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Abstract—Motivated by extracting and summarizing relevant
information in short sentence settings, such as satisfaction ques-
tionnaires, hotel reviews, and X/Twitter, we study the problem of
clustering words in a hierarchical fashion. In particular, we focus
on the problem of clustering with horizontal and vertical struc-
tural constraints. Horizontal constraints are typically cannot-
link and must-link among words, while vertical constraints are
precedence constraints among cluster levels.

We overcome state-of-the-art bottlenecks by formulating the
problem in two steps: first, as a soft-constrained regularized least-
squares which guides the result of a sequential graph coarsening
algorithm towards the horizontal feasible set. Then, flat clusters
are extracted from the resulting hierarchical tree by computing
optimal cut heights based on the available constraints.

We show that the resulting approach compares very well with
respect to existing algorithms and is computationally light.

Index Terms—Constrained Hierarchical Clustering, Graph
Coarsening, Optimization, Ultrametric Spaces

I. INTRODUCTION

In modern society, extracting, classifying, and summarizing
information from text is becoming of paramount importance.
This is fuelled by the large amount of content that is available
on social media platforms, and on the Internet in general. In
this paper, we are particularly interested in extracting topics
and clustering words in short sentences. This text modality
is typical in satisfaction questionnaires, X/Twitter, and most
of the online posts. Hierarchical clustering is widely used for
genomics data [1], social network analysis [2], bioinformatics
[3], text classification [4], and financial markets [5].

Specifically, we focus here on clustering words from short
sentences in a hierarchical fashion and adding structural
constraints. For most real-life applications, users might have
prior information which is not contained in the input features,
hence the interest to specify structural constraints. Since
the constraints come from contextual information about the
data, our problem falls in the category of semi-supervised
clustering. Constrained versions of clustering and hierarchical
clustering have appeared in the past [6]–[15] and the area
stays very active [16], [17]. Here, we propose an efficient
algorithm to combine both horizontal constraints, meaning
must-link and cannot-link constraints between words, and
vertical constraints, meaning precedence constraints among
different layers, or levels, of the hierarchy. The aforementioned
features make our algorithm novel and unique in its genre.

We overcome some of the bottlenecks encountered in the
literature by considering a two-steps approach. First, we

develop a soft-constrained version of both vertical and hor-
izontal constraints added as a regularization term to a graph
coarsening algorithm. This enables to take the prior knowledge
into account while respecting the initial structure of the data
space, and makes it possible to deal with conflicting sets of
constraints [13]. The result of this step is a dendrogram, which
is a tree that iteratively splits a data set into smaller subsets
until each subset consists of only one element. Second, the
obtained dendrogram is then cut at different levels in order to
get hierarchical flat clusters that meet as many constraints as
possible. The key of our two-steps approach is to automatically
get the desired flat clusters, as we will discuss shortly.

Another particular feature of our approach is that we will
consider vertical and horizontal constraints per layer. Since
in hierarchical clustering, all the data points will eventually
belong to the same set, the constraints have to change or evolve
layer per layer. Two data points may have a cannot link at a
lower layer, but then they can be merged at a higher level. We
call this algorithmic feature: layer-based constraints.

Related work. Hierarchical and semi-supervised clustering
has been studied extensively in the past [17]. Most existing
hierarchical clustering are based on linkage distance methods,
and the main differential is in the way prior information is
handled. The standard way is to add pairwise constraints [7],
[18], [19] which are basically horizontal must-links and/or
cannot-links. While such constraints are a good starting point,
they hierarchical layer-based feature is missing. One way to
add this is to consider triple-wise constraints instead as in [20].
However, this approach has the drawback that it does not
handle cannot-links and does not guarantee that the merging
heights of the different triplets will define clear levels.

On the constraint side, when hard constraints are im-
posed [18], lower complexities can be reached (Opn logpnqq

where n is the number of data points) to the potential detriment
of the geometry of the initial data space. However, hard
constraints might lead to errors when the set of constraints
is not well defined or infeasible. Thus, even though using soft
constraints increases algorithmic complexity (Opn2q for [19],
[20] and Opn3q for the alternative in [20]), they might be
preferable to work with to avoid infeasibility.

