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Abstract—We consider the problem of lower bounding the
error probability under the invariant causal prediction (ICP)
framework. To this end, we examine and draw connections
between ICP and the zero-rate Gaussian multiple access channel
by first proposing a variant of the original invariant prediction
assumption, and then considering a special case of the Gaussian
multiple access channel where a codebook is shared between an
unknown number of senders. This connection allows us to develop
three types of lower bounds on the error probability, each with
different assumptions and constraints, leveraging techniques for
multiple access channels. The proposed bounds are evaluated
with respect to existing causal discovery methods as well as a
proposed heuristic method based on minimum distance decoding.

Index Terms—Lower bounds, error probability, invariance,
multiple access channels.

I. INTRODUCTION

The recent invariant causal prediction (ICP) framework [1]
has pioneered the study of leveraging invariance in datasets
across different experimental settings (or environments) for
identifying potential causal predictors (with various theoretical
extensions and applications [2]–[5]). For linear models, the
underlying assumption [1, Assumption 1] requires the exis-
tence of invariant (w.r.t. environments) coefficients as well as
noise variables. In this work, we focus on developing lower
bounds on the error probability of ICP by making a connection
between it and the Gaussian multiple access channel (MAC).
To do so, we make the following assumption on invariance:
there exists a vector of coefficients γ∗ = [γ∗

1 , . . . , γ
∗
m]⊤ ∈ Rm

with support S∗ := {i : γ∗
i ̸= 0} that satisfies

For all e ∈ E : Y e = Xeγ∗ +Ne, Ne ∼ N (0, σ2I), (1)

where E denotes the set of different environmental condi-
tions, σ2 is unknown but in a known range [σ2

min, σ
2
max], and

Xe = [xe
1, . . . , x

e
m] ∈ Rne×m represents a deterministic

design matrix with ne denoting the number of samples in
environment e. We shall see (in Section III) we only need σ2

min
for the bounds; thus for our purpose, it is equivalent to assume
that σ2 is known. Our main assumption stated in (1) differs
from [1, Assumption 1]. We argue it captures the essence of
the original while allowing us to leverage techniques from
Gaussian MAC settings (see Section II-A for details).

Bounds on the probability of error for a Gaussian MAC with
a shared codebook exist for the positive-rate case (positive-

rate meaning that m is exponential in n) [6]. This, however,
is not the main focus of this work. Rather, we focus on the
zero-rate case where m does not grow with n. To the best of
our knowledge, we know of no existing lower bounds for the
zero-rate and multiple sender case when the Gaussian MAC
has a shared codebook and an unknown number of senders.
When there is one sender, it is not necessary to consider the
codebook shared and current Gaussian point-to-point channel
results can be used. To this end, a bound on the probability of
error for ICP has been previously proposed in [7]. This bound
is lacking in two main aspects: (1) it requires the number of
environments to be two, and (2) it can only handle the single
sender case (i.e., |S∗| = 1). The bounds proposed in this work
are more general in that they apply to both an arbitrary number
of senders and an arbitrary number of environments.

II. PROBLEM FORMULATION

We now formally describe the problem. Consider a setting
in which a vector of coefficients γ∗ ∈ Rm is generated such
that its support S∗ ⊆ {1, . . . ,m} is uniformly chosen from
all subsets of {1, . . . ,m}. Let w ∈ Rm be a fixed vector
where each element wi is non-zero. The generation of γ∗ =
[γ∗

1 , . . . , γ
∗
m]⊤ then follows from γ∗

i = wi if i ∈ S∗ and γ∗
i =

0 if i ̸∈ S∗, for every i ∈ {1, . . . ,m}. The number of non-zero
coefficients in γ∗ is referred to as k = |S∗|.

Let Xe
S denote the matrix containing only the columns of

Xe indexed by the set S. The columns in the matrix Xe
S∗

are referred to as causal predictors. It is important to note the
distribution of Y e in (1) is unique for any given γ∗, implying
that the support S∗ is recoverable for each environment (see
Remark 1 below for considerations regarding collision).

