among others, signal detection has been
extensively studied in both centralized and distributed settings
[1], [2]. Recently, the application of signal detection theory
has expanded from traditional hypothesis testing problems
to emerging paradigms such as crowdsourcing, internet of
things (IoT) and human in the loop decision making systems
[3]–[9]. The objective of signal detection in most existing
literature is to improve the detection accuracy under some
resource constraints such as energy1 consumption, bandwidth
limitation and monetary budget. For example, power/spectrum
allocation problems for centralized, distributed and cluster-
based architectures in the context of wireless sensor networks
and cognitive radio networks have been studied in [10]–
[16]. Moreover, budget constrained sensor selection and task
scheduling problems have been studied in the context of
crowdsourcing and IoT systems [17]–[19]. In these above tasks
that employ humans/sensor networks to monitor the presence
or absence of a phenomenon of interest (PoI), typically
all available resources are consumed so that the detection
performance is maximized. However, in practical decision
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1For the ease of conceptual illustration, we will use the terms “resource”
and “energy” interchangeably in this paper.

making systems such as crowdsourcing and IoT where human
participants are selfish and strategic, the costs associated with
resource consumption should also be considered. Due to the
trade-off between the system performance improvement and
cost of the resource, it might not be worthwhile to consume
all the available resources.

There are two types of costs associated with energy con-
sumption in the detection and estimation process. One type is
the direct energy cost that is needed to generate the probing
signal in active sensing systems such as electromagnetic,
infrared, pulsed laser and X-ray. Another type of cost, which
in general is more significant than the first type, is due to the
undesired consequences caused by the probing signal emitted
from “us”. For instance, in submarine combat scenarios, the
active sonar system from us emits a sound wave to detect
the range, bearing, and relative motion of the adversary. As
the power of the sonar signal increases, although the probing
performance improves, at the same time our states (e.g.,
location, waveform, beam orientation/aperture) are more likely
to be detected by the adversary, making our system more
vulnerable. Another example is medical imaging such as com-
puted tomography (CT) scans and bone density tests. A large
amount of radiation dose results in higher quality images of the
human body structure. However, intensive radiation exposure
is harmful to the human body. In these environments where
the probing signal may cause undesired consequences, the
optimal amount of energy consumption must be appropriately
determined to balance different objectives.

This paper employs a utility based approach where we
consider the profit to be the detection performance and the
loss to be the energy consumption and undesired consequences
caused by the probing signal, i.e., we consider a profit and loss
proposition. The objective is to determine the optimal amount
of energy consumption to balance the trade-off between system
performance gain and energy consumption cost. In most signal
detection problems, the detection accuracy improves as more
energy is consumed. However, in our setting, the rate of
detection accuracy increment slows down as more energy is
spent, i.e, the phenomenon of ‘diminishing returns’ sets in.
After a saturation point, the extra profit obtained by spending
additional units of energy is lower than the cost incurred. In
this case, the usage of additional amount of energy is neither
useful nor advisable.
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Moreover, we consider that the decision on energy con-
sumption is made by a human decision maker and we aim
to analyze the behavioral difference on energy consumption
across individuals. Unlike rational decision makers who per-
ceive the expected utilities precisely, humans’ perception of
utilities of an event is subjective and distorted due to cogni-
tive biases. According to psychology studies, one prominent
feature of human cognitive biases is their loss attitude that
characterizes the asymmetric valuation towards gains and
losses [20]. In order to incorporate human loss attitude in
the analysis, we adopt prospect theory (PT) to carry out our
analysis. The Nobel-prize-winning prospect theory provides an
accurate description of loss aversion in human decision making
by utilizing a value function to describe humans’ asymmetric
valuation towards gains and losses. There have been several
works that incorporated PT into hypothesis testing to model
human decision making [21]–[25]. The authors in [26]–[28]
employed PT to model human choice for goods and service
exchange in the applications of spectrum sensing as well as
wireless sensor networks.