Another traditional method to perform clustering is to use
graph-based reduction algorithms. In such a framework, the
space is represented as a graph, and among the different
strategies we can cite single-graph [21], [22] and multiple
graphs clustering [23]. Contrary to single graph approach
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which works on one graph only and its Laplacian, multi-
ple graphs techniques cluster the data points based on the
knowledge provided by several graphs. This can enhance the
performances of the clustering process compared to single-
graph but it also increases the memory cost.

All the methods introduced above are either non hierarchical
or do no result in flat clusters. To our knowledge, very few
methods exist to perform automatic cluster extraction from a
hierarchical structure. In their article [24], Jörg and co-authors
introduce a method to deduce a hierarchical partitioning of the
data based on the reachability plot resulting from the hierarchi-
cal clustering. Their algorithm is based on the identification of
clear “dents” or “valleys” in the reachability plot and perform
very well on examples where clusters are clearly separated in
the initial data structure. Nevertheless, in our case, the data
structure does not consist of clean and well defined (sub)-
clusters and the algorithm from [24] cannot be directly applied.

Contributions. In this paper, we introduce a new semi-
supervised algorithm to perform hierarchical flat cluster-
ing. Our algorithms emerge as the natural extensions of
A. Loukas’s local-variation multi-level graph coarsening [25]
and of the regular bottom-up clustering [26]. These methods
rely on the Laplacian and on the distance matrix of the
graph associated to the dataset to build the coarsening. We
carefully adjust these matrices in order to favour clusters that
meet as many constraints as possible. We show that the soft-
constrained problem can be rewritten as a quadratic problem
and that, in the case of [26], it can be solved in closed-form.

Our second contribution lies in the automation of the den-
drogram (or ultrametric) interpretation. To do so, we propose
a method that computes the optimal cuts of the dendrogram
given the input structural constraints. The idea is to find, for
each hierarchical level, the cut that minimizes the distance to
the equivalent cut in the constraints tree. We prove that the
resulting problem is convex and can be solved in closed-form.

We run experiments on the Hotel dataset [27] to demonstrate
our methods and compare them to their unconstrained coun-
terparts. The dataset consists of a collection of hotel reviews,
and our goal is to run hierarchical clustering algorithms on
the vocabulary of the reviews in order to extract topics and
lexical fields in a hierarchical fashion. Extra information is
provided in the form of hierarchical must-links and cannot-
links. In that case, the addition of constraints led to up to
a 67% improvement in terms of constraints compliance, and
up to a 19% improvement in terms of Dasgupta’s cost [28]
(a generally adopted metric in hierarchical clustering). These
results support our algorithms.

II. STEP I : SEQUENTIAL GRAPH COARSENING

A. Problem description

Consider a set S of n data points. The objective is to
extract clusters of points sharing similar features from S
in a hierarchical fashion. In addition, layer-based constraints
are provided by the user to add prior information on the
expected clusters. In particular, the user provides a wished
number of layers ℓ, and a constraint set Cj , j “ 1, . . . , ℓ,

for each of them. Constraints are pairwise must and cannot-
links between points that can be either horizontal (when the
link relates to one or two clusters from the same hierarchical
level) or vertical (to allow links between clusters of different
granularity levels). Horizontal constraints are specified in Cj ,
while vertical constraints are precedence constraints and can
be specified as cannot-link in Cj and subsequently as a must-
link in Cj`1.

We formalized the problem of hierarchical clustering with
layer-based constraints by a two-steps approach, and this
section is dedicated to the first stage, which is the construction
of a dendrogram based on the data space S and user’s prior
knowledge.