Upon receiving Y e for each e ∈ E , one wishes to recover
the support S∗ (or equivalently γ∗). Let Ŝ∗

e be the estimate
of S∗ for some e ∈ E . We correctly recover the support S∗ if
Ŝ∗
e = S∗ for all e. In the case where Ŝ∗

e ̸= S∗ for any e ∈ E ,
the recovered γ∗ will not be invariant over all environments
as in (1). Thus, the probability of error in recovering S∗ is

Perr = P{Ŝ∗
e ̸= S∗ for any e ∈ E}, (2)

where the probability is taken over the two sources of ran-
domness, i.e., the random support S∗ and noise Ne.
Remark 1. For simplicity of presentation, we assume Xe and
w exist such that no collisions occur, namely, Xeγ1 ̸= Xeγ2,
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for any γ1 ̸= γ2 generated as described above (this holds
almost surely for any continuous random design matrix Xe).

A. Differences between Assumptions

In an effort to derive bounds on Perr in (2), our main
assumption in (1) differs from [1, Assumption 1] in several
subtle ways that we now make an attempt to justify.
Coefficients (known vs. unknown): The coefficients w are
known, whereas in [1, Assumption 1], they need to be esti-
mated. Since we focus on the lower bounds, the known coef-
ficients serve as an oracle setting for our purpose, as knowing
the coefficients can only bring the error probability lower.
Furthermore, we develop algorithms for unknown coefficient
settings (Algorithm 2). Note that the locations of the zero
entries in γ∗ are unknown for both settings.
Noise distribution (arbitrary vs. Gaussian): In [1, Assump-
tion 1], the noise distribution is zero-mean but otherwise
arbitrary, while their methods and identification results rely
on Gaussian noise. We fix the noise distribution in (1) to be
the widely adopted Gaussian noise, while keeping the variance
to be unknown but within a known range; even though we
shall see that for deriving the lower bounds, it is equivalent to
assuming that σ2 is known, as shown in our bounds.
Design matrix (random vs. deterministic): While the pre-
dictor variables Xe are modeled to be random in [1, Assump-
tion 1], we focus on the deterministic Xe since we focus on
lower bounds. One extreme case is when the design matrix
has i.i.d. entries, which has been adopted in the information-
theoretic perspective of compressive sensing (e.g., [6], [8]).
However, this is not an interesting setting for ICP as the un-
derlying causal predictors (i.e., columns of the design matrix)
are likely to be generated from some joint distributions rather
than a product distribution (i.e., the independent setting). Since
our goal is to derive lower bounds on the error probability,
it is then reasonable to consider deterministic settings to
model the “best” possible environment Xe and characterize
the corresponding error probability.

Unique recovery of S∗ for each environment in (1) allows
us to define the probability of error as in (2). The original
formulation of ICP in [1] is more general. Without the
assumptions mentioned above, a unique recovery of S∗ is not
guaranteed. As a result, the best that can be done in [1] is to
focus on the intersection of all possible S∗, which leads to
stronger guarantees under the family-wise error rate (FWER)
but can oftentimes be conservative by reporting no discoveries.
Also, ICP requires that the distribution of the noise and model
coefficients not change over environment (i.e., Y cannot be
intervened), which can be relaxed in [9]–[11].

B. ICP vs. Gaussian MAC

We now examine the Gaussian MAC and its connection
with our proposed variant of ICP in (1). In such a channel,
each sender i ∈ {1, . . . k} has access to a codebook Ci =
{ci1, ci2, . . . , cim}, where cij ∈ Rn and m is the number of
codewords in Ci. To transmit information, the ith sender first
chooses a codeword and then sends the t-th element of the

chosen codeword at transmission time t as the input symbol
xi,t such that the receiver obtains

yt = h1x1,t + h2x2,t + · · ·+ hkxk,t +Nt, (3)

where hi is the channel gain for sender i, and Nt ∼ N (0, σ2)
for all t ∈ {1 . . . n}. Conventionally, the number of senders k
is known. The Gaussian MAC of interest here is one in which
no collisions occur. Additionally, it is often assumed there
exists a total power constraint over all codewords such that∑m

i=1

∑n
t=1 x

2
i,t ≤ nmP . After n transmissions, the receiver

needs to determine which codewords in codebook C were sent.
While models in (1) and (3) appear similar, we list several

important differences between our formulation of ICP and
codeword recovery in the Gaussian MAC.

1) In ICP, there is a single shared “codebook” Xe whereas
in a Gaussian MAC, each sender has its own codebook.

