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Conic Descent Redux
for Memory-Efficient Optimization

Bingcong Li, and Georgios B. Giannakis

Abstract—Conic programming has well-documented merits in
a gamut of signal processing and machine learning tasks. This
contribution revisits a recently developed first-order conic descent
(CD) solver, and advances it in three aspects: intuition, theory,
and algorithmic implementation. It is found that CD can afford
an intuitive geometric derivation that originates from the dual
problem. This opens the door to novel algorithmic designs,
with a momentum variant of CD, momentum conic descent
(MOCO) exemplified. Diving deeper into the dual behavior CD
and MOCO reveals: i) an analytically justified stopping criterion;
and, ii) the potential to design preconditioners to speed up dual
convergence. Lastly, to scale semidefinite programming (SDP)
especially for low-rank solutions, a memory efficient MOCO
variant is developed and numerically validated.

I. INTRODUCTION

Consider a conic programming setup of the form

min
x∈Rd

f(x) s.t. x ∈ K (1)

where the differentiable objective function f is convex, and K
denotes a convex cone. Conic problems are frequently encoun-
tered in machine learning and signal processing, where cones
can for instance capture non-negative orthant constraints,
second-order cones, positive semidefinite cones, exponential
cones, and copositive cones [1], [3], [7]. The generality of
conic problems fertilizes a number of application domains,
leading to the well-documented success in applications such
as community detection, and multi-task learning [9], [10], [14].

This work considers first order methods for solving (1).
We will focus on Frank Wolfe (FW) variants [8], [12], [16]
since their computationally lightweight subproblems can avoid
projection onto cones. Taking positive semidefinite cones Sn+
as an example, projection requires a full SVD with complexity
O(n3), while a FW subproblem only needs to find out
the eigenvector associated with largest eigenvalue for certain
matrix, reducing the overall complexity to O(n2).

Nonetheless, the noncompact cone constraint prevents ap-
plying FW directly on problem (1). A straightforward ap-
proach is to include a manually designed constraint to shrink
the original constraint set to a compact one K̃. Consider a
simple example with K = {(x, y)|x ≥ 0, y ≥ 0}, one
manner to define K̃ is to turn the non-negative orthant into a
polyhedron by adding another constraint, e.g., x+y ≤ 1. This
idea is formalized and generalized in [11], yet prior knowledge
is of critical importance to the shrunk constraint K̃ otherwise
it may not contain optimal solutions to (1).
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Work [18] considers problem (1) with K having a relatively
simple atomic expression. This additional assumption on K
wipes out constraints such as doubly nonnegative cones,
which are useful for reformulating combinatorial problems
[5]. Moreover, the convergence rate in [18] depends on the
geometry of the cone, thus can be challenged by some “illy
conditioned” ones.

A recent method [6] develops conic descent (CD) that can
cope with general convex cones regardless of the atomic form
of K. However, many of first order approaches, including
CD, only target at the primal convergence, leaving the dual
properties relatively untouched despite conic duality can be
informative. In this work, a detailed study is carried out to
understand the dual convergence of CD. In particular, we first
provide an explanation to CD that is not only geometrically
intuitive, but also having matching mathematical support in
the dual domain. This explanation brings up opportunities on
algorithmic design, and resulting in a new variant of CD,
momentum conic descent (MOCO). MOCO is equipped with
heavy ball momentum for faster convergence. Then, extensive
theoretical analyses on dual domain bring up deeper insights,
and a practical stopping criterion to estimate suboptimality.

We then focus on an instance of (1), SDP problems [19],
[23] with the goal of improved scalability. The key observation
that motivates the study of memory efficient SDP is that many
SDP instances are raised up from vector problems. We term
such problems as raised-up SDPs. Consider a simple quadratic
problem minx∈Rd ∥x∥22 as an example. Upon letting X :=
xx⊤, one can rewrite this problem as minX tr(X) s.t. X ∈ S+d
and Rank(X) ≤ 1. Dropping the rank constraint, one ends
up with a SDP problem. While the previous example is too
simple to visualize the benefit of raising up vector problem
to SDPs, often times such a technique is helpful to turn a
nonconvex problem into a convex one; see e.g., [24], [25] for
more benefits in real-world applications. However, the raised-
up SDP is at an obvious cost of increasing storage relative to
its vector form. Our goal is to alleviate such a memory issue
leveraging the observation that the desirable solution is usually
low rank (recall the rank constraint in our toy example). We
propose a memory efficient implementation of MOCO, and
leverage Burer-Monteiro (BM) factorization heuristic [4] to
further enhance its empirical performances.

In succinct form, our contributions are listed as follows.
❖ It is found that conic descent (CD) admits a geometrical

explanation. Interestingly, the geometry has a rigorous
mathematical foundation in the dual domain of (1).

❖ A new algorithm is developed based on the geometrical
interpretation. The resultant approach, MOCO, improves
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the convergence rate of CD, and showcases numerical
merits on tested problems.

❖ Comprehensive analyses to the dual properties are pro-
vided for MOCO. It is observed that the primal and
dual convergence do not share the same rate, and the
dual behavior can be influenced via preconditioning.

❖ We further modify MOCO for memory efficiency of
large-scale (raised-up) SDPs. BM heuristic is also in-
corporated into modified MOCO to facilitate numerical
performances.

Notational conventions. Bold lowercase (capital) letters
denote column vectors (matrices); ∥ · ∥ stands for a norm of
either a vector or a matrix, whose dual norm is denoted by
∥ · ∥∗; and ⟨·, ·⟩ is the inner product. Given a cone K, its
dual cone is written as K∗. For a set S, we let dist(x,S)
and dist∗(x,S) denote the distance of vector x to set S w.r.t.
∥ · ∥, and ∥ · ∥∗, respectively. We use Sn for symmetric real
matrices, and Sn+ to denote the semidefinite positive cone, i.e.,
all symmetric real positive semidefinite matrices of size n×n.

II. UNDERSTANDING CONIC DESCENT GEOMETRICALLY

This section first describes in detail the class of problems
that we are interested in, and then exemplifies a 2-dimensional
toy problem to unveil the underlying intuition of CD.

A. Basic assumptions

We formally pinpoint problem (1) by mildly confining the
class of objective functions.

Assumption 1 (Lipschitz continuous gradient). The objective
function f : K → R has L-Lipchitz continuous gradients; i.e.,
∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥,∀x,y ∈ K.

Assumption 2 (Strictly convex loss). The objective function
f : K → R is strictly convex; that is, f(y) − f(x) >
⟨∇f(x),y − x⟩,∀x,y ∈ X where x ̸= y.

