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Abstract—This paper presents a method for real-time estima-
tion of 2-dimensional direction of arrival (2D-DOA) of one or
more sound sources using a nonlinear 3-microphone array. 2D-
DOA is estimated employing frame-level time difference of arrival
(TDOA) measurements. Unlike conventional methods, which infer
location parameters from TDOAs using a theoretical model, we
propose a more practical approach based on supervised learning.
The proposed model employs nearest neighbor search (NNS)
applied to a spherical Fibonacci lattice consisting of TDOA to 2D-
DOA mappings learned in the field. Filtering and clustering post-
processors are also introduced for improving source detection and
localization robustness.

Index Terms—DOA, TDOA, array, nearest neighbor, clustering

I. INTRODUCTION

Time difference of arrival (TDOA)-based sound source
localization (SSL) is a well-established approach in the litera-
ture. When a source is at far-field from the array, or the number
of microphones is less than four, 3-dimensional (3D) TDOA-
based SSL is not possible, and direction of arrival (DOA) is
estimated instead. Practical applications include beamforming
[1], blind source separation [2], and to provide a visual DOA
indicator for people with spatial hearing loss (SHL) [3]–[5].
In this work, we are especially interested in the latter.

Anshuman et al. [3] proposed a smartphone application for
providing a visual azimuthal DOA indicator of a speech source
for people with SHL. The use of a smartphone for this purpose
is especially convenient due to its widespread availability.
However, DOA is estimated using only two microphones, re-
sulting in what is known as the front-back ambiguity, which is
a common issue in linear arrays. Nowadays many smartphones
have an array of at least three microphones. When the array is
nonlinear, not only do we avoid front-back ambiguity, but we
also allow estimating both azimuth and elevation angles of a
source, known as 2D-DOA estimation. Tokgöz et al. [4], [5]
proposed adaptations of the work in [3] for L-shaped arrays of
three microphones. However, these methods are constrained to
the detection and localization of an individual speech source.
Additionally, no practical scheme is proposed to compensate
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for discrepancies in measured and theoretical TDOAs, which
are common in practical systems for reasons such as erroneous
array calibration and varying phase response of microphones.

Fig. 1. The proposed method deployed on a smartphone application to provide
a visual 2D-DOA indicator (orthographic projection of the source position on
a hemisphere above the device) for people with SHL.

Motivated by the above observations, we propose a practical
method for real-time 2D-DOA estimation of multiple sound
sources using a nonlinear 3-microphone array. Instead of a
theoretical model, TDOA to 2D-DOA mappings are learned in
the field and inference is performed applying nearest neighbor
search (NNS) to a spherical Fibonacci lattice containing the
learned mappings. Furthermore, filtering and clustering post-
processors, designed for reliable detection and localization of
one or more sources, are also introduced. As shown in Fig. 1,
the proposed method was implemented on a smartphone.

II. PROBLEM FORMULATION

Let us consider an array of three microphones in a noisy and
reverberant environment with C acoustic sources. Let mi and
sc denote the i-th microphone and c-th source 3D positions,
for i ∈ {1, 2, 3} and c ∈ {1, 2, . . . , C}. The signal captured
by the i-th microphone is modeled by

yi = vi +

C∑
c=1

xic , (1)
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where vi is incoherent noise and xic is the reverberant signal
of the c-th source. Assuming sufficient angular spacing, the
problem is formulated as real-time detection of the C sources
and estimation of their azimuth and elevation angles with
respect to the microphone array.

III. METHODOLOGY

Let us segment all yi into K overlapping frames of length
L. The proposed method operates at frame-level in a causal
manner. The processing pipeline consists of four stages: (1)
TDOA estimation; (2) mapping measured TDOAs to 2D-DOA;
(3) filtering unreliable estimates; and (4) clustering.