2) In ICP, k is arbitrary (i.e., some unknown value in
{0, . . . ,m}). Conventionally, in a Gaussian MAC, k is
assumed to be fixed.

3) There is no notion of environment in the Gaussian MAC.
These two models are bridged by (a) considering a codebook
shared by all senders, and (b) by assuming the number of
senders k is arbitrary. Additionally, if the number of environ-
ments is one, the problem of recovering γ∗ reduces to recovery
in a Gaussian MAC with a shared codebook and arbitrary k.
Indeed, recovering S∗ for an individual environment in (1) is
identical to codeword recovery in a Gaussian MAC. We later
leverage this observation to identify limits on Perr in (2).

III. LOWER BOUNDS ON ERROR PROBABILITY

We provide three bounds on Perr in (2). Each bound is
derived based on the observation that individual environments
can be treated as a Gaussian MAC with a shared codebook and
unknown k ∈ {0, . . . ,m}. Because of this, Perr is at least as
small as the largest probability of error for codeword recovery
in a Gaussian MAC over all e ∈ E . Specifically,

Perr = P

{⋃
e∈E

{Ŝ∗
e ̸= S∗}

}
≥ max

e∈E
P{Ŝ∗

e ̸= S∗}, (4)

where P{Ŝ∗
e ̸= S∗} is the probability of error in recovering

a S∗ in a Gaussian MAC with shared codebook and arbitrary
k. From here, we leverage existing multiple-access results and
strategies to bound P{Ŝ∗

e ̸= S∗}.
All else being equal, the probability of error for a random

σ2 between [σ2
min, σ

2
max] will never go lower than it will when

σ2 = σ2
min. Consequently, Perr for the random σ2 setting is

bounded by the setting in which the variance is fixed to be
σ2

min. We bound in this manner by treating the Gaussian MAC
in (4) as one having a noise variance σ2

min.
Each proposed bound differs in the assumptions and the

constraints used. Two bounds proposed assume a constraint on
Xe while one does not. The bounds dependent on constraints
apply to any Xe satisfying the associated constraint, and, as
such, are looser than the bound applying to a specific Xe.



Let the quantity veS ∈ Rne be the sent signal if code-
words indexed by the set S were sent. The sent signal at
t ∈ {1, . . . , ne} is then veS,t =

∑
i∈S wix

e
i,t. We define

Tm to be the set of all subsets of {1, . . . ,m}. For some
S, S′ ∈ Tm, let the euclidan distance between veS and veS′

be deS,S′ = ||veS − veS′ ||2. We denote the Gaussian cumulative
distribution function as Φ(·).
Bound I (data dependent bound): We first propose a bound
on Perr in which there is no power constraint. The bound is
derived by determining the probability that the sent signal veS∗

is incorrectly decoded using the distance between veS∗ and the
next closest signal.

Proposition 1. The probability of error is lower bounded by

Perr ≥ max
e∈E

1

2m

∑
S∈Tm

Φ

(
− 1

2σmin
min

S′∈Tm\S
deS,S′

)
. (5)

Proof. Let P{Ŝ∗
e ̸= S∗} be the probability of incorrectly

decoding S∗ in a Gaussian MAC with a shared codebook and
arbitrary k. As S∗ is chosen uniformly from Tm,

P{Ŝ∗
e ̸= S∗} =

1

2m

∑
S∈Tm

P{Ŝ∗
e ̸= S∗|S∗ = S}.

Since Gaussian noise is symmetric, the probability S∗ is
not recovered for some environment e ∈ E is at least the
probability the target Y e is half the distance to the next closest
possible sent signal. That is,

P{Ŝ∗
e ̸= S∗|S∗ = S} ≥ Φ

(
− 1

2σmin
min

S′∈Tm\S
deS,S′

)
. (6)

The probability of error in (5) then follows from (4).

Bound II (under power constraint): An alternative bound
can be derived by considering a total power constraint of

m∑
i=1

ne∑
t=1

(wix
e
i,t)

2 ≤ mnePe. (7)

With this, we derive an upper bound on the average deS,S′ over
all combinations of S and S′, and follow the same minimum
distance argument used by Shannon in [12] to derive the bound
in Proposition 2 (see Appendix). Additionally, we present a
second bound using (7) in Corollary 1. While the bound in
Proposition 2 is tighter, it can be simplified in Corollary 1.
We note that this result can be of independent interest (e.g.,
the channel with feedback under the zero-rate setting [13]).

