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Abstract—This paper introduces a practical approach for
leveraging a real-time deep learning model to alternate
between speech enhancement and joint speech enhancement and
separation depending on whether the input mixture contains one
or two active speakers. Scale-invariant signal-to-distortion ratio
(SI-SDR) has shown to be a highly effective training measure
in time-domain speech separation. However, the SI-SDR metric
is ill-defined for zero-energy target signals, which is a problem
when training a speech separation model using utterances
with varying numbers of talkers. Unlike existing solutions
that focus on modifying the loss function to accommodate
zero-energy target signals, the proposed approach circumvents
this problem by training the model to extract speech on both
its output channels regardless if the input is a single or
dual-talker mixture. A lightweight speaker overlap detection
(SOD) module is also introduced to differentiate between single
and dual-talker segments in real time. The proposed module takes
advantage of the new formulation by operating directly on the
separated masks, given by the separation model, instead of the
original mixture, thus effectively simplifying the detection task.
Experimental results show that the proposed training approach
outperforms existing solutions, and the SOD module exhibits high
accuracy.

Index Terms—Speech separation, speech enhancement,
real-time processing, multi-talker detection

I. INTRODUCTION

In recent years, a lot of research has been done on deep
learning (DL)-based speech enhancement (SE) and speech
separation (SS) methods. Applications include automatic
speech recognition (ASR) and hearing aids [1]–[3]. In the
real world, speech signals are often a reverberant mixture of
one or more speech sources and noise. When the number of
speech sources is not known a priori, it can be hard for a
real-time system to determine whether only SE, in the case of
a single talker, or a combination of SE and SS, in the case
of multiple overlapping talkers, should be applied. In practice,
the number of overlapping talkers is rarely more than two [4].
Hence, for the purpose of this work, we consider only single
and dual-talker scenarios.

Numerous techniques have been suggested to overcome
the challenges of a practical system when dealing with
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different numbers of concurrently active talkers [5]–[9]. One
approach is to train multiple networks for different speaker
counts [5], [6]. The speaker count is then estimated by a
separate module and the appropriate SE or SS model is
selected to extract the speech signal/s. In a similar but more
efficient approach, a noncausal neural network architecture
was proposed that utilizes a shared encoder and separator but
a different decoder for each speaker count [7], resulting in
considerably less training parameters. Although the technique
of speaker counting followed by selecting the appropriate
SE or SS module was shown to work well in noncausal
settings, it is unclear how it can be efficiently applied to
latency-demanding applications.

In a more practical approach, a single-talker signal can
be modeled as dual-talker by setting the second signal to
zero energy, i.e., silent speech. With this formulation, an SS
model can be trained to jointly perform SS and SE in either
single or dual talker scenarios. However, time-domain SS
models are typically trained using a signal-to-distortion ratio
(SDR)-based loss function, which is ill-defined for zero-energy
target signals. Although modifications to SDR-based loss
functions have been proposed to handle zero-energy target
signals [10], [11], they generally come at the cost of somewhat
degraded performance in terms of the original SDR metric.

Motivated by the above observations, this study proposes
a simple and efficient approach for training a DL-based
SS model to handle both single and dual-talker scenarios.
Given an input mixture, the proposed approach consists in
training a model to output two channels. In a dual-talker
scenario, these channels correspond to the two separated and
enhanced speech signals, whereas in a single-talker case, both
channels correspond to the same output, the enhanced speech.
This approach allows leveraging the standard permutation
invariant training (PIT) [12] with an SDR-based loss function
without requiring any modifications. Additionally, taking
advantage of the new formulation, a lightweight speaker
overlap detection (SOD) post-processing module is introduced
for detecting dual-talker instances in real time. This module
simplifies the detection task by operating directly on the
separated masks, estimated by the SS model, instead of the
original mixture signal. The proposed methodology was tested
on the recently introduced UX-Net model [13] for causal,
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low-latency SS, revealing improved performance over methods
that reformulate the SDR measure. The proposed SOD module
is also shown to attain high accuracy.

II. PROBLEM FORMULATION

Let us consider a scenario with one or two active
speech sources in a noisy and reverberant environment. The
time-domain signal captured by the microphone is modeled
by

y = s1 + s2 + v (1)

where s1 and s2 are the clean reverberant speech signals of
the two sources, and v is background noise. In a dual-talker
scenario, we wish to extract both s1 and s2 from y (SS task),
whereas, in a single talker scenario, s2 is assumed to be a
zero-energy signal, and we wish to extract only s1 from y
(SE task).