To the best of our knowledge, no previous work has investi-
gated the loss aversion aware energy consumption problem in
the context of signal detection in general and for hypothesis
testing problems in particular. In this paper, we first formulate
a profit-loss based expected utility function in signal detection
and determine the optimal amount of resource consumption
while balancing multiple objectives. Next, we employ the
value function from PT to construct the subjective utility func-
tions and characterize the humans’ loss aversion behavior of
energy consumption. We study the optimal strategy of energy
usage that maximizes human subjective utility under PT with
fixed and weighted average reference points, respectively.

II. PROBLEM FORMULATION

Consider a binary signal detection problem and our goal is
to decide on the amount of energy consumption while solving
the problem. Let the amount of energy consumed to perform
the detection task be denoted by p. The probability of making
a correct decision is a function of p and is denoted by D(p).
In a number of applications, D(p) is increasing and concave
with respect to p, i.e, the rate of increase of D(p) slows down
as p increases.

A. Examples that illustrate the concavity of D(p)

In this subsection, we provide two examples to show that
D(p) satisfies the above mentioned property in a wide range
of signal detection problems.

1. Binary hypothesis testing with shift of means. The shift-
of-mean hypothesis testing problem characterizes a large num-
ber of problems in signal processing and communications.
Under the two hypotheses, the observation is assumed to be
a Gaussian random variable with means ±√p and the same
variance σ2. Consider that in order to generate the signals with
amplitude ±√p, the required power is p. The optimal Bayesian

detector [1] has the probability of successfully detecting the
hypothesis given by

D(p) = 1−Q(

√
p

σ2
) (1)

where Q(t) is the probability that a standard normal
random variable takes a value larger than t: Q(t) =
1√
2π

∫∞
t

exp(−u
2

2 )du.
2. Asymptotic binary hypothesis testing. In binary hypoth-

esis testing problems, there are two hypotheses where the
observation X follows a probability density functions (pdf)
P0 and P1 under each hypothesis. Based on an n observation
sequence Xn drawn i.i.d from one of the two distributions,
the Bayesian probability of correctly detecting the hypothesis
is given by D(n) ≈ 1 − 2−nc

∗(P0,P1), where c∗(P0, P1) =
− logminλ∈(0,1)

∫
Pλ0 (x)P

1−λ
1 (x)dx, known as the Chernoff

information, is the best achievable exponent for Bayesian
probability of error [29]. Let the number of observations
n denote the amount of energy consumption, D(n) is an
increasing and concave function with respect to n.

B. Expected utility as a function of the energy consumption

In the setting of binary decision making, we consider that
the human derives a profit s if he/she makes the correct deci-
sion. When the human makes a wrong decision, the profit is
set equal to 0 after normalization (One may also formulate the
problem such that the human has profit 0 for correct decisions
and cost s for wrong decisions.). We use c to denote the cost
per unit energy consumption. Note that here c represents the
total cost of energy consumption that may consist of two parts:
one is the direct energy cost to generate the signal, and the
other part is the undesired consequences caused by p (such as
the revelation of states in radar countermeasures and the risks
of radiation in medical imaging).

Since the probability of making a correct decision is D(p),
the expected utility (EU) function when spending energy p to
perform the task is

U(p) = sD(p)− cp. (2)

Under the assumption that D(p) is increasing and concave
with respect to p, and the cost function is linear2 with respect
to p, the optimal amount of energy p∗ that maximizes U(p)
is given by

p∗ = (D′)−1(
c

s
) , D∗(

c

s
) (3)

where D′(·) is the first order derivative of D(p) with respect
to p and D∗(·) is the inverse function of D′(·). Note that since
D(p) is increasing and concave, D′(·) is strictly positive and
is a decreasing function with respect to p. Hence, its inverse
function D∗(·) is a decreasing function as well. As a result, it
is readily seen from (3) that the optimal energy consumption
p∗ increases as s becomes larger or c becomes smaller.