Assumption 1 is standard in optimization literatures [6],
[12], [15]–[17], [20], [27]. Assumption 2 is slightly stronger
than the commonly adopted one that only requires convexity.
This is because of the need of a regularity condition on
f to ensure the existence of an optimal solution. Although
not stated, other works such as [18] also need this regu-
larity conditions. For example, it is impossible to minimize
f(x, y) = −x + y2, which is not strictly convex, over the
cone K := {(x, y)|x ≥ 0, y ≥ 0}. Nonetheless, Assumption 2
is easily satisfied in practice, since it covers many prevalent
loss functions, for example, squared ℓ2 loss and logistic loss.
Note that Assumption 2 is slightly stringent for SDPs, and
we will relax it for a large class of SDPs later in Section
IV. It is also possible to regulate f with assumptions other
than strictly convex. For example, the work [6] assumes f
to have no nonzero direction of recession in K. Despite this
assumption is difficult to verify in practice, our results extends
to this setting after justifying the notation accordingly.

For the constraint, we also require the cone to be convex,
implying convexity of (1).

Assumption 3 (Convex cone). The constraint set K ∈ Rd is
a convex cone; i.e., λ1x + λ2y ∈ K for any λ1 ≥ 0, λ2 ≥ 0
and x,y ∈ K.

There are several natural approaches to solve (1) under
Assumptions 1 – 3.

Approach 1. Projected gradient descent (GD) is perhaps
the first idea coming into mind. The issue with GD, however,
is that projection on a cone can be expensive; see the earlier
example of semidefinite positive cone in Section I.

Approach 2. If one has a hint of ∥x∗∥, where x∗ is an
optimal solution to (1), it is possible to manually impose
compactness by including an additional constraint ∥x∥ ≤ R
to (1) to clear the obstacles of applying FW. While the
FW subproblem is typically much cheaper than projection, a
proper estimation on ∥x∗∥ is challenging if not impossible. An
overestimated ∥x∗∥ degrades the performance of FW since its
convergence is shaped heavily by the diameter of the constraint
[12]; while an underestimated ∥x∗∥ may exclude the optimal
solution from the feasible domain.

Given the downside of these two approaches, there is a
pressing need of more efficient methods. A recent work [6]
introduces conic descent (CD). However, the lack of intuition
somehow shades the popularity of this approach with great
potential. Next, we unveil CD’s underlying geometry.

B. Geometric interpretation for CD

Our novel interpretation of CD is built on two key observa-
tions. The first one is that a convex cone can be viewed as a set
of rotated rays. We will only consider rays initialed at 0, that
is, {tx|t ≥ 0} for some x ̸= 0. For example, the first orthant in
a 2d-Cartesian plane can be viewed as the area scanned over by
spinning the ray {(x, y)|x ≥ 0, y = 0} counterclockwise by 90
degrees. Another example can be visualized in the ice-cream
cone in Figure 1. The second observation is that minimizing
over a ray is an 1d-convex problem and can be solved easily
or even analytically.

Indeed, finding an optimal solution x∗ to (1) amounts to
finding the ray containing it. While it is challenging to find
the desirable ray in just a single step, one may progressively
improve the quality on a ray, which is defined as the mini-
mum function value of this ray. This intuition prompts us to
decouple (1) into two (series of) subproblems: i) ray search,
where the goal is to guess a ray that may contain x∗; and
ii) ray minimization, where this ray is minimized to obtain its
quality. The overall goal is that the quality of a ray is improved
iteratively until the optimal ray is found. It turns out that CD
follows exactly this iterative procedure.

A polar-coordinate perspective. The previous intuition
can be understood more concretely through a 2-dimensional
example. Consider a simple quadratic objective function

f(x, y) = (x− 1)2 + y2

with the cone constraint being the positive orthant, i.e.,

K := {(x, y)|x ≥ 0, y ≥ 0}.

This problem can be transformed into polar coordinate, where
(x, y) are substituted to angular variables (r, θ), where r ∈
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Fig. 1. An example of an ice-cream cone.

[0,+∞), and θ ∈ [0, π
2 ]. Defining t := cos θ, we can further

change the variables as x = rt and y = r
√
1− t2. The

problem therefore becomes

min
r,t

g(r, t) := (rt− 1)2 + r2(1− t2) (2)

s.t. r ≥ 0, t ∈ [0, 1]

From this reformulation (2), it is clear that ray search targets
at the optimal t∗, and ray minimization is used to obtain r∗

on the previously found ray.
Issues of working on polar coordinate. Despite the re-

formulation (2) is geometrically intuitive, challenges remain
even for this toy example. The first difficulty comes from
the fact that problem (2) is not necessarily convex as it is
straightforward to verify that the Hessian of g is negative-
definite, i.e.,

∇2g =

[
2 −2
−2 0

]
.

Secondly, it is not always easy to reformulate a problem to
its polar form, especially for those high dimensional cases.
Therefore, it is more attractive to work with non-reformulated
form (1), performing ray search in an implicitly manner
through the key message from (2), that is, ray search is
essentially a problem on compact domain (t ∈ [0, 1]).

C. The MOCO algorithm

The conic problem (1) can be solved by alternating between
ray search and ray minimization as explained in previous
subsection. In contrast with CD that adopts vanilla FW for
ray search [6], here we propose to augment ray search with
with momentum FW [16]. The resultant approach, MOCO, is
summarized in Alg. 1. While ray minimizing is straightforward
in line 3, ray search is more involved; see lines 4 – 7. Note
that MOCO boils down to CD in [6] if δk ≡ 1.

It is known that ∇f(xk) is not the best coefficient to
use in FW subproblems [16], [17]. This motivates the use
of the heavy ball momentum in MOCO. MOCO subproblem
in line 5 instead relies on gk, a weighted average of past
gradients. The average gk smoothes the possible rapid changes
of gradients in consecutive iterations, leading to a more stable
searching direction. Another benefit of using momentum is
the possibility to continue optimizing even if θk = 0. This
can be helpful for (matrix SDP) problems with structural

Algorithm 1 Momentum conic descent (MOCO)
1: Initialize: x0, δk = 2

k+2∀k
2: for k = 0, 1, . . . ,K do
3: ηk = argminη≥0 f(ηxk) ▷ Ray minimization
4: gk = (1− δk)gk−1 + δk∇f(ηkxk)
5: vk = argminv⟨gk,v⟩ s.t. ∥v∥ ≤ 1,v ∈ K
6: θk = argminθ≥0 f(ηkxk + θvk)
7: xk+1 = ηkxk + θkvk ▷ Ray search
8: end for
9: Return: ηKxK

solutions, e.g., sparsity or low rankness. The CD iteration
stops if θk = 0 (since later iterations will not move), and an
optimal solution is thus found. On the other hand, the heavy
ball momentum further adjusts the weight for ∇f(xk) and
continues optimizing. To see this, note that when θk = 0, we
have ηk+1xk+1 = ηkxk. As a result, gk+2 = (1−δk+1)gk+1+
δk+1∇f(ηk+1xk+1) = (1 − δk+1)gk+1 + δk+1∇f(ηkxk),
that is, the weight on ∇f(ηkxk) is adaptively increased to
δk(1−δk+1)+δk+1 if one further unpacks gk+1. This gives a
different search direction to continue the search for e.g., lower
rank solutions.