A. TDOA Estimation

Let yik be the k-th segment of yi, for k = 1, 2, . . . ,K.
Let V be the subset of frame indices for which exactly one
dominant source is present at a time. It is assumed that V is
not empty and it includes frame indices corresponding to every
source in the mixture, which, as long as the segment length
is not made too long, are reasonable assumptions, especially
for sparse signals such as speech. Let s(v), denote the 3D
position of the dominant source at frame index v ∈ V . The
TDOA in meters of the direct path signal originating at s(v)
when received between mi and mj , for j ∈ {1, 2, 3} such
that j 6= i, is given by

rij(v) = ||s(v)−mi|| − ||s(v)−mj || . (2)

Assuming the signal propagation speed is known, an estimate
of rij(v) can be found by the peak of some weighted cross-
correlation function between yiv and yjv [6]. Here we use
modified Cross-Power Spectrum Phase [7] (mCPSP) paired
with quadratic interpolation [8] (QI) for improved estimation
resolution. TDOAs are estimated for every k-th frame. Unre-
liable estimates are rejected at the filtering stage.

B. Accurate mapping of TDOAs to 2D-DOA

Following the formulation of the previous section, we
consider frame-level localization of a single source. Hence,
for simplicity, we drop the source and frame indices nota-
tion unless an ambiguity arises. Let s, rij , and r̂ij denote
the 3D source position, the true TDOA in meters and its
corresponding estimate, respectively. To have better insight
into the problem geometry let us first consider a simple
closed form solution (CF) that maps TDOAs to 2D-DOA.
To reduce degrees of freedom, we fix m1 at the origin, i.e.,
[0, 0, 0]T , m2 at [b, 0, 0]T , and m3 at [cx, cy, 0]T . Let r be
the distance from source to origin. When r is large, i.e., the
source is at far field, its actual value has negligible impact
on TDOA. Thus, we reduce another degree of freedom by
fixing r to some large value. Fig. 2 illustrates the problem
geometry. The parameters of interest are θ and φ, which are
the azimuth and elevation angles of the source, respectively.
For simplicity, let us reparametrize the problem into finding
the source 3D position s on a sphere of far-field radius r
centered at the origin, where θ and φ can be inferred from s
using the relationship in Fig. 2. Let sx, sy , and sz represent the

corresponding xyz coordinates of s. A CF mapping linearly
independent TDOAs r12 and r13 to s is given by

sx =
b2 + 2r12r − r212

2b

sy =
c2x + c2y − r213 + 2r13r − 2cxsx

2cy

sz = ±
√
r2 − s2x − s2y .

(3)

We notice that b and cy cannot be 0, meaning that a nonlinear
array is needed to estimate 2D-DOA. We further note that
sz can either be negative or positive. Throughout this work
we let sz be positive. The problem can then be visualized as
localizing a source on a hemisphere above the array, which is
equivalent to letting θ ∈ [−π, π] and φ ∈ [0, π/2].

Fig. 2. Problem geometry of 2D-DOA estimation with three microphones.

If measured TDOAs do not match theoretical values for
reasons other than reverberation and noise, e.g., erroneous
array calibration and varying phase response of microphones,
the CF in (3) may not be accurate. For improved performance,
TDOA to 2D-DOA mappings can be learned directly in
the field. Consequently, we propose the following supervised
learning approach. Let us discretize the search space into

S = {γ(1),γ(2), . . . ,γ(N)} , (4)

where γ(n) = [θ(n), φ(n)]T , for n = 1, 2, ..., N , groups the
n-th 2D-DOA tuple in the search space. Similarly, let

Q = {q(1),q(2), . . . ,q(N)} , (5)

where q(n) = [r
(n)
12 , r

(n)
13 , r

(n)
23 ]T groups corresponding TDOA

mappings. All combinations are considered for robustness. The
TDOA mappings in Q are collected in a supervised manner
offline. During inference, NNS is applied as follows

γ̂ = arg min
γ(n)

||q(n) − q̂||2 , (6)

where q̂ = [r̂12, r̂13, r̂23]
T . Mappings are stored in a k-d tree

structure [9], [10], allowing NNS in expected logarithmic time.
For further efficiency, the candidate solutions in S should

be distributed as evenly as possible throughout a hemisphere.