Consider a graph representation of the dataset S as G “

pV,E,Wq, where each node in the vertex set V is data point
and the edges’ weights WpEq correspond to the distance (or
similarity) between the points. In this article, we will only
consider the distance matrix D and its associated Laplacian
L, but all the results hold in the in the similarity framework.
Our hierarchical clustering problem consists in sequentially
merging graph nodes in a suitable order until there is only
one left. We adapted two existing methods by adding soft
structural constraints. The first one, that we will call local-
variation coarsening [25] is based on the graph Laplacian L
and chooses the reduction that minimizes spectral variations
of L. The second one is the traditional bottom-up hierarchical
clustering [26] that sequentially merges the closest nodes and
computes the new distance matrix based on a predefined
linkage method. The main difference between both algorithms
lies on the methodology used to pick nodes to merge and
compute the new distance matrix. While bottom-up linkage
merely groups the two closest nodes at each step, the local-
variation coarsening simultaneously merges as many pairs as
possible using an edge or neighborhood-based method.

Local-variation coarsening. We focus here on edge-based
methods. Given an initial Laplacian L consisting of N vertices,
the result is a new Laplacian consisting of rN{2s vertices.
Contraction is based on minimizing the spectral variation of
the Laplacian before and after the contraction. The complexity
of this algorithm is OpN logNq. The fact that the graph size is
being halved at each iteration makes the method computation-
ally lightweight. However, this might be too coarse-grained
for specific datasets.

Bottom-up approach. This approach relies on linkage
methods and the computation of the distance matrices. There
are several ways to compute the new distance matrix after one
contraction. Distance can be computed using one of the seven
linkage methods (e.g., single, average). Naive implementations
of these methods can have high complexities pOpN3qq. How-
ever, using nearest-neighbour chains [29], a computational
complexity of pOpN2qq can be reached.

B. Soft-constrained coarsening

In both methods, nodes are merged by pairs using either
the local variation method or the linkage clustering. These
contractions are fully determined by the Laplacian or the
distance matrix hence the necessity of updating them by taking



constraints into account. In particular, given the coarsened
Laplacian operator Lc P Rmˆm, where m ă N , coming from
one coarsening step of one of the two methods, our algorithm
modifies it to satisfy as many constraints as possible. The latter
is achieved by solving the problem,

PpLcq : min
LPLĂRmˆm

1

2
}L ´ Lc}2`

`
λ1

2

ÿ

pi,jqPML

}Li,j}2 `
λ2

2

ÿ

pi,jqPCL

}Li,j ` 1}2, (1)

where the set ML represents the must links, and CL the cannot
links, λ1, λ2 are two positive scalar weights, L is the set of
Laplacian matrices (symmetric, with rows summing to zero
and negative elements except on the diagonal), and } ¨ } is the
Frobenius norm.

Each layer-based constraint set Cj contains constraints in the
form of constraints matrices MLj and CLj whose entries are
1 if there is a must-link or cannot-link, respectively, between
datapoints, and zero otherwise.

Problem PpLcq is a convex quadratic program, which can
be solved efficiently by off-the-shelf solvers. An interesting
feature of the bottom-up approach is that the constraint L P L
is less important in practice and can be substituted with L P

r´1, 0smˆm. In fact, one can focus on the upper triangle of the
Laplacian Lc alone, and reconstruct the Laplacian a posteriori,
if needed. This practical simplification, sensible only for the
bottom-up approach, renders PpLcq solvable in closed-form,
since each entry is now independent, as formalized next.

Proposition 1 (Practical simplification for the bottom-up
approach). Consider Problem PpLcq, replacing the constraint
L P L with L P r´1, 0smˆm. Define λ1,ij “ 1 if pi, jq P ML,
and 0 otherwise, and do the same for λ2,ij “ 1 for the cannot
links. This new problem can be solved in closed-form as,

L˚
ij “ min

"

max

"

Lc,ij ´ λ2,ij

1 ` λ1,ij ` λ2,ij
,´1

*

, 0

*

, @j ą i.

Proof. By optimality conditions.

The first step of our algorithm consists in iteratively solving
PpLcq or its simplified version, and doing a coarsening pass,
multiple times till most of the constraints in Cj for layer j are
satisfied and we cannot reduce the graph anymore. Then, we
continue with a new layer set Cj`1, and so on.

The final output is a large dendrogram where points con-
nected by must-links are likely merged at a low heights and
those connected by cannot-links are merged at a later layer.
From there, our aim is to deduce hierarchical flat clusters
without parsing the whole tree by hand. In the next section, we
introduce a systematic approach to obtain such clusters given
a dendrogram and layer-based constraints.