Different from standard FW subproblems, which is
argminv∈K⟨gk,v⟩, the MOCO subproblem (for ray search)
adds an additional constraint ∥v∥ ≤ 1 to ensure that the sub-
problem is solvable. Concretely, this amounts to our constraint
t ∈ [0, 1] in the toy example (2), and the additional constraint
can be taken as the range on the cosine of angular variables.
Adding the additional constraint ∥v∥ ≤ 1 typically induces
no extra computational burden compared to FW subproblems.
For example in the SDPs considered later, the subproblems
of MOCO and FW have the same complexity. More on ray
search will be discussed in Section III-B, where we will view
ray search from a duality lens.

III. PRIMAL-DUAL CONVERGENCE OF MOCO

Having explained the intuition of MOCO, we next focus on
its theoretical properties. It is not difficult to see that MOCO
converges after the first iteration for any initialization x0 ∈
K if x∗ = 0. We will hence cope with nontrivial problems
assuming x∗ ̸= 0 in the following subsections.

A. Primal convergence

We first deliver a direct result of ray minimization.

Lemma 1. For every iteration, MOCO ensures that

⟨ηkxk,∇f(ηkxk)⟩ = 0. (3)

Another preparation for the convergence proof is a series of
helper functions Φk+1(x), defined as

Φk+1(x) :=(1− δk)Φk(x) (4)

+ δk
[
f(ηkxk) + ⟨∇f(ηkxk),x⟩

]
,∀k ≥ 0.

The definition of Φ0(x) does not influence Φk+1(x) since
δ0 = 0. Similar to the spirit of [16], the helper functions
can be regarded as lower bounds for f(x), where the detailed
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implications can be found later in Lemma 2. However, there
is a key difference that brings up additional challenges to
the analysis of MOCO. Unlike [16], Φk+1(x) in (4) may
have a minimum reaching −∞ due to the noncompactness of
K. Consequently, one cannot adopt minx∈K Φk+1(x) directly
as the lower bound for f(x∗). The remedy for this issue is
summarized in the next lemma.

Lemma 2. Φk+1(x) satisfies that: i) vk minimizes Φk+1(x)
over {x|x ∈ K, ∥x∥ ≤ 1}; and, ii) there exists ρk ≥ 0 such
that f(x∗) ≥ Φk+1(∥x∗∥vk)+ρk holds, where ρk = 0 only if
{ητxτ ≡ x∗}kτ=0. The rigorous expression of ρk can be found
in Appendix B.

Lemma 2 shows that by concentrating on a region that is the
intersection of K and a norm ball, minimizing Φk(x) enables
an underestimate of f(x∗).

Theorem 1 (Primal convergence). Suppose that Assumptions
1, 2, and 3 hold. Choosing δk = 2

k+2 , MOCO in Alg. 1
guarantees that

f(ηk+1xk+1)− Φk+1(∥x∗∥vk) ≤
2L∥x∗∥2

k + 2
− ρk

where ρk is defined in Lemma 2.

The convergence rate of MOCO can be established as a
simple combination of Theorem 1 and Lemma 2.

Corollary 1. Under assumptions and parameter choices in
Theorem 1, Alg. 1 converges with a rate

f(ηk+1xk+1)− f(x∗) ≤ 2L∥x∗∥2

k + 2
− ρk.

Comparing the rate of MOCO to its non-momentum coun-
terpart, CD [6], it is observed that momentum tightens the
convergence rate by a small term ρk. This validates the merits
of applying momentum to ray search.

B. Dual convergence

We then tackle the dual convergence of MOCO to gain a
complete understanding of its behaviors. Note that our analysis
techniques can be directly extended to CD [6], and each
of theorem below has a CD counterpart that differs only in
constant, which we omit to save space.

Definition 1. Let ϵ ≥ 0 be some desirable tolerance. A point
x∗
ϵ is said to satisfy KKT condition of (1) ϵ-approximately if

x∗
ϵ ∈ K (5a)
⟨∇f(x∗

ϵ ),x
∗
ϵ ⟩ = 0 (5b)[

dist∗
(
∇f(x∗

ϵ ),K∗)]2 ≤ ϵ. (5c)

In particular, (5a) denotes primal feasibility of x∗
ϵ , (5b) and

(5c) characterize complementary slackness and dual feasibil-
ity, respectively. Note that the KKT condition is satisfied if[
dist∗

(
∇f(x∗

ϵ ),K∗)]2 = 0 (i.e., ϵ = 0). Our gaol here is to
understand that how fast can {ηkxk} generated by MOCO
converge to an ϵ-approximate KKT point.

An obvious fact is that MOCO never generates points
outside of K. Hence, ηkxk is always primal feasible with (5a)

satisfied automatically. Equation (5b) is also satisfied by ηkxk

as a result of ray minimization; see Lemma 1. This further
explains the role of ray minimization, that is, it seeks x∗ by
eliminating points that are not complementarily slack. It turns
out that {ηkxk} is not always dual feasible. Hence, the number
of iterations required to ensure dual feasibility characterizes
how fast an ϵ-approximate KKT solution is found. Toward
this goal, the key inequality leveraged is summarized in the
following lemma.

Lemma 3. Suppose that Assumptions 1 and 2 hold, then we
have

f(x)− f(y) ≥ ⟨∇f(y),x− y⟩+ 1

2L
∥∇f(y)−∇f(x)∥2∗.

Lemma 3 extends [20, Theorem 2.1.5] to non-Euclidean
norms, and it is critical to MOCO’s dual convergence.

Theorem 2 (Dual convergence). Suppose that Assumptions 1,
2 and 3 hold. With δk = 2

k+2 , MOCO guarantees that[
dist∗

(
∇f(ηkxk)),K∗)]2 ≤ 4L2∥x∗∥2

k + 1
.

Theorem 2 asserts that an ϵ-approximate KKT point can
be found by MOCO after at most O(L

2∥x∗∥2

ϵ ) iterations. A
critical observation is that the L dependence is different on
primal (Theorem 1) and dual (Theorem 2). This difference
will influence the design of stopping criterion, which will be
discussed in detail in the upcoming subsection.

C. Stopping criterion

While Theorems 1 and 2 characterize the primal and dual
convergence rates, it is still unclear that when is a good time
to stop MOCO iteration. Simply setting K = O( 1ϵ ) works,
but it could be too pessimistic since the rates are established
for worst cases. In this subsection, we pursue a quantifiable
overestimate of suboptimality that not only converges to 0 as
k grows, but also can be obtained as a byproduct of MOCO
subproblem.