2Here, we consider that p is the amount of energy and c is the cost per
unit energy, so that the cost function cp is linear in p. In applications where
p represents other types of resource consumption, the cost function might be
nonlinear, e.g., convex [30].



III. LOSS ATTITUDES MODELED BY PROSPECT THEORY

In the previous section, we analyzed the optimal energy
consumption when the human is a rational decision maker,
i.e., the human attemps to maximize the expected utility.
In practice, however, humans take actions to maximize their
subjective utilities, which are distorted due to cognitive biases
[20]. In this section, we employ prospect theory to model the
human’s asymmetric valuation towards gains and losses and
study how it affects the energy investment strategy.

Prospect theory (PT), proposed by Kahneman and Tversky
in 1979 [20], suggests that people are usually loss averse in
the sense that loss feels worse than the gain of an equiva-
lent amount feels good. The value function characterizes the
phenomenon of loss aversion by assigning a subjective utility
V (x) to an outcome x:

V (x) =

{
(x− r)λ, x ≥ r
−β(r − x)λ, x < r

(4)

where x is the actual gain (when it is positive) or loss
(when it is negative). One prominent feature of PT is that the
human evaluates outcomes relative to a reference point, and
then classifies them as gains and losses. In (4), the reference
point is represented using r, which is a subjective point that
varies from one individual to another. β is the loss aversion
coefficient, and V (x) reflects people’s different loss aversion
attitudes by the variation of parameter β. When the human
is more loss averse, β increases and the subjective utility
of a fixed value of loss appears to be more significant. λ
characterizes the phenomenon of diminishing marginal utility,
which says that as the total number of units of gain (or loss)
increases, the utility of an additional unit of gain (or loss) to
a person decreases. According to experimental data collected
by Kahneman and Tversky [31], both β and λ are positive
values and the mean values of β, λ in the group of subjects
are 2.25, 0.88, respectively.

In the following, we apply the value function to both
gain and loss, and derive the optimal energy consumption
strategy that maximizes the human’s subjective utility. Since
the choice of the reference point determines the form of the
value function, and hence, the human’s subjective utility, we
proceed with the analysis of two different types of reference
point models.

A. Fixed reference point

First, we consider that the reference point is fixed at r = 0
so that the value function is given in (4). The profit s if the
human correctly detects the signal is perceived to be V (s) =
sλ, and the loss of consuming energy amount p is perceived
to be V (−cp) = −β(cp)λ. Hence, when the human consumes
energy p, the subjective utility under PT with fixed reference
point 0 is given by:

Uf (p) = sλD(p)− β(cp)λ (5)

Note that when β = 1, λ = 1, (5) reduces to the expected
utility theory based maximization problem (2). The optimal

energy that maximizes the humans’ perceived utility is given
by pf = argmax

p
Uf (p). Generally, Uf (p) is not necessarily

convex. In the derivation of pf via the above equation, there
might exist several local maximum points and we must make
a comparison to determine the global optimum.

In the following, we employ the example of shift of mean
hypothesis testing where D(p) is given by (1) and explicitly
derive the expression for pf . In such a case, we show that
the objective function (5) is quasi-concave so that the local
maximum point is globally optimal.

Proposition 1. In the task of shift-of-mean hypothesis testing,
there exists a unique pf that maximizes the human’s subjective
utility under PT with fixed reference point r = 0. If the value
of λ ≥ 0.5, pf decreases as β becomes larger.