Proposition 2. Let Xe obey the power constraint in (7) for
each e ∈ E . The probability of error in recovering γ∗ is then
lower bounded by

Perr ≥ max
e∈E

m−1∑
i=1

1

2i
Φ

(
−

√
2m−i(m− i)nePe

4σ2
min (2

m−i − 1)

)
. (8)

Corollary 1. Under the same conditions as in Proposition 2,

Perr ≥ (1− 2−m/2)max
e∈E

Φ

(
−

√
2m/2mnePe

8σ2
min

(
2m/2 − 1

)) . (9)

Proof. First, (8) can be further bounded by taking only the
first m/2 terms of the sum. Then, as the remaining terms are
monotonically decreasing in i, we replace each term with the
last to derive (9).

Bound III (under a variant of power constraint): We now
consider a constraint such that

ne∑
t=1

∑
S∈Tm

(veS,t)
2 ≤ 2mneQe, (10)

for all e ∈ E . That is, instead of considering a constraint
on the codewords, we now constrain all possible sent signals.
With this, we view the problem as a conventional Gaussian
point-to-point channel with a power constraint as in (10) and
leverage existing Gaussian point-to-point channel results to
bound Perr. As was also done in Corollary 1, we further
bound Proposition 3 to present a more simplified expression
in Corollary 2 by directly following [12].

Proposition 3. Let the predictors Xe obey the constraint
in (10) for each e ∈ E . The probability of error in recovering
γ∗ is then lower bounded by

Perr ≥ max
e∈E

1

2m

2m−1∑
i=1

Φ

(
−

√
(2m − i)neQe

2σ2
min (2

m − 1− i)

)
. (11)

Proof. In a change of perspective, treat the collection of
sendable signals veS,t for S ∈ Tm as a codebook in a Gaussian
point-to-point channel. The peak energy constraint is then
given by (10). A bound on the probability P{Ŝ∗

e ̸= S∗} then
follows directly from [12] and thus (11).

Corollary 2. Under the same conditions as in Proposition 3,

Perr ≥ max
e∈E

1

2
Φ

(
−

√
2mneQe

2σ2
min (2

m − 2)

)
. (12)

IV. ALGORITHMS AND EXPERIMENTS

A. Algoirthms

We provide two heuristic methods with which to compare
the bounds proposed. The first is an adaptation of Method II
presented in [1]. Simply, Method II iterates over all subsets
of variables. It fits a linear model to the data and tests
the invariance of the residuals over all environments. The
recovered support is the intersection of all invariant subsets
(see [1]). To fit our setting, we make the following changes.

1) The coefficients are no longer estimated but are known.
2) The mean and variance of the residuals are compared

directly to their known values.
3) As S∗ is unique, no intersection needs to be calculated.

Rather, the recovered support is the subset deemed the
“most invariant” (based on the largest p-value).

We refer to this adaption of Method II as MII known.
Additionally, we propose a simple alternative that is a

natural extension to the minimum distance decoding (MDD)
algorithm for use in multiple environments. We refer to this
method as ICP MDD known. An outline of this method is



as follows. For each environment, the distance between the
received signal Y e and veS for all S ∈ Tm is calculated. The
recovered support Ŝe is the S ∈ Tm corresponding to the veS
closest to Y e for all e ∈ E . If the same Ŝe is recovered over
all environments, we take this as the final recovered support.
See Algorithm 1 for a more detailed explanation. We also
note that a current obstacle for those implementing ICP is that
most methods have exponential complexity. Both Method II
and ICP MDD known are no exception.

Algorithm 1 ICP MDD known
Input: Response Y e, predictors Xe, and coefficients w
Output: Ŝ∗ or nothing if no invariance was identified

for every e ∈ E do
Ŝe := argminS∈Tm

||Y e −
∑

i∈S wiX
e
i ||2

if Ŝe is identical over all e then
return Ŝ∗ := Ŝe

else
return nothing

B. Simulations

Simplex codes. We first compare the proposed bounds in a
setting where the predictors Xe constitute simplex codes. It
is well known that simplex codes paired with MDD provide
optimal recovery for a Gaussian point-to-point channel in the
zero-rate setting. It is, however, important to note that simplex
codes are not necessarily optimal for codeword recovery in
a Gaussian MAC with unknown k and a shared codebook.
Further research is needed to examine the optimal codes in this
special setting. Nonetheless, we expect the empirical results
for such codes to be closer to the bounds when compared to
other randomly generated codes.