Stopping criterions can be designed based on either pri-
mal or dual errors. If working with the primal, f(ηkxk) −
Φk(∥x∗∥vk−1) in Theorem 1 can be leveraged as an opti-
mality measure. However, its value is impossible to compute
due to the lack of knowledge about ∥x∗∥. The attempt on
dual domain is to rely on

[
dist∗

(
∇f(ηkxk),K∗)]2 in The-

orem 2. The issue is, however, computationally expensive
and impractical since it requires a projection onto K∗. To
overcome these limitations, we find that ⟨gk,vk⟩ approximates[
dist∗

(
∇f(ηkxk),K∗)]2 well, and can be used as a tractable

certification for optimality.
To see this, we first write out the dual for MOCO subprob-

lem in line 5,

max
u
−∥gk − u∥∗ s.t. u ∈ K∗. (6)

This dual problem (6) projects gk onto K∗, and the optimal
objective value is −dist∗(gk,K∗). Comparing with (5c), it can
be seen that long as dist∗(gk,K∗) ≈ dist∗(∇f(ηkxk),K∗),
one can use the optimal value of (6) as stopping criterion.
This observation is formalized in the following theorem.



5

Theorem 3 (Stopping criterion). Suppose that Assumptions
1, 2, and 3 hold. Upon choosing δk = 2

k+2 , the following
inequality holds for MOCO in Alg. 1 for any k ≥ 2[

dist∗(gk,K∗)
]2 ≤ 9.7L2∥x∗∥2

k + 1
. (7)

Theorem 3 shows that dist∗(gk,K∗) converges at the same
rate of dist∗(∇f(ηkxk),K∗) up to constant factors. Hence it
further gives a math interpretation for ray search, that is, it
projects gk to K∗ for (approximated) dual feasibility.

Next we show that dist∗(∇f(ηkxk),K∗) can be conve-
niently obtained, suiting for the need of the stopping cri-
terion. Strong duality between (6) and line 5 means that
dist∗(gk,K∗) = −⟨gk,vk⟩. Therefore, one can simply ap-
proximate dist∗(∇f(ηkxk),K∗) via ⟨gk,vk⟩, and assert an
ϵ-approximated KKT point is found whenever

⟨gk,vk⟩ ≥ −O(
√
ϵ). (8)

It worth pointing out that the criterion (8) is an estimation
on dual feasibility, as oppose to the primal error f(xk) −
f(x∗) in standard FW literatures [12], [16]. In other words,
(8) is no longer affine invariant as in standard FW, opening
the possibility for preconditioning.

Preconditioning. With the hope of faster numerical per-
formance, preconditioning applies a linear transformation to
x and solves the transformed problem. It is observed that
preconditioning has different impacts on primal and dual of
MOCO. In particular, precondition does not reduce L∥x∗∥2
in primal error (cf. Theorem 1), but it can shrink L∥x∗∥ in
dual error (cf. Theorems 2 and 3). Consider the following
simple example with f(x) = (x− 2)2, whose preconditioned
version is given by g(x) = f(2x) = (2x − 2)2. We will
use subscript f and g to denote constants and variables
related to f(x) and g(x), respectively. In this case, one can
verify that Lf∥x∗

f∥22 = Lg∥x∗
g∥22, but Lf∥x∗

f∥2 ̸= Lg∥x∗
g∥2,

demonstrating that the dual error can be scaled down with-
out affecting primal error via proper precondition schemes.
Henceforth, an optimal preconditioner can reduce the value of
stopping criterion, leading to faster termination of the iterative
procedure. This gives new questions on how to find the best
preconditioner, which we leave for future work.

IV. MEMORY EFFICIENT MOCO FOR SDPS

To enhance practical merits, we further develop a specific
implementation for MOCO to reduce the memory consump-
tion of large-scale semidefinite programing (SDP). By lever-
aging the problem structure, it is possible not only to store
vectors in lieu of full matrix variables, but also to relax the
regularity condition, i.e., strict convexity, in Assumption 2.
We also augment this memory efficient MOCO with a greedy
step based on a Burer-Monteiro (BM) factorization heuristic.
When injecting a greedy step, it usually improves MOCO
convergence.

A. Problem statement

Consider SDPs of the following form

min
X

f
(
G(X)− z

)
s.t. X ∈ Sn+ (9)

where z ∈ Rd is a given vector. The linear operator G maps
X ∈ Sn+ to Rd, and it is defined as

G(X) := [tr(G1X), . . . , tr(GdX)]⊤ (10)

where Gi ∈ Sn, i = 1, . . . , d. Problem (9) appears frequently
in machine learning and statistics, where {Gi} are often struc-
tural, e.g., low rank, sparse, or discrete Fourier transformation
matrices. Given G, its adjoint on a vector a ∈ Rd is

G∗(a) = a1G1 + . . .+ adGd. (11)

In the sequel, we assume that n2 ≫ d, and efficient methods
exist for computing matrix-vector product Giv,∀i. The latter
can be easily satisfied relying on the inherit structure of Gi.

For notational convenience, we will write f ◦ G(X) :=
f
(
G(X)−z

)
, where f : dom f ∈ Rd 7→ R, and f ◦G : Sn+ 7→

R. The matrix norm ∥ · ∥ in this section refers to Schatten
1-norm (also known as nuclear or trace norm), and its dual
norm, ∥ · ∥∞, is therefore the Schatten-inf norm (or operator
norm). The inner product of matrices is standard trace inner
product. We do not strict the form for vector norm.

B. Memory efficient implementation of MOCO

Applying MOCO for solving (9) requires the storage of n×
n matrices Xk and gk. Note that here gk is a matrix, and we
keep the same notation as Alg. 1 for consistence. This memory
consumption is a significant barrier for scaling problems up.
Moreover, it is extremely not economical for raised-up SDPs
as discussed in Section I. To facilitate memory efficiency in
MOCO, the changes are represented below.

Vectorized representation of Xk. Let yk = G(Xk) − z.
The vector yk is helpful for memory saving of MOCO iterates.
In particular, ηk can be obtained using only vectors yk and z

ηk = argmin
η≥0

f ◦ G(ηXk) = argmin
η≥0

f
(
G(ηXk)− z

)
= argmin

η≥0
f
(
ηG(Xk)− z

)
= argmin

η≥0
f(ηyk + ηz− z).

Similarly, yk avoids explicit use of Xk when solving for θk
in Line 6 in Alg. 2. Another merit of yk lies in the fact that
∇f ◦ G(Xk) = G∗

(
∇f(yk)

)
. Owing to the linearity of G∗,

i.e., G∗(a+ b) = G∗(a) + G∗(b), it is possible to leverage a
vector g̃k ∈ Rd to retrieve the full gradient gk as G∗(g̃k); see
line 4 of Alg. 2.