Proof. The first order derivative (FOD) of D(p) = 1 −
Q(
√
p/σ2) with respect to p is given by D′(p) =

1
2σ
√
2πp

e−
p

2σ2 . Hence, the FOD of (5) is given by

∂Uf
∂p

= sλ
1

2σ
√
2πp

e−
p

2σ2 − λβcλpλ−1 (6)

We solve for the local optimum point pf by setting the FOD
of Uf equal to 0, and get e−

pf

2σ2 = 2
√
2πσλβcλ

sλpf 0.5−λ , which, after
some mathematical manipulations, can be expressed as

log

(
pf

1

2σ2(λ− 0.5)

)
+ pf

1

2σ2(λ− 0.5)
= z (7)

where z = (log 2
√
2πσλβcλ

sλ
)/(0.5 − λ) + log(2σ2(0.5 − λ)).

Hence, the solution pf is given by

pf = 2σ2(λ− 0.5)ω(z) (8)

where ω(·) is the Wright Omega function that satisfies the
relationship log(ω(x)) + ω(x) = x. Since ω(·) is one to one
and strictly increasing function [32], it guarantees that we have
a unique solution of pf . Due to the monotonicity of ω(·), one
can show that when p < pf , ∂Uf

∂p > 0 and when p > pf ,
∂Uf
∂p < 0, indicating that Uf (p) is a quasi-concave function

and the local maximum point pf is globally optimal. Note
that in the above derivation, we use λ > 0.5. It has been
reported in the experiments [31] that the typical value of λ
that characterize the effect of diminishing marginal utility is
0.88 and the condition λ > 0.5 holds.

Next, we note that setting the FOD of the objective function
given in (6) equal to 0 is equivalent to:

D′(p)p1−λ =
βλcλ

sλ
(9)

It is easy to see that D′(p)p1−λ is a decreasing function
with respect to p when λ > 0.5. Since the right hand side of
(9) becomes larger as β increases, it is clear that pf decreases
as β takes a larger value.



B. Weighted average reference point

The reference point in the model of [33], [34] can be written
as the weighted average of the maximum and minimum profits
associated with a particular action. In our case where the
human consumes p amount of energy to perform the task, the
profit of successfully detecting the signal is s, and the cost
is the energy consumption −cp. Thus, the weighted average
reference point can be expressed as:

r(s, p) = ts+ (1− t)(−cp) (10)

where t ∈ [0, 1] characterizes the human’s level of optimism.
When t is large, the human is optimistic and has a high
expectation of the signal being correctly detected, while a low
value of t suggests that the human is pessimistic and is more
likely to expect the detection result to be wrong. If we replace
the reference point 0 by the weighted average reference r in the
value function (4), the human’s subjective utility of spending
energy p is given by:

Uw(p) = (s− r)λD(p)− β (r − (−cp))λ

= (s+ cp)λ((1− t)λD(p)− βtλ) (11)

We assume that the human chooses to spend a certain amount
of energy to perform the detection task only when the subjec-
tive utility is positive. If the subjective utility is non-positive,
the human would rather not participate in the detection task,
i.e., chooses to spend 0 energy.

Proposition 2. To maximize the subjective utility under PT
with weighted average reference points, the human spends all
the available energy if (1−t)λD(p0)−βtλ > 0, where p0 is the
amount of available energy, and spends 0 energy otherwise.

Proof. Since u1(p) = (s+ cp)λ is a positive term, it is clear
that (11) is negative when u2(p) = (1−t)λD(p)−βtλ ≤ 0. In
such a case, the subjective utility function is negative and the
human does not participate in performing the detection task.
On the other hand when u2(p) > 0, the objective function
(11) is positive and increasing with respect to p as both u1(p)
and u2(p) are increasing functions of p. In this situation, the
human should consume all of the available energy to maximize
the subjective utility.

Note that given the parameters t, λ and p0, there is a
threshold βs = (1−t)λD(p0)

tλ
so that a human with loss aversion

parameter β ≤ βs chooses to spend everything and a human
with β > βs chooses to spend nothing.