Let S = {s1, s2} and Ŝ = {ŝ1, ŝ2} denote sets grouping the
speech sources of interest and their corresponding estimates,
respectively. Let F denote the SS model trained to extract
Ŝ given the input mixture y. F is trained applying PIT to
minimize

L(S, Ŝ) = −1

2
max
π

2∑
n=1

D(sπ(n), ŝn) , (2)

where π represents the permutation set on S and D(s, ŝ) is
a signal-level similarity measure between a target utterance
s and its estimate ŝ. The most commonly used similarity
measures are SDR and scale-invariant SDR (SI-SDR) [14].
Both measures can be jointly expressed by letting

D(s, ŝ) = 10 log10

(
∥αs∥2

∥ŝ− αs∥2 + ϵ
+ ϵ

)
. (3)

where ∥ · ∥ denotes Euclidean norm, ϵ is a constant for
numerical stability and α is a parameter selected to be either
1 for SDR or the scalar projection of ŝ onto s, i.e., ŝT s

∥s∥2 ,
for SI-SDR. Among the two measures, SI-SDR is typically
preferred due to its invariance to signal scaling. However, both
measures are ill-defined when one of the target signals is zero
energy, such as s2 in (1). Hence, the problem is to modify the
training objective of F to allow the same model to perform
joint SE and SS in single and dual talker scenarios.

III. EXISTING SOLUTIONS

Let us first discuss previously proposed approaches in the
literature for tackling the problem in this study.

A. Softmax SDR

One approach is to add a small positive constant ϵ to the
numerator of the SDR measure. However, this introduces a
bias in training since zero-energy target signals are easy to
learn. However, this issue can be addressed by limiting the
SDR value to a soft maximum [15], resulting in the following
performance measure

Dϵ−tSDR(s, ŝ) = 10 log10
∥s∥2 + ϵ

∥ŝ− s∥2 + τ(∥s∥2 + ϵ)
, (4)

where τ = 10−SDRmax/10 is a constant that restricts the
maximum value of SDR to some threshold SDRmax.

B. Source aggregated SDR

A recent study proposed a modified training objective for
handling varying numbers of overlapping talkers, called source
aggregated SDR (SA-SDR) [10]. Unlike traditional PIT in
(2) paired with the SDR measure in (3), which, for a given
permutation, computes the arithmetic mean of signal-level
SDRs, SA-SDR aggregates the energies of the target signals
and reconstruction errors to compute a global SDR measure.
The modified PIT objective is given by

LSA-SDR(S, Ŝ) = −max
π

10 log10

∑N
n=1 ∥sπ(n)∥2∑N

n=1 ∥ŝn − sπ(n)∥2
, (5)

where N is the maximum number of concurrent speakers,
which in the context of this work is 2. This training objective
is defined as long as the mixture contains at least one active
speech source.

C. Multi-Objective Loss

An alternative approach is to introduce distinct loss
functions during training for tackling different numbers of
talkers [16]. In the context of this work, we can modify the
training objective as follows

LMOL(S, Ŝ) =

{
−D(s1, ŝ1)− λDlog-MSE(s2, ŝ2), s2 = 0

L(S, Ŝ), s2 ̸= 0
(6)

where λ is some positive constant, 0 is a vector of zeros, and

Dlog-MSE(s, ŝ) = −10 log10(∥ŝ− s∥2 + ϵ) (7)

is the log mean squared error (log-MSE). In a single-talker
scenario, this approach employs signal-level SDR/SI-SDR in
(3) along with log-MSE for training the model to respectively
output enhanced speech on the first channel and zeros on the
second channel. The parameter λ is introduced to balance the
gradients between the two objectives. In dual-talker scenarios,
standard PIT combined with signal-level SDR/SI-SDR is
employed.

IV. PROPOSED SOLUTION

The methods discussed so far involve modifying (2) or (3)
to handle zero-energy signals. However, modifying the desired
performance measure may degrade the model’s performance
in terms of the original metric. Hence, in this work we prefer
to avoid introducing any modifications to (2) and (3) and
reformulate the target signals in S as follows

S̄ =

{
{s1, s1}, s2 = 0

{s1, s2}, s2 ̸= 0 ,
(8)



meaning that, in single-talker scenarios, F is trained to extract
s1 at both channels, whereas, in dual-talker scenarios, F is
trained to extract the distinct sources, just as in conventional
SS. This approach is motivated by the observation that
dual-talker SS models tend to output a similar version of the
signal at both channels when the input mixture consists of
just one speech source. Hence, the idea is to simplify training
without the need of modifying the desired performance
measure.

The proposed modification in (8) introduces the need for
an additional post-processor to differentiate between single
and dual talker scenarios. For this purpose, we propose a
lightweight SOD module that would work in tandem with
F to detect speaker overlap in real time. This module can
serve different purposes, e.g., preventing ASR systems from
processing both output channels in single-talker scenarios; and,
optionally, allowing a means to know when to replace the
output at the second channel with zeros if consistency with
the original target signals in S is desired.