MOCO subproblem. The MOCO subproblem in line 5
under Schatten 1-norm is equivalent to find the minimum
eigenvalue and its normalized eigenvector of G∗(g̃k). This can
be carried out efficiently through shifted power method or the
Lanczos method [21].

Sketched representation of Xk. Although yk removes the
explicit need of Xk, it does not support to reconstruct Xk.
Random sketches Sk are adopted to address this problem in
memory efficient form following [26]. In particular, a random
Gaussian matrix Ω ∈ Rn×R is fixed for some predefined
parameter R≪ n. The sketch is then defined as Sk = XkΩ.
The linearity of sketch also permits a simple update for Sk in
line 8 of Alg. 2. For the ease of understanding and analyses,
the update of Xk is written in line 9, however, this line should
be omitted when coding. The overall memory consumption for
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Algorithm 2 Memory efficient MOCO for (9)
1: Initialize: y0 = −z, δk = 2

k+2∀k,S0 = 0 ∈ Rn×r

2: for k = 0, 1, . . . ,K do
3: ηk = argminη≥0 f(ηyk + ηz− z)
4: g̃k = (1− δk)g̃k−1 + δk∇f(ηyk + ηz− z)
5: find λk = λmin(G∗[g̃k]) and associated normalized

eigenvector qk

6: θk = argminθ≥0 f(ηkyk + ηkz− z+ θG(qkq
⊤
k ))

7: yk+1 = ηkyk + ηkz− z+ θkG(qkq
⊤
k )

8: Option I: Sk+1 = ηkSk + θkqk(q
⊤
k Ω)

9: Option II: Xk+1 = ηkXk + θkqkq
⊤
k

10: (optional) greedy step in Alg. 3
11: end for
12: Return: ηKSK (to recover XK)

Alg. 2 is O(d+ nR), which can be much less than O(n2) in
the naive implementation of MOCO.

Recover Xk from Sk. One can find a rank r approximation
X̂k to the real variable Xk using a stable implementation [26,
Algorithm 5.1]. The reconstruction error is bounded as the
following if r < R− 1

E
[
∥Xa − X̂a∥

]
≤

(
1 +

r

R− r − 1

) n∑
i=r+1

σi(Xa).

The reconstruction error is sufficient small when the true Xk

is low rank. This means that the memory efficiency is almost
obtained for free for problems such as raised-up SDPs.

C. Convergence

In this subsection, we will strengthen Theorems 1 – 3 by
relaxing Assumption 2. The modified assumptions are listed
below, and indexed with a prime to connect with its original
counterpart in Section II-A.

Assumption 1′. f ◦ G(X) has Lf◦G-Lipchitz continuous gra-
dients, and f(y) has Lf -Lipchitz continuous gradients.

Assumption 2′. f is strictly convex.

Assumption 2′ relaxes Assumption 2 since it does not
require strict convexity on f ◦ G.

Since S+n is convex, we do not state Assumption 3 explicitly
here. K and K∗ are also not explicitly distinguished since S+n is
self-dual. In addition to previous assumptions, it is convenient
to have another bounded assumption on G or its adjoint G∗.

Assumption 4. The adjoint G∗(·) is Ḡ-Lipschitz, that is,
∥G∗(a)∥∗ ≤ Ḡ∥a∥∗.

This is a very mild assumption in practice, and it is satisfied
long as matrices {Gi}di=1 are bounded. To see this, we have

∥G∗(a)∥∗ ≤ |a1|∥G1∥∗ + . . .+ |ad|∥Gd∥∗
= ⟨m, ã⟩ ≤ ∥m∥∥a∥∗

where m := [∥G1∥∗, . . . , ∥Gd∥∗]⊤, and ã :=
[|a1|, . . . , |ad|]⊤. The inequality above implies that Ḡ ≤ ∥m∥.

Algorithm 3 Greedy step at iteration k

1: find (tk,Uk) by solving (13)
2: yk+1 ← t2k(yk+1 + z) + G(UkU

⊤
k )− z

3: Sk+1 ← t2k(Sk+1 + z) +Uk(U
⊤
k Ω)− z

Theorem 1′. (Primal convergence.) Under Assumptions 1′

and 2′, Alg. 2 for solving (9) ensures that

f(ηkyk) = f ◦ G(ηkXk) ≤ f ◦ G(X∗) +
2Lf◦G∥X∥2

k + 1
.

Moreover, let Ψ∗ collect the optimal solutions of (9), and
X̂k denote the reconstructed matrix from ηkSk, then the
reconstruction error satisfies that

lim sup
k→∞

E[dist(X̂k,Ψ
∗)] ≤

(
1 +

r

R− r − 1

)
max

X∗∈Ψ∗
Σr(X

∗)

where Σr(X
∗) :=

∑n
i=r+1 σi(X

∗).

Theorem 1′ establishes that the convergence of yk, together
with a bound for on the reconstruction error. In particular,
if the desirable X∗ is indeed low rank (smaller than r), the
reconstruction error is 0. This once again suggests that the
memory efficient MOCO is suitable for problems with low
rank solutions.

Theorem 2′. (Dual convergence.) Under Assumptions 1′, 2′,
and 4, Alg. 2 for solving (9) ensures that

[
dist∗(∇f ◦ G(ηkXk),S+n )

]2 ≤ 4Ḡ2LfLf◦G∥X∗∥2

k + 1
.

Furthermore, let X̂k denote the reconstructed matrix from
ηkSk, then the reconstruction error satisfies that

lim sup
k→∞

E[dist∗(∇f ◦ G(X̂k),S+n )]

≤
(
1 +

r

R− r − 1

)
Lf◦G max

X∗∈Ψ∗
Σr(X

∗)

where Σr(X
∗) is defined the same as Theorem 1′.

Theorem 3′. (Stopping criterion.) Under Assumptions 1′, 2′,
and 4, Alg. 2 for solving (9) ensures that

[
dist∗(G∗(g̃k),S+n )

]2 ≤ O( Ḡ2LfLf◦G∥X∗∥2

k

)
Theorem 3′ suggests a natural stopping criterion to certify

that ηkXk is near optimal, which is

λk ≥ −
√
ϵ. (12)

In other words, MOCO can be terminated long as G∗(g̃k) is
almost positive semidefinite. Note that the stopping criterion
is irrelevant to the reconstruction error, because it depends on
neither Sk nor Xk.

Going beyond theories, two heuristics are introduced in the
following subsections to further improve the practical merits
of MOCO.
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Fig. 2. Performances (runtime vs primal error) of different algorithms for the matrix completion problem (14). From left to right, the sizes of problems are
n = 100, 200, 400, 800, 1600.