(a) (b)

Fig. 3. Two different methods for placing N = 1297 points on a hemi-
sphere. Latitude-longitude lattice (a) and Fibonacci lattice (b). Orthographic
projections centered at the pole.

A simple approach is to discretize θ and φ by some angular
spacing δ = 180◦/u, where u is a positive integer, resulting
in a point distribution known as the latitude-longitude lattice
[11]. This lattice can be visualized as a set of points placed at
the intersections of a grid of meridians and parallels (Fig. 3a).
The total number of points is N = u2 + 1, which comes from
the number of meridians (2u) times the number of parallels
(u/2) plus one pole. In this lattice, however, points concentrate
around the pole, resulting in noticeable anisotropy. Instead, we
apply the spherical Fibonacci point set algorithm [12] for a
more uniform point distribution (see Fig. 3b). This lattice is
generated by

θ(n) =
2π(n− 1)

Φ

φ(n) =
π

2
− cos−1

(
1− 2n− 1

2N

)
,

(7)

where Φ = (1 +
√

5)/2 is the golden ratio.

C. Filtering

We propose a simple three-step filter that rejects unreliable
sets of TDOA measurements, i.e., q̂ in (6). The purpose is to
filter out all measurements computed at frame index k 6∈ V .
Each sequential step consists of verifying that a measurement
satisfies a certain reliability condition. The first two conditions
are applied on individual TDOAs only. If any of the estimates
does not satisfy a given condition, the entire set is rejected.
The first condition verifies that there is acoustic activity at the
estimated lag by ensuring that the cross-correlation value of
the peak is above a positive threshold TR, as given by

R(`max) > TR , (8)

where R(`) is the weighted cross-correlation function given by
mCPSP at lag index `, and `max is the lag of the peak. In the
second step, we quantify how dominant the cross-correlation
peak is compared to other solution candidates by computing
a confidence level β ∈ [0, 1], given by

β = 1− η

R(`max)

η =
1

|L|
∑
`∈L

max {0, R(`)} ,
(9)

where L is the set of all plausible lags not including `max. We
then verify that

β > Tβ , (10)

where Tβ is some threshold. Finally, the third step ensures
coherence among TDOAs in q̂ by verifying that the error of
the NNS estimator in (6) is below a threshold Tq , as given by

||q(γ̂)− q̂||2 < Tq , (11)

where q(γ̂) is the closest match to q̂ found by NNS.

D. Clustering

Clustering is used to assign frame-level 2D-DOA estimates
to the correct source and combine accumulated measurements
in such a way to improve source detection and localization
reliability. For this purpose, we propose Recency and Fre-
quency aware Exponential Filter Clustering (RFEFC). RFEFC
is closely based on the exponential filtering concept used in
Real-Time Exponential Filter Clustering (RTEFC) [13]. In
RTEFC, exponential filtering is employed to update the cluster
within minimum distance from a given location measurement.
Apart from allowing real-time frame-level processing and low
memory and computational overhead, RTEFC also exhibits
good tracking capabilities. However, RTEFC does not take into
account recency and frequency of data, which are important
characteristics in the context of this work.

In RFEFC, a fixed number of clusters Nc is maintained in
real-time. Each i-th cluster, for i ∈ {1, 2, . . . , Nc}, consists of
a cluster centroid ŝi and a cluster confidence level ρi. Here,
ŝi represents an estimate of the i-th 3D source position on
a unit radius hemisphere. The use of Cartesian representation
is necessary for averaging. ρi, on the other hand, is a value
between 0 and 1 quantifying the confidence of estimate ŝi,
with 1 meaning high confidence. Initially, ŝi = ∅ and
ρi = 0 for all i, meaning the clusters are inactive, i.e., no
source is detected. Let ŝ be a frame-level estimate of some
source location sampled every ∆t seconds. If the estimate
was rejected by the filtering process, we let ŝ = ∅. RFEFC
searches for the cluster with maximum confidence level whose
centroid is within some minimum distance dmin from ŝ. If such
cluster is found, its centroid ŝclose is updated using exponential
filtering and its confidence level ρclose is increased as follows