We examine the setting where m = 3. The matrix Xe

consists of simplex codes on a sphere or radius
√
ne such

that xe
i =

√
ne · [ai, 0, 0, · · · , 0 ]⊤, where a1 = [1, 0],

a2 = [− 1
2 ,−

√
3
2 ], and a3 = [− 1

2 ,
√
3
2 ] for each e ∈ E . As

the columns of Xe lie inside a sphere of radius
√
ne, the con-

straints in (7) and (10) are satisfied using Pe = 1 and Qe =
3
4 .

The response Y e is generated such that Y e = Xe+N , where
N ∼ N (0, I). We report the empirical probability of error
averaged over 1000 simulated datasets.

The simulation results indicate both ICP MDD known
and MII known approach the bound in Proposition 1 with
ICP MDD known performing slightly better for smaller sam-
ple sizes (Figure 1a). Seeing that the empirical results re-
mained some distance away from the bounds in Propositions 2
and 3 further justifies the remark that simplex codes are a sub-
optimal coding scheme for this MAC setting.

Random Gaussian structural equation models. Next, each
simulated dataset is a random Gaussian structural equation
model (SEM) [14]. Coefficients for the SEM are all ran-
domly selected between 0.5 and 1.5. All noise variables are
distributed according to N (0, 1). The value of m is a random
integer on [3, . . . , 8]. The set of causal parents S∗ is chosen
uniformly from Tm. Unless otherwise specified, the number of

edges between predictors is a random integer on the interval
[0, . . . ,

(
m
2

)
]. We consider interventions that shift the mean of

the top-level variables in the graph (i.e., those with no parents).
Two settings in this regime are examined. The first fixes

the intervention means to zero for environment one and one
for environment two while increasing the number of sam-
ples per environment. While the methods ICP MDD known
and MII known both approach the bound in Proposition 1,
ICP MDD known does so at a faster rate than that of
MII known (see Figure 1b). As these random codes repre-
sent a more challenging setting compared to the previously
discussed simplex codes, the bounds in Propositions 2 and 3
are close to zero, and are thus not included in the figures.

In the next setting, we vary the intervention mean for envi-
ronment two from −5 to 5. The sample size per environment is
20. Again, we find the error probability of ICP MDD known
is closer to the bound in Proposition 1 than that of MII known.
We observe spikes in the error probability when the means of
both environments are 0. This is expected as S = {} (the
empty set) will likely be incorrectly decoded when codewords
are close to zero. The lower bound in Proposition 1 remains
mostly invariant to shifts in the mean (Figure 1c).

C. Unknown coefficient settings

We now compare the proposed lower bounds to the more
applicable setting where the coefficients w are unknown. As
estimating coefficients will only cause the probability of error
to increase, we assert that the bounds in Propositions 1, 2,
and 3 apply to this more general setting as well.

Algorithm 2 ICP MDD
Input: Response Y e, predictors Xe, and threshold p
Output: The estimate Ŝ∗

Fit a linear regression model on pooled data Y |XS to obtain
an estimate γ̂S for every S ∈ Tm.
for every e ∈ E do

for every S ∈ Tm do
Calculate deS = ||Y e −Xe

S γ̂S ||2
de = minS∈Tm

deS
te = de + p ∗ de

if for all S ∈ Tm, deS ≤ te for all e ∈ E then
accept subset S

return intersection of all accepted sets

Additionally, we propose the method ICP MDD as an
extension to ICP MDD known for unknown coefficients and
outline it in Algorithm 2. Perhaps the most important con-
sideration now that w is unknown is that S∗ is no longer
unique. Because of this, we take a similar approach as in
Method II in [1]. Specifically, any subset that is a plausible
S∗, we “accept”. The estimate Ŝ∗ is then the intersection
of all accepted subsets. As we now potentially accept many
subsets, we must define criteria for which a subset will be
accepted. If, for each environment, the distance between the
output Y e and the estimate Xe

S γ̂S falls within some percentage



(a) (b) (c)

Fig. 1: Comparison of lower bounds: (a) for each environment, predictors are simplex codes within a sphere of radius
√
ne,

(b) predictors simulated Gaussian SEMs with a random number of edges between parents, and (c) predictors are simulated
Gaussian SEMs where interventions constitute shifts in the mean of the second environment.