D. Practical heuristic 1: Greedy step

This heuristic aims to handle raised-up SDPs through Burer-
Monteiro (BM) factorization [2], [4]. The idea is to greadily
move Xk+1 to a point on another ray to reduce the objective
value. This can be done by solving the following unconstrained
problem through any descent method [22]

(tk,Uk) = argmin
t∈R,U∈Rn×r

f
(
G(t2Xk+1 +UU⊤)− z

)
(13)

= argmin
t,U

f
(
t2(yk+1 + z) + G(UU⊤)− z

)
.

Note that tkXk + UkU
⊤
k is a positive semidefinite matrix.

Then, the feasible point tkXk+UkU
⊤
k is used as the starting

point of next iteration of Alg. 2. Accordingly, the way to
update yk and Sk based on (13) is given in Alg. 3. The greedy
step is optional and can be helpful to run every a few (e.g.,
100) iterations to speedup convergence.

Another manner to understand the greedy step is by viewing
MOCO as a theoretical justified wrapper for the BM approach,
where the convergence of latter is difficult to establish. Be-
cause problem (13) is solved through a descent approach, the
greedy step aided MOCO converges naturally. Note that when
choosing a proper solver for (13), the memory consumption
of the greedy step aided MOCO is still O(d+nR). Although
the greedy step also applies to CD [6], we find that it is more
suitable for MOCO because of the improved performance as
shown later in our numerical tests.

E. Practical heuristic 2: magical θk
Next, we introduce another practical variant when ∥X∗∥ can

be estimated. This variant can be useful for raised-up SDPs
especially when X∗ = x∗(x∗)⊤ for some vector x∗. In this
case, it can be possible to use the relation ∥X∗∥ = ∥x∗∥22 to
estimate ∥X∗∥. An example will be provided in Section V-B
together with numerical tests.

This heuristic is motivated by the empirical wisdom that
line search can be conservative for numerical performances
of heavy ball momentum for FW [16]. Let M > 0 be an
estimate of ∥X∗∥, then our heuristic step size is θk = 2M

k+2 .
This step size comes from the detailed derivation of Theorem
1; see the first line of Appendix C. For problems where M
is difficult to estimate, it is also possible we can run MOCO
for a few iterations, then use ∥Xk∥ as an estimate of ∥X∗∥.
The heuristic θk eliminates the need for line search, therefore
saving runtime.

V. NUMERICAL TESTS

Experiments with synthetic and real data are conducted to
visualize the performance of the proposed MOCO and its
practical heuristics.

A. Matrix completion

MOCO is first tested on matrix completion problems using
synthetic data. Suppose the ground truth matrix A ∈ Sn+ to be
recovered is low rank and positive semidefinite. We are given
noisy entries of A sampled randomly, that we denote as bij =
Aij + ϵij for some index (i, j) ∈ I, where ϵij are zero mean
i.i.d. Gaussian random variables. Let A = VV⊤ for some
V ∈ Rn×3 denote the low-rank ground truth. The estimated
matrix can be found by solving the following problem

min
X

1

2

∑
(i,j)∈I

(Xij − bij)
2 s.t. X ∈ S+n . (14)

To understand how MOCO scales, we consider (14) with
number of data n ∈ {100, 200, 400, 800, 1600}. Following [6],
we sample every entry in the upper left 10 × 10 block and
other entries with probability 0.1. The Gaussian noise ϵij is
randomly generated so that the SNR is 20dB.

The benchmark algorithms are chosen as CD and CD with
a greedy heuristic (CDg) [6]. Our numerical tests rely on
memory efficient implementation of MOCO. MOCO with
the greedy heuristic (MOCOg) is also considered to improve
numerical performance. Each tested algorithm is run for 300
iterations. The primal error versus runtime is plotted in Figure
2. For the matrix completion problem, MOCO exhibits slightly
worse performance compared to CD. On the other hand, the
greedy step appears to be more suitable for MOCO since it
clearly boosts the performance of MOCO but not CD with the
only exception on the test case with smallest scale n = 100.
In addition, given the same amount of time, MOCOg achieves
the lowest primal error compared with other tested algorithms,
thus confirming its scalability and efficiency. The greedy step
does not make enough progress for CD, but it significantly
helps MOCO. This empirically suggests that the merits of the
greedy step are amplified by the momentum in MOCO.

B. Phase retrieval

Suppose that x ∈ Rn is a signal to be retrieved from
measurements bi = (a⊤i x)

2 + ϵi, where ai ∈ Rn are rows
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Fig. 3. Performances of various algorithms for the phase retrieval problem. Each column contains the result using a specific image. The first row plots raw
images, and other rows (from 2nd to 7th) contain images recovered using FW, CD, MOCO, CDg, MOCOg, MOCOh, respectively. And the last row lists the
optimality error vs iteration of compared approaches.

of matrix A = [DS1, . . . ,DSm]⊤ with D being the discrete
cosine transform and S1, . . . ,Sm being diagonal matrices of
independent random signs. One means to recover the original
signal is to solve the following problem

min
x∈Rn

1

mn

mn∑
i=1

∥bi − (a⊤i x)
2∥22 + γ∥x∥22.

The unsatisfactory of this formulation resides in the fact that
the objective function is a polynomial of forth order. This
challenges optimization since it is non-smooth. Raised-up SDP
is the remedy. Noticing that (a⊤i x)

2 = a⊤i xx
⊤ai := a⊤i Xai

where X := xx⊤, we can reformulate the problem as

min
X∈Sn+

1

mn

∥∥A(X)− b
∥∥2 + γ tr(X) (15)

where A = [tr(a1a
⊤
1 X), . . . , tr(amna

⊤
mnX)]. Since X =

xx⊤, it is natural to assume that there exists a rank-1 optimal

solution X∗ = x∗(x∗)⊤. The rank-1 assumption also enables
an estimate of ∥X∗∥ to use in the heuristic θk

∥X∗∥=tr(X∗) = ∥x∗∥22 =
1

m

mn∑
i=1

(a⊤i x
∗)2≈ 1

m

mn∑
i=1

bi. (16)

For the experiment setup, 10 images from CIFAR10 dataset1

are randomly chosen as the raw signal x∗. The Gaussian noise
ϵi is generated with 20dB SNR. Other parameters are set
to m = 10 and γ = 5 × 10−5. The benchmark algorithms
are chosen as FW, CD, and CD with greedy heuristic (CDg).
When working with FW, we add another constraint tr(X) ≤
2
m

∑mn
i=1 bi to ensure the compactness of the constraint set,

where the right hand side of this inequality is roughly 2∥X∗∥.
Three MOCO variants are tested: MOCO in Alg. 2, MOCO

1https://www.cs.toronto.edu/ kriz/cifar.html
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with greedy heuristic (MOCOg), and MOCO with heuristic θk
(MOCOh). All algorithms are run for 300 iterations. We use
R = 3 for the sketches.