In this work, we consider F as a real-time
time-domain SS neural network that follows the general
encoder-separator-decoder design of the well-known
time-domain audio speech separation network (TaSNet)
[2]. As shown in Fig. 1, the SOD module operates in a
frame-wise manner and takes as input the two-channel
mask vectors from the separator module of F . The masks
are concatenated resulting in the vector m(2K), where the
superscript denotes the length of the vector and K is the
dimension of individual-channel masks. m(2K) is then fed as
input to the SOD module, which consists of the following
three processing stages

m
(H)
1 = ReLU(FF(m(2K)))

m
(H)
2 = ReLU(Stacked-GRU(m

(H)
1 ))

m
(1)
3 = σ(FF(m(H)

2 )) ,

(9)

where ReLU(·) and σ(·) denote rectified linear unit and
sigmoid activation functions, respectively, FF(·) denotes a
feed-forward layer, and Stacked-GRU(·) denotes two stacked
gated recurrent unit (GRU) layers. Recurrent processing is
introduced to provide longer context awareness. It follows that
the SOD module transforms an input vector of length 2K into
a lower-dimensional hidden state vector of length H which is
then further processed and mapped into a classification output
denoted by a scalar value between 0 and 1. Frame-level outputs
are averaged across an individual training utterance and the
module is trained separately from F to minimize the binary
cross-entropy loss.

Despite its simplicity, the advantage of the proposed training
approach in (8) compared to existing solutions is that it allows
training the same model F on single and dual-talker datasets
without modifying the popular SI-SDR-based loss function.
Furthermore, forcing both channels to output an audio signal,
even in single-talker scenarios, enables the model to equally
optimize the parameters associated with the output at both

channels. Lastly, the new training approach paired with the
proposed SOD post-processing module conveniently enable
efficient real-time detection of speaker overlap by reusing the
frame-level masks estimated by the separator in F as input
to the SOD block. This claim follows from the reasoning
that SOD is simpler when the input consists of the already
separated signals instead of the original mixture.

V. EXPERIMENTAL CONFIGURATIONS

We evaluate the performance of the proposed methodology
on SE and SS tasks using an existing neural network
architecture.

A. Dataset

A dataset is generated to simulate single and dual-talker
noisy mixtures in a reverberant room. This dataset consists of
36000, 10800, and 9000 4-second long utterances sampled at
16 kHz for training, testing, and validation, respectively. Clean
speech and noise utterances are obtained from LibriSpeech
[17] and WHAM! [18] datasets, respectively. For each
utterance, the room dimensions are randomly sampled between
5 and 10 meters in length and width and 2 to 5 meters in
height. The reverberation time is randomly sampled between
0.1 and 0.5 seconds. The number of talkers in the mixture is
set to vary from 1 to 2. In dual-talker utterances, speech signals
are mixed to have a randomly sampled signal-to-interference
ratio between -5 and 5 dB. Speech and noise source positions
are randomly sampled within the room with the constraint of
being at least 50 cm away from the walls. The microphone is
placed at the center of the room, and the image method [19]
is used to generate the corresponding room impulse responses
(RIRs). Reverberant speech and noise signals are added and
mixed to have a signal-to-noise ratio (SNR) randomly sampled
between 5 and 20 dB.

B. Network Architecture and Training

UG-Net [13] is adopted as the baseline model for F .
UG-Net is a casual TaSNet-like system designed for SS. The
dimension of the encoder in UG-Net is set to 256 and the
separator depth is set to 5. The frame size is set to 2 ms and
50% overlap is used, resulting in an algorithmic latency of only
3 ms. The network is trained using the Adam [20] optimizer
for 70 epochs with a batch size of 8. The initial learning rate
is set to 10−3 and multiplied by 0.98 every epoch. Gradients
are clipped to [-5, 5] during backpropagation to avoid the
exploding gradient problem.

Once training of F was completed, the SOD model was
trained using as input the masks estimated by the separation
module of UG-Net on the training dataset. The hidden state
dimension H of the SOD module was set to 64.

C. Evaluation

The SE and SS performance of the proposed method is
evaluated using the following three performance measures:
Perceptual Evaluation of Speech Quality (PESQ) [21],
Short-Time Objective Intelligibility (STOI) [22], and



Fig. 1. Schematic of the proposed methodology consisting of a primary neural network F for SE and SS tasks with an integrated SOD module. The model
F consists of encoder, separator, and a decoder modules. The arrows indicate the flow of gradients during training.

SI-SDR in dB. These metrics are reported separately
for single and dual-talker scenarios using the formatting
PESQ/STOI/SI-SDR. Additionally, we evaluate the SOD
module’s accuracy in detecting dual-talker segments using
frame-level true negative (TNR) and true positive (TPR) rates.