ŝclose = αŝclose + (1− α)ŝ

ρclose = min
{

1, ρclose +N−1s
}
,

(12)

where Ns is some positive integer representing the number of
consecutive frames needed for ρclose to reach 1, thus keeping
track of the frequency with which a cluster is updated. If a
cluster whose centroid is within dmin distance from ŝ is not
found, RFEFC selects the cluster with lowest confidence level
and updates it as

ŝold = ŝ

ρold = N−1s .
(13)

This update can be interpreted as creating a new cluster from
stale data. Finally, to give a sense of recency, for every i-th



cluster that was not updated, RFEFC decreases the confidence
threshold followed by forgetting clusters whose confidence
level reaches 0. This sequence of operations is given by

ρi = max

{
0, ρi −

∆t

Twin

}
ŝi =

{
ŝi if ρi > 0

∅ if ρi = 0 ,

(14)

where Twin is some positive real number controlling the time
in seconds it takes RFEFC to forget an inactive cluster.

The introduction of ρi in RFEFC allows a simple mecha-
nism to decide if a source is present at an estimated location.
Here, a source i is detected once ρi reaches 1 and remains
above some threshold Ta. The memory and computational
complexities of RFEFC are linear in Nc, thus making RFEFC
similarly efficient to RTEFC. Also, due to exponential filtering,
RFEFC can in principle track a moving source that produces
continuous sound. Finally, unlike RTEFC, which updates the
cluster closest to the location estimate, RFEFC updates the
cluster with highest confidence level within a specified dis-
tance. The purpose of this selection rule is to minimize the
likelihood of multiple closely spaced clusters being active for
prolonged periods of time due to jittery estimates. In such
scenarios, RFEFC would only update the cluster with highest
confidence, thus forcing other nearby clusters to be forgotten.

IV. EXPERIMENTS

Three experiments were conducted in the field to evaluate
the performance of the proposed method using the nonlinear
3-microphone array of a Pixel 3 smartphone, shown in Fig.
1. Experiments were conducted in a moderately sized office
room with typical office noise.

The data collection, needed to populate Q in (5), was con-
ducted as follows. The smartphone was placed on a turntable
and a speaker was placed on a fixed surface at a distance of 0.6
meters from the turntable and at ten varying elevations ranging
uniformly from 0◦ to 90◦. During data collection, the speaker
played white noise while the turntable turned at a fixed rate
till it made a full revolution, thus covering the entire azimuth
range. White noise was the source signal due to its good auto-
correlation properties. TDOAs were measured and mapped to
known points on a latitude-longitude lattice. Interpolation was
applied to generate the Fibonacci lattice in (7).

The parameters were defined as follows. The sampling rate
fs was 48 kHz and a frame length L = 1024 with 50% overlap
was used. The number of lattice points N in Section III-B was
set to 104. The thresholds TR, Tβ , and Tq in Section III-C
were set to 1e-2, 0.5, and 5e-5, respectively. The parameters
Nc, ∆t, dmin, Ns, α, Twin, and Ta in Section III-D were set
to 10, L/(2fs) s, 0.25, 5, 0.75, 5 s, and 0.5, respectively.

In the first experiment, we use collected TDOAs to assess
the practical effectiveness of supervised learning vs. simpler
CF in mapping TDOAs to 2D-DOA, with the latter being the
type of mapping scheme used in [3]–[5]. For this purpose,
we benchmark 2D-DOA estimation performance of NNS in
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Fig. 4. Experiment 1. 2D-DOA estimation performance of NNS vs. CF for
varying noise in TDOA measurements.