The original and recovered figures are shown in Fig. 3,
where the first row lists raw images, and other rows are
recovered images via FW, CD, MOCO, CDg, MOCOg, and
MOCOh, respectively. Among all implemented approaches,
the recovered images using FW have the worst quality. CD
and MOCO have almost the same recovery quality, and CDg,
MOCOg and MOCOh share the best figure quality. This
demonstrates that MOCO and CD not only improve numerical
performances over FW, but remove the need for the compact
domain requirement.

To further showcase the merits of MOCO over CD, we
also plot f ◦ G(Xk) − f ◦ G(X∗) versus runtime. The loss
curve for FW is omitted here because it works on a different
problem from (15) due to the added constraint. Despite the
runtime of MOCO is longer than CD because of updating g̃k,
the runtime of MOCOg is less than that of CDg. Hence, the
greedy heuristic is better use with MOCO than CD. Although
we do not have an exact explanation, our guess is that the loss
curvature of the greedy subproblem could be ill-conditioned in
CD. In addition, although relying on a heuristic θk, MOCOh
often converges faster than MOCO, and even matches to
the performance of MOCOg sometimes. As the heuristic θk
eliminates the need for line search, the runtime of MOCOh is
shorter than MOCO.

VI. CONCLUSION

This paper revisits conic descent (CD) for conic pro-
gramming problems. CD is refined through a geometrical
interpretation that has matching mathematical foundation in
the dual domain. Then a new approach, momentum conic
descent (MOCO), is proposed to improve CD empirically and
theoretically. Lastly, the dual behavior of MOCO (as well as
CD) is comprehensively examined, where it is discusses about
stopping criterion and opportunities to accelerate convergence
via preconditioning. A memory efficient implementation of
MOCO for SDPs is then developed based. Memory efficiency
is achieved almost for free given the low rankness of the
solution. Numerical results further validate the efficiency of
proposed MOCO and its practical variants.
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APPENDIX

A. Proof of Lemma 1

Proof. Following line 3 of MOCO, this lemma can be verified
by considering two cases: i) ηk = 0, and, ii) ηk ̸= 0. For
case i) equation (3) holds directly, while for ii), we have from
optimality condition that ⟨xk,∇f(ηkxk)⟩ = 0.

https://docs.mosek.com/modeling-cookbook/powo.html
https://docs.mosek.com/modeling-cookbook/powo.html
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B. Proof of Lemma 2

To prove i), let Xr := {x|x ∈ K, ∥x∥ ≤ r}. By rewriting
Φk+1(x), it is not hard to see that

min
x∈Xr

Φk+1(x)

⇔ min
x∈Xr

(1− δk)Φk(x) + δk⟨∇f(ηkxk),x⟩

⇔ min
x∈Xr

⟨gk,x⟩.

Given line 5 of Alg. 1, we have that vk minimizes Φk+1(x)
over X1. This completes the proof of property i).

To see ii), we have that

Φk+1(x) (17)

= (1− δk)Φk(x) + δk
[
f(ηkxk) + ⟨∇f(ηkxk),x⟩

]
(a)
= (1− δk)Φk(x) + δk

[
f(ηkxk) + ⟨∇f(ηkxk),x− ηkxk⟩

]
(b)

≤ (1− δk)Φk(x) + δk
(
f(x)− ξk(x)

)
(c)

≤ f(x)− ρk(x)

where (a) is because of (3); (b) is by strict convexity of f(x),
and ξk(x) ≥ 0 with equation holding only at x = ηkxk.
Inequality (c) is obtained by unrolling (1 − δk)Φk(x), and
ρk(x) ≥ 0 is weighted average of {ξτ (x)}kτ=0.

For notational convenience, let X∗ := X∥x∗∥. We then have
that ∥x∗∥vk minimizes Φk+1(x) over X∗. This is because
that minx∈X∗ Φk+1(x)⇔ minx∈X∗⟨gk,x⟩, where the second
optimization problem has a minimal smaller than 0 since we
must have 0 ∈ X∗. Consider two cases: i) minx∈X1

⟨gk,x⟩
(i.e., line 5) is minimized by vk = 0, in this case ∥x∗∥vk = 0;
and ii) minx∈X1⟨gk,x⟩ = ⟨gk,vk⟩ < 0, where the smallest
value of minx∈X∗⟨gk,x⟩ must be achieved by ∥x∗∥vk since
one can rewrite minx∈X∗⟨gk,x⟩ as

min
x
∥x∗∥

〈
gk,

x

∥x∗∥

〉
s.t.

x

∥x∗∥
∈ K∥∥∥ x

∥x∗∥

∥∥∥ ≤ 1

where the first constraint is because of the definition of cone.
Letting y := x

∥x∗∥ , it can be seen that ∥x∗∥vk indeed is a
minimizer for this problem.

Since ∥x∗∥vk minimizes Φk+1(x) over X∗ and x∗ ∈ X∗,
we have

Φk+1(∥x∗∥vk) + ρk(x
∗) ≤ Φk+1(x

∗) + ρk(x
∗) ≤ f(x∗)

(18)

where the last inequality is because of (17). Let ρk := ρk(x
∗),

and we clearly have ρk = 0 only if {ητxτ ≡ x∗}kτ=0. The
lemma is thus proved.

C. Proof of Theorem 1

Let x̃k+1 = ηkxk+ θ̃kvk with θ̃k = δk∥x∗∥. We must have
f(xk+1) ≤ f(x̃k+1) since θk is obtained via line search as in
line 6. Given smoothness, we then have

f(xk+1) ≤ f(x̃k+1) (19)

≤ f(ηkxk) + ⟨∇f(ηkxk), x̃k+1 − ηkxk⟩+
L

2
∥x̃k+1 − ηkxk∥2

= f(ηkxk) + θ̃k⟨∇f(ηkxk),vk⟩+
L

2
∥θ̃kvk∥2

≤ f(ηkxk) + θ̃k⟨∇f(ηkxk),vk⟩+
Lθ̃2k
2

where the last inequality is because ∥vk∥ ≤ 1 as in line 5 of
Alg. 1. On the other hand, we have

Φk+1(∥x∗∥vk) (20)
= (1− δk)Φk(∥x∗∥vk)

+ δk
[
f(ηkxk) + ⟨∇f(ηkxk), ∥x∗∥vk⟩

]
(a)

≥ (1− δk)Φk(∥x∗∥vk−1)

+ δk
[
f(ηkxk) + ⟨∇f(ηkxk), ∥x∗∥vk⟩

]
where (a) is because that ∥x∗∥vk−1 minimizes Φk(x) over
{x|x ∈ K, ∥x∥ ≤ ∥x∥∗}. Combining (20) and (19), we have

f(xk+1)− Φk+1(∥x∗∥vk) (21)