III. STEP II: OPTIMAL HIERARCHICAL CUTS

A. Problem Description

Given a dendrogram, the problem we want to solve is how
to obtain hierarchical flat clusters satisfying the horizontal and
vertical constraints. The usual approach would be to parse the

dendrogram manually, but this is hardly an option for large-
scale trees. Another possibility is to cluster from the layers
that we have built. But this may be sub-optimal, since not all
the constraints may have been satisfied. Here we propose a
different approach.

Consider ℓ layers. For each layer j P 1, 2, . . . , ℓ, we consider
the clusters that Step I has produced. These are indicated with
ci,j , i “ 1, . . . , ni as for cluster i, in layer j. As we are
parsing a dendrogram, which is a binary tree, we can order
the branches from the data at height 0 to the root at height
H ą 0. We can then define two heights for each ci,j .

The first is hi,j as the minimal height at which all the must-
link of ci,j are satisfied. If Step I is completely successful, the
height hi,j will correspond to the height derived from Step I,
otherwise it will be higher. By construction, we know that such
height exists, since eventually all the data will be merged in
a single point at H . The second height is Hi,j , defined as the
minimal height greater or equal than hi,j at which one cannot-
link of ci,j is violated. Once again, if Step I is successful Hi,j

could be equivalent to hi,j or strictly higher. If ci,j has no
cannot link, then Hi,j “ H .

Then, we define the optimal level cut as the problem of
finding the height at which to cut the dendrogram for each
level j, such that we minimize constraint violation,

h̃j P argminhPR`

ni
ÿ

i“1

Di,jphq, (2)

where Di,j : R` Ñ R` is the function defined as the
distance between h and its convex projection onto the interval
rhi,j , Hi,js, that is Di,jphq “ |h ´ maxtminth,Hi,ju, hi,ju|.

Proposition 2. Let ĥ1 ď ĥ2 ď . . . ď ĥ2ni
be the elements of

th1,j , H1,j , . . . , hni,j , Hni,ju sorted in increasing order. Prob-
lem 2 is convex and any point of the set th|h P rĥni

, ĥni`1su

is a solution for (2).

Proof. (Sketch) Convexity of (2) follows from the convexity
of Di,j , which can be proved by construction. Then, writing
the optimality conditions, the solution set can be derived.

As in Step I, Step II is based on a problem that can be
solved in closed-form and its resolution is computationally
lightweight. We are now ready to discuss the overall algorithm.

B. Overall algorithm

We now present our main algorithm, labeled Clues, as to
indicate that we are clustering with soften prior information
(that is: clues), we describe it in Algorithm 1, and it performs
hierarchical flat clusters extraction using the soft-constrained
Problem 1 and the optimal cuts given by Prop. 2. Clues is also
depicted in Figure 1.

If the method is the traditional bottom-up clustering, the
algorithm works by locally looking at the distance matrix
values and treating edges independently. Hence, using the
closed-form alternative given in Prop. 1 leads to satisfying
results and helps keeping control of the complexity (which is
Opn3q, and Opn2q when using nearest-neighbour chains).



S = {d1, . . . , dn}

G = (V,E,W)

⊕
C1 = {ML,CL}

...
C` = {ML,CL}
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optimal cuts
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Clues Algorithm
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Step 1: alg. l 3-23 Step 2: alg. l 25-26

-based constraints are

satisfied

Fig. 1: Schematic diagram of Clues’ main steps.

Algorithm 1 Clues

Input: data set S of n data points, distance matrix D, smoothing pa-
rameters λ1, λ2, level-based pairwise constraints Cj , coarsening
method, Imax ą 0

Output: Hierarchical flat clusters
1: Build the graph G
2: // Step I
3: for Layers k “ 1, . . . , j do
4: I “ 0
5: if method is traditional bottom up clustering then
6: Update D using Prop. 1
7: while 75% of Cj is not satisfied and I ă Imax do
8: Merge the two closest nodes
9: Compute the new distance matrix D