(a) (b)

Fig. 2: Unknown coefficient and Gaussian SEM setup: (a)
all predictors are sampled independently, and (b) there are a
random number of edges between predictors.

p of the minimum distance between output and estimate,
then we accept that subset. Intuitively, one would want to
choose the parameter p to be small (e.g., p = 0.1, 0.05, 0.01).
Additionally, we estimate coefficients for a given subset using
data pooled over all environments. We refer to XS as the
pooled dataset over all environments for some subset S.

For the following experiments, we use the same random
Gaussian SEM setup previously used and compare it with
two other causal discovery methods. The first is Method II
from [1]. As we no longer assume the coefficients are known,
we use the exact method proposed in [1]. The second is the
LiNGAM; in particular, we use the independent component
analysis (ICA) based LiNGAM originally proposed in [15].

We examine two settings for the unknown coefficient set-
ting. We first simulate SEMs such that each predictor is
generated independently of all others. Shifts in the intervention
mean for environments one and two are fixed to zero and
one, respectively. Results indicate LiNGAM, ICP MDD, and
Method II perform comparably with ICP MDD performing
slightly better for smaller sample sizes and LiNGAM perform-
ing slightly better for larger sample sizes (Figure 2a).

The next setting incorporates random edges between predic-
tors as was done in the known coefficient experiments. With

this addition, the error probability of all methods decreases.
Apart from small sample sizes less than 25, LiNGAM achieves
the lowest probability of error, followed by ICP MDD, then
Method II (Figure 2b). Bounds in Propositions 2 and 3 are
near zero, so we omit them in Figures 2a and 2b.
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APPENDIX

A. Proof of Proposition 2
For convenience, we will temporarily drop the superscript e

in the equations below. The average squared distance d̄2 over
all combinations of sent codewords is

1

2
(|Tm|

2

) ∑
S1∈Tm

∑
S2∈Tm

d2S1,S2

=
1

2
(
2m

2

) ne∑
t=1

∑
S1∈Tm

∑
S2∈Tm

(vS1,t − vS2,t)
2

=
1

2
(
2m

2

) ne∑
t=1

∑
S1∈Tm

∑
S2∈Tm

(v2S1,t + v2S2,t − 2vS1,tvS2,t)

=
1(
2m

2

) ne∑
t=1

[
2m

∑
S1∈Tm

v2S1,t −
∑

S1∈Tm

∑
S2∈Tm

vS1,tvS2,t

]
.

(13)

We now treat each of the terms in (13) individually. Let T k
m

be the set of all subsets of {1, . . . ,m} length k. The term∑
S1∈Tm

v2S1,t
becomes

∑
S1∈Tm

(∑
i∈S1

wixi,t

)2

=
∑

S1∈Tm

∑
i∈S1

∑
j∈S1
i̸=j

wiwjxi,txj,t +
∑

S1∈Tm

∑
i∈S1

w2
i x

2
i,t

=

m∑
k=0

∑
S1∈T k

m

∑
i∈S1

∑
j∈S1
i̸=j

wiwjxi,txj,t +

m∑
k=0

∑
S1∈T k

m

∑
i∈S1

w2
i x

2
i,t

(14)

The expression in (14) is further simplified using two proper-
ties. Namely, for any a = [a1, . . . , am] ∈ Rm, we have∑

S1∈T k
m

∑
i∈S1

ai =

(
m− 1

k − 1

) m∑
i=1

ai, (15)

∑
S1∈T k

m

∑
i∈S1

∑
j∈S1
i ̸=j

aiaj = 2

(
m− 2

k − 2

)m−1∑
i=1

m∑
j=i+1

aiaj . (16)

We derive (15) by counting the occurrences of each ai for i
from {1, . . . ,m}. Similarly, (16) can be derived by counting
each pair (ai, aj) for i, j from {1, . . . ,m}, where i ̸= j.
Thus, (14) becomes

2

m∑
k=0

(
m− 2

k − 2

)m−1∑
i=1

m∑
j=i+1

wiwjxi,txj,t

+

m∑
k=0

(
m− 1

k − 1

) m∑
i=1

w2
i x

2
i,t

=

m∑
k=0

k(k − 1)

m(m− 1)