≤ (1− δk)
[
f(ηkxk)− Φk(∥x∗∥vk−1)

]
+
(
θ̃k − δk∥x∗∥

)
⟨∇f(ηkxk),vk⟩+

Lθ̃2k
2

= (1− δk)
[
f(ηkxk)− Φk(∥x∗∥vk−1)

]
+

Lδ2k∥x∗∥2

2

= (1− δk)
[
f(xk)− Φk(∥x∗∥vk−1)

]
+

Lδ2k∥x∗∥2

2

where the last inequality is because f(ηkxk) ≤ f(xk). For
notational convenience, let zk+1 := f(xk+1)−Φk+1(∥x∗∥vk),
then the recursion is obvious, i.e.,

zk+1 ≤ (1− δk)zk +
Lδ2k∥x∗∥2

2
. (22)

This theorem can be proved by unrolling (22) and plugging
in the choice of δk.

D. Proof of Lemma 3

Since f is strictly convex and differentiable, we can define
the Bregman divergence w.r.t. f as

Df (x,y) = f(x)− f(y)− ⟨∇f(y),x− y⟩. (23)

If we can show that Df (x,y) ≥ 1
2L∥∇f(y)−∇f(x)∥

2
∗, this

lemma can be proved.
The strict convexity of f implies that its conjugate f∗ that is

also strictly convex. Using the duality of Bregman divergence,
we have

Df (x,y) = Df∗
(
∇f(x),∇f(y)

)
.
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Next by the fact that f is L-smooth w.r.t. ∥ · ∥, it can be seen
that f∗ is 1

L -strongly convex w.r.t. ∥ · ∥∗ [13], from which one
can conclude that

Df (x,y) = Df∗
(
∇f(x),∇f(y)

)
≥ 1

2L
∥∇f(x)−∇f(y)∥∗.

The proof is thus completed.

E. Proof of Theorem 2

Applying Lemma 3, we have

1

2L
∥∇f(ηkxk)−∇f(x∗)∥2∗

≤ f(ηkxk)− f(x∗)− ⟨∇f(x∗), ηkxk − x∗⟩
(a)

≤ f(ηkxk)− f(x∗) ≤ 2L∥x∗∥2

k + 1

where (a) is because of the optimality condition, i.e.,
⟨∇f(x∗),x − x∗⟩ ≥ 0,∀x ∈ K. This proves the first part
of this theorem.

For the second part, since we have ∇f(x∗) ∈ K∗ (this can
be obtained from the KKT condition), it follows directly that

dist∗
(
∇f(x∗

ϵ ),K∗) ≤ ∥∇f(ηkxk)−∇f(x∗)∥∗.

Hence the second part is proved.

F. Proof of Theorem 3

By writing gk as the summation of {∇f(ητxτ )}, we have
that

∥gk −∇f(x∗)∥∗

≤
k∑

τ=0

2(τ + 1)

(k + 1)(k + 2)
∥∇f(ητxτ )−∇f(x∗)∥∗

≤ 4L∥x∗∥
k∑

τ=0

√
τ + 1

(k + 1)(k + 2)

≤ 8L∥x∗∥
√
k + 2

3(k + 1)
.

Then Using the fact that

√
k + 2 ≤

√
k + 1 +

1

2
√
k + 1

we have

∥gk −∇f(x∗)∥∗ ≤
8L∥x∗∥
3
√
k + 1

+
4L∥x∗∥

3(k + 1)1.5
.

Considering the case where k ≥ 2, we arrive at

∥gk −∇f(x∗)∥∗

≤ 8L∥x∗∥
3
√
k + 1

+
4L∥x∗∥
9
√
k + 1

=
28L∥x∗∥
9
√
k + 1

.

Since we mush have ∇f(x∗) ∈ K∗, the proof can be com-
pleted by simply taking square on both sides of the inequality
above.

G. Proof of Theorem 1′

The proof of primal convergence in Theorem 1 does not
require strict convexity, and hence the convergence of ηkXk,
i.e., Option II in Alg. 2, still holds

f ◦ G(ηk+1Xk+1)− f ◦ G(X∗) ≤ 2Lf◦G∥X∗∥2

k + 2
.

Comparing Options I and II, there is an underlying Xk

associated with yk satisfying yk = G(Xk) − z . Noticing
that f ◦ G(ηk+1Xk+1) = f(ηk+1yk), the primal convergence
is thus proved.

The second inequality is established following a similar
argument of [26, Theorem C.1].

H. Proof of Theorem 2′

Let y∗ := G(X∗) − z. Since f is strictly convex and Lf

smooth, Lemma 3 still holds. Therefore, we have
1

2Lf
∥∇f(ηkyk)−∇f(y∗)∥2∗ (24)

≤ f(ηkyk)− f(y∗)− ⟨∇f(y∗), ηkyk − y∗⟩
(a)

≤ f(ηkyk)− f(y∗)

= f ◦ G(ηkXk)− f ◦ G(X∗)

≤ 2Lf◦G∥X∗∥2

k + 1

where (a) is because of the inequality below.

⟨∇f(y∗), ηkyk − y∗⟩
=⟨∇f(y∗),G(ηkXk)− G(X∗)⟩
=⟨G∗

(
∇f(y∗)

)
, ηkXk −X∗⟩ ≥ 0

where the first equation follows from ⟨G∗(a),X⟩ =
⟨a,G(X)⟩; and the last inequality is because of the optimality
condition of X∗.

Using Assumption 4, we have

∥∇f ◦ G(Xk)−∇f ◦ G(X∗)∥∗ (25)

= ∥G∗
(
∇f(yk)−∇f(y∗)

)
∥∗

≤ Ḡ∥∇f(yk)−∇f(y∗)∥∗.

Combining (24) and (25) completes the proof of first part of
this theorem.

For the second part, we have that

∥∇f ◦ G(X̂k)−∇f ◦ G(X∗)∥∗
≤ ∥∇f ◦ G(X̂k)−∇f ◦ G(ηkXk)∥∗

+ ∥∇f ◦ G(ηkXk)−∇f ◦ G(X∗)∥∗
≤ Lf◦G ∥X̂k − ηkXk∥︸ ︷︷ ︸

first term

+ ∥∇f ◦ G(ηkXk)−∇f ◦ G(X∗)∥∗︸ ︷︷ ︸
second term

.

The first term can be bounded using the same argument of
[26, Theorem C.1]; see also Theorem 1′, where we have

lim sup
k→∞

∥X̂k − ηkXk∥ ≤ lim sup
k→∞

E[dist(X̂k,Ψ
∗)].

The second term goes to 0 when k → ∞ following the first
part of this proof.
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