10: Update the new D using Prop. 1
11: Update G, I Ð I ` 1
12: end while
13: else Ź method is local variation coarsening
14: Build the Laplacian L
15: Update L using Problem 1
16: while 75% of Cj is not satisfied and I ă Imax do
17: Merge as many pairs of nodes as possible
18: Compute the new Laplacian L
19: Update L using Problem 1
20: Update G, I Ð I ` 1
21: end while
22: end if
23: end for
24: // Step II
25: Compute the set of optimal cuts C of the dendrogram D resulting

from the clustering using Prop. 2
26: Cut D using C and derive the hierarchical flat clusters

As for the local variation clustering, we solve Problem 1 at
each step to exploit the neighborhood information contained
in the diagonal term. The worst-case complexity is Opn3q.

IV. RESULTS

A first example. We test our algorithm on an hotel reviews
database [27], with the aim of comparing themes and lexical
fields across the different states in the USA. The data consist
of n reviews and meta-data containing, e.g., timestamps and
locations. We use the former to build our vocabulary and
dendrogram and the latter to locate the hotel.

Example trees of hierarchical topic extraction for New York
and Arizona reviews are displayed in Figure 2, setting two
layers. Clusters labels were built manually from the output
lexical fields. At this granularity level, clusters are similar for

both states as they are guided by the constraints. Nonetheless,
we can already notice a novel theme (inclusiveness) and
sub-theme (temperature) in the Arizona tree that were not
defined in the constraints (indicated in blue on the trees).
Thus, using constraints to give a hierarchical structure that
guides the algorithm helps achieving consistent results while
still allowing the extraction of novel information.

The main source of information lies in the vocabulary
associated with each cluster. Labels might be subjective or
poorly set, hence the necessity to check results at the finest
level. For instance, even though labels are the same, the
lexical fields differ according the the state. In Figure 2, we
have also displayed the lexical fields behind “neighbourhood
attractiveness”. While both related to the interests of the hotel
area, the lexical fields are different and illustrate the hetero-
geneity in tourists’ expectations according to the area. Note
that some words in the lexical fields (in red) are inconsistent
or meaningless. These words constitute errors of the algorithm.

Comparisons. We move to assess the performances of
Clues based on three different criteria: (i) the widely used
Dasgupta’s cost [28] that measures the resulting dendrogram
“quality” (the lower the cost the better); (ii) the percentage of
violated constraints; and (iii) the runtime of the algorithm. We
also compare Clues to its unconstrained version, where we do
not perform the soft-constrained coarsening in Step I, i.e., we
use the algorithms of [25] and [26] as they are.

As depicted in Figure 3, where we use 50 different review
datasets, Clues obtains the best results for constraints enforce-
ment (leading to up to a 67% improvement, and a below
5% overall constraint violation), and it can further reduce
the Dasgupta’s cost in the bottom-up approach (up to a 19%
improvement). Time-wise, we use the size of the dots to rep-
resent the normalized run-time, and we can see that the local-
variation version of Clues is the most demanding. This is due
to the use of CVX to solve the soft-constrained problem (1),
and it represents a „ 3ˆ increase in computational time.

The 50 datasets are extracted from the hotel reviews sorted
by state. This enables to have sets of different sizes (from
„ 25 to „ 1250 points) and varied vocabulary while keeping
the same constraints.

V. CONCLUSIONS

In this paper, we introduced an approach to perform semi-
supervised hierarchical clustering on large databases. The
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Fig. 2: Hierarchical topics extraction running Clues on hotel reviews. Topics
names have been inferred manually from the lexical fields. An example is
given for the sub-cluster “attractiveness” for comparative purposes.
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Fig. 3: Performance of Clues and comparison: lower Dasgupta costs are
associated with higher quality hierarchical clustering hence points on the lower
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normalized time taken to run Clues on the corresponding dataset.

specificity of our method being the possibility to extract flat
clusters automatically from word data by exploiting structural
and user-defined constraints, making it easier to analyze the
results. Constraints have to be provided in the form of layer-
based must-links and cannot-links and are used throughout the
whole process to guide the clustering and extract the final flat
non-binary tree. Performances of our method (named Clues)
are evaluated on a benchmark dataset and the results encourage
further work in this direction.
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