Remark. The condition that the human spends 0 energy is
equivalent to ( t

1−t )
λβ > D(p0). In other words, given p0

and λ, the human is more likely to spend 0 energy instead of
spending all the energy if the human’s optimism towards the
detection result t is high and if the loss aversion parameter β
is large. One may interpret t as another type of loss aversion
in the sense that a human is more loss averse if he/she has
higher expectation of the detection result to be successful.

IV. NUMERICAL RESULTS

For illustration, we conduct experiments for the scenario
where a human spends some amount of energy to perform
shift-of-mean hypothesis testing as described in Section II.A.
We assume the channel noise variance to be σ2 = 1. The profit
of successfully detecting the signal is s = 40 and the cost
of unit energy consumption is c = 5. First, prospect theory
is employed to model human’s loss attitudes where we set
the diminishing marginal utility parameter λ = 0.88 and vary
the human’s loss aversion parameter β. In Figure 1 (a), we
plot the optimal amount of energy consumption as β changes
under EU, PT with fixed reference point and PT with weighted
average reference point, respectively. As the probability of
correctly detecting the signal by spending energy p is D(p)
given in (1), the optimal amount of energy consumption under
EU can be solved via (4) and we obtain that p∗ = 0.98. It
can be observed that under EU, the optimal amount of energy
usage is a constant, without being affected by the variation of
β. When PT is incorporated to model human’s loss attitudes,
the amount of energy consumption is quite different from the
results obtained by assuming that humans are rational. Under
PT with a fixed reference point r = 0, the optimal amount of
energy consumption pf monotonously decreases as β becomes
larger, which corroborates our analysis in Proposition 1. Under
PT with a weighted average reference point where we set the
optimism parameter to be t = 0.3, there is a threshold denoted
by βS such that if β < βS , the human spends all the available
energy and as the human is more loss averse in the sense that
β ≥ βS , the human spends 0 energy.

Fig. 1. Human behavior of energy consumption under PT

In Figure 1(b), we let β vary and plot the human’s subjective



utility of spending the optimal amounts of energy (the optimal
amount of energy consumption has been obtained in Figure 1
(a)) when his/her loss attitude is modeled by EU, PT with a
fixed reference point and PT with a weighted average reference
point, respectively. It is observed that the subjective utilities
under PT (fixed or weighted average reference point) are
smaller than the expected utility. This is because the human
perceives the gain to be smaller due to diminishing marginal
utility parameter λ and perceives the cost to be larger when the
loss aversion parameter β > 1. It is interesting to observe that
the human’s subjective utility of spending pf is increasing with
respect to β under PT with a fixed reference point. The reason
is that as β increases, pf becomes smaller. In the subjective
utility function (5), though the term sλD(p) representing the
gain becomes smaller, the perceived cost β(cp)λ decreases as
well. It is the domination of the second term over the first one
that leads to the increase of subjective utility as β becomes
larger. On the other hand, under PT with weighted average
reference points, the optimal amount of energy consumption ps
does not change when β increases except when the threshold
βS is reached, and hence, the subjective utility is decreasing
as the human is more loss averse. Note that there is an abrupt
change when β reaches βS where the human changes the
energy consumption strategy from spending all the available
energy to spending nothing.

V. CONCLUSION

In this paper, we investigated the use of utility theory to
optimize resource consumption for signal detection problems
when the probing signal of the active sensing system may
cause undesired consequences. Under the expected utility
framework, the optimal amount of resource consumption was
derived that maximized a profit-cost based objective function.
We further considered that the decision makers are humans and
study how loss attitude impacts the actual human behavior of
resource consumption. Prospect theory was employed to model
humans’ asymmetric valuation towards gains and losses. The
characterization of human behavioral properties in resource
consumption is not only important to analyze the human de-
cision quality in non-cooperative classification/detection tasks
but also relevant in areas like behavioral informatics, task allo-
cation and incentivization in crowdsourcing and IoT systems.
In the future, it will be worthwhile to analyze the impacts of
more complicated cost functions, e.g., non-linear, on human
decision making strategies in resource consumption.
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