VI. RESULTS

Three experiments were conducted. In the first experiment,
F is trained on the following three tasks: SE, SS, and SE-SS.
For the SE task, the network is trained on the subset of the
training set that includes only single-talker utterances using
SDR and SI-SDR measures as training objectives, where only
the first output channel is considered. For the SS task, the
network is trained on the subset of the training set that includes
only dual-talker utterances using the classic PIT with SDR
(LSDR) and SI-SDR (LSI-SDR) training objectives. Finally, for
the SE-SS task, the network is trained on the entire training
set using the existing training objectives described in Section
III and the proposed method described in Section IV. The
parameters ϵ, SDRmax and λ are set to 10−8, 30 dB and 0.1,
respectively. SI-SDR was used as the signal-level similarity
measure in LMOL and the proposed method.

Table I reports the results of the first experiment. We note
that training the model solely on the dual-talker set leads to
a significant reduction in performance on the single-talker
set when compared to all other methods, thus confirming
the need for an improved training objective that can handle
varying numbers of speakers. Among the training methods
suitable for the SE-SS task, the proposed approach is shown
to attain the best overall performance, especially in terms of
SI-SDR. Fig. 2 further illustrates the SI-SDR performance
gap in the learning curves of the different methods. This
performance improvement is attributed to the use of an
unaltered SI-SDR-based training objective, made possible by
the proposed formulation in (8).

In the second experiment, we investigated the effect of
various levels of SNR on the performance of the proposed
training method on the SE-SS task and the TPR and TNR
scores of the proposed SOD module. The results in Table

TABLE I
COMPARISON WITH EXISTING SOLUTIONS.

Tasks Training
Objective

Single-talker Dual-talker

Unprocessed – 2.36/0.76/7.88 1.26/0.49/-0.13

SE
SDR 2.93/0.91/15.68 –

SI-SDR 2.92/0.90/15.79 –

SS
LSDR 2.52/0.77/9.35 1.85/0.68/5.96
LSI-SDR 2.58/0.78/9.10 1.84/0.69/5.89

SE-SS

Lϵ−tSDR 2.80/0.87/13.58 1.70/0.65/5.15
LSA-SDR 2.88/0.89/14.30 1.74/0.67/5.49
LMOL 2.78/0.88/14.78 1.72/0.66/5.19

Proposed 2.87/0.89/14.94 1.80/0.68/5.68

TABLE II
EVALUATION OF THE PROPOSED METHODOLOGY ON THE SE-SS TASK IN

VARYING SNR CONDITIONS.

SNR TNR TPR Single-talker Dual-talker

5-10 dB 94.6% 95.3% 2.77/0.86/14.52 1.68/0.63/5.13
10-15 dB 97.2% 97.6% 2.90/0.88/15.02 1.80/0.68/5.73
15-20 dB 98.7% 99.3% 2.94/0.90/15.28 1.92/0.70/6.10

VI show that TPR tends to be consistently higher than TNR,
suggesting that the model finds detecting dual-talker segments
easier than single-talker. As expected, we also note that the
performance of the proposed methods tends to improve at
increased SNR.

In the third experiment, we further quantify the detection
performance of the SOD module in dual-talker scenarios. For
this purpose, we replace the frame-wise output at the second
channel of F with a vector of zeros whenever the frame-level
SOD value is below 0.5 and evaluate the resulting extracted



Fig. 2. Learning curves of the different training objectives targeting the SE-SS
task. Results are reported in terms of SS performance on the dual-talker subset
of the validation set.

TABLE III
EFFECT OF SOD MASKING ON THE QUALITY OF SEPARATED SIGNALS.

TNR TPR SOD masking Dual-talker

97.9% 98.6%
× 1.80/0.68/5.74
✓ 1.72/0.67/5.53

signals in terms of PESQ, STOI and SI-SDR. We refer to
the procedure of replacing the second channel output frames
with zeros when the SOD value is low as SOD masking. The
initial 500 ms segment of the extracted signals is ignored to
warm up the SOD module. Table III reports the results. We
note that the use of SOD masking does not result in excessive
degradation in signal quality, thus confirming the effectiveness
of the proposed SOD module.

VII. CONCLUSION

This paper proposed a simple and practical training
approach for leveraging a real-time DL model to perform
joint SE and SS in single and dual-talker scenarios.
The proposed methodology circumvents the problem of
zero-energy target signals by training the separation network
to extract speech in both its output channels. The newly
defined training targets facilitate the use of the SI-SDR
measure during training as in conventional time-domain
SS with fixed number of speakers. Additionally, taking
advantage of the inherent speaker-counting property of the
separation network, an efficient SOD module is introduced for
differentiating between single and dual-talker scenarios in real
time. Experimental results showed that the proposed training
approach outperforms the existing solutions that consist in
modifying the loss function to accommodate zero-energy
target signals. Finally, the SOD module was shown to attain
high performance.
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