(
m

k

) m∑
i=1

m∑
j=1

wiwjxi,txj,t −
m∑
i=1

w2
i x

2
i,t


+

m∑
k=0

k

m

(
m

k

) m∑
i=1

w2
i x

2
i,t

≤ 2m−2

(
m∑
i=1

wixi,t

)2

+ 2m−1
m∑
i=1

w2
i x

2
i,t, (17)

where the first term in (17) follows since
∑m

k=0 k
(
m
k

)
=

m2m−1 and the second term follows since
∑m

k=0 k
2
(
m
k

)
=

m(m + 1)2m−2. Now returning to (13), the second term∑
S1∈Tm

∑
S2∈Tm

vS1,tvS2,t becomes

∑
S1∈Tm

∑
S2∈Tm

(∑
i∈S1

wixi,t

)∑
j∈S2

wjxj,t


=

 m∑
k=0

∑
S1∈T k

m

∑
i∈S1

wixi,t

2

=

(
m∑

k=0

(
m− 1

k − 1

))2( m∑
i=1

wixi,t

)2

= 22m−2

(
m∑
i=1

wixi,t

)2

, (18)

where (18) follows using the same arguments as in (17). From
(17) and (18), the two inner terms in (13) become
ne∑
t=1

[
2m

∑
S1∈Tm

v2S1,t −
∑

S1∈Tm

∑
S2∈Tm

vS1,tvS2,t

]

≤ 22m−1
ne∑
t=1

m∑
i=1

w2
i x

2
i,t

+

ne∑
t=1

[
22m−2

(
m∑
i=1

wixi,t

)2

− 22m−2

(
m∑
i=1

wixi,s

)2]

= 22m−1
ne∑
t=1

m∑
i=1

w2
i x

2
i,t

≤ 22m−1mnePe, (19)

where (19) follows from the power constraint in (7). From
(19), it follows that the average squared distance is,

d̄2 ≤ 22m−1mnePe(
2m

2

) =
2mmnePe

2m − 1
. (20)

Since there is at least one pair of signals for which (20) holds,
we can bound P{Ŝ∗

e ̸= S∗|S∗ = S} using the average distance
as opposed to the actual distance. Specifically, since the noise
is Gaussian, P{Ŝ∗

e ̸= S∗|S∗ = S} constitutes the probability
that the noise contribution moves vS at least half the distance
between it and the next closest possible sent signal. i.e., there
exists some S ∈ Tm such that

P{Ŝ∗
e ̸= S∗|S∗ = S} ≥ Φ

(
− d̄2

2σmin

)
≥ Φ

(
−

√
2mmnePe

4σ2
min (2

m − 1)

)
. (21)



This accounts for only one of the |Tm| contributions to the
total error. By removing some of the |Tm| combinations from
the list of sendable signals, other contributions to the error
can be identified. We remove an entire codeword from the
codebook, which accounts for 2m−1 of the total combinations.
Since removing combinations will cause the bound on the
average distance in (20) to increase and the bound probability
of error in (21) to decrease, the first 2m−1 combinations can
be bounded by the probability of the (2m−1)-th combination.
That is, the first 2m−1 combinations contribute at least

2m−1Φ

(
−

√
2m−1(m− 1)nePe

4σ2
min (2

m−1 − 1)

)
to the probability of error proportional to the remaining
contributions. Another codeword can be removed, accounting

for 2m−2 combinations and a bound on the contribution to the
probability of error can be derived. This process is repeated by
removing codewords and adding contributions until all but two
codewords have been removed. We then obtain the following
bound

P{Ŝ∗
e ̸= S∗} ≥ 1

2m

m−1∑
i=1

2m−iΦ

(
−

√
2m−i(m− i)nePe

4σ2
min (2

m−i − 1)

)

=

m−1∑
i=1

1

2i
Φ

(
−

√
2m−i(m− i)nePe

4σ2
min (2

m−i − 1)

)
. (22)

The probability of error in (2) is then bounded by

Perr ≥ max
e∈E

m−1∑
i=1

1

2i
Φ

(
−

√
2m−i(m− i)nePe

4σ2
min (2

m−i − 1)

)
.
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