(6) against its CF counterpart in (3). Localization root mean
square error (RMSEloc) is used as the performance metric.
RMSEloc measures the localization error on a unit hemisphere
over M trials, as given by

RMSEloc =

√√√√ 1

M

M∑
i=1

||s(i) − ŝ(i)||2 , (15)

where s(i) is the source position on a unit hemisphere gen-
erated during the i-th trial, and ŝ(i) is the corresponding
estimate. To generate s(i) for evaluation purposes, azimuth and
elevation angles were drawn independently and uniformly at
random from their respective ranges and mapped to Cartesian
coordinates. Corresponding TDOAs were interpolated using
the collected dataset in the field. Finally, to simulate mea-
surement noise, interpolated TDOAs were corrupted using
additive white Gaussian noise (AWGN) with varying standard
deviation σ ∈ [0.01, 10] cm. Since CF requires accurate
knowledge of microphone array geometry, we consider two
variants. In the first variant, simply referred to as CF, the
array geometry is measured by hand. In the second variant
(CF + Calibration), we use the dataset collected for NNS
to calibrate the array applying Levenberg–Marquardt as the
optimization algorithm. Fig. 4 reports the results. We note that
CF without calibration exhibits somewhat poor performance,
which is attributed to its sensitivity to non-precise microphone
position estimates. Although introducing calibration improves
results considerably, this scheme is still not sufficient to attain
the high performance exhibited by NNS, especially at low and
moderate noise. As a result, NNS can be used to improve the
localization resolution attained by previous work in [3]–[5].

In the second experiment, we test the capability of the
proposed method to detect and localize two overlapping sound
sources. One source was a speaker playing music, which was
placed at two-meter distance, 55◦ azimuth, and 0◦ elevation.
The other source was a human speaker talking, which stood at
half a meter distance, 145◦ azimuth and 40◦ elevation. Results
are shown in Fig. 5. The frame-level localization estimates are
mostly accurate except for a “ghost” source at 100◦, which we
attribute to smoothing in the cross-correlation function caused
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Fig. 5. Experiment 2. Processing stages in detection and localization of two overlapping sources. Elevation omitted for conciseness. Music and speech start
at 4 and 6 seconds and end at 14 and 15 seconds, respectively. (a) Raw DOA estimates. (b) Filtered estimates. (c) Filtered and clustered estimates.

by multiple dominant sources in a frame. However, filtering
removes most outliers. Finally, RFEFC detects the two sources
and, as a result of having Ns > 1, adds an additional layer of
filtering by dismissing remaining outliers. We note that, unlike
[3]–[5], no voice activity detector is used, allowing detection
and localization of sources other than speech.

As in RTEFC, the use of exponential filtering in RFEFC
suggests that the proposed method may in principle be capable
of tracking moving sources producing continuous sound. To
verify this claim, in the third and last experiment, we test
the ability of the proposed method to track two overlapping
sources. The same two-source localization scenario is consid-
ered as in the second experiment with the difference that the
smartphone is placed on a rotating turntable making a full
revolution in 20 seconds. Hence, we expect source positions
to form two concentric circles on a hemisphere, with each
circle being defined according to the elevation of a respective
source. Results in Fig. 6 suggest that the proposed method
indeed exhibits excellent tracking capabilities.
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Fig. 6. Experiment 3. Clustered location estimates on an orthographic
projection centered at the pole of a unit radius hemisphere.

V. CONCLUSION

A method for accurate 2D-DOA estimation using a nonlin-
ear 3-microphone array was proposed. The problem is modeled
as localization of one or more acoustic sources on a unit-
radius hemisphere above the array. For best practical results,

the derived CF is replaced with NNS applied to a spherical
Fibonacci lattice containing TDOA to 2D-DOA mappings
learned in the field. Filtering and clustering post-processors
were also introduced to reject unreliable measurements and
allow more robust detection and localization of multiple sound
sources. When evaluated in the field, the proposed method dis-
played remarkable 2D-DOA estimation accuracy and tracking
capabilities of two overlapping sources.
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