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Abstract—Detecting communities in high-dimensional graphs
can be achieved by applying random matrix theory where the
adjacency matrix of the graph is modeled by a Stochastic
Block Model (SBM). However, the SBM makes an unrealistic
assumption that the edge probabilities are homogeneous within
communities, i.e., the edges occur with the same probabilities.
The Degree-Corrected SBM is a generalization of the SBM that
allows these edge probabilities to be different, but existing results
from random matrix theory are not directly applicable to this
heterogeneous model. In this paper, we derive a transformation
of the adjacency matrix that eliminates this heterogeneity and
preserves the relevant eigenstructure for community detection.
We propose a test based on the extreme eigenvalues of this
transformed matrix and (1) provide a method for controlling the
significance level, (2) formulate a conjecture that the test achieves
power one for all positive significance levels in the limit as the
number of nodes approaches infinity, and (3) provide empirical
evidence and theory supporting these claims.

Index Terms—community detection, random matrix theory,
degree-corrected stochastic block model

I. INTRODUCTION

Networks are composed of nodes and pairs of nodes, known
as edges or connections, and are capable of representing a
diverse range of data. For instance, social networks consist
of nodes representing users and edges denoting interpersonal
relationships [47]. In satellite communication networks, satel-
lites and microwave channels comprise the nodes and edges,
respectively [15]. Due to their versatility, statistical inference
with network data is important to a variety of scientific
studies such as social science [43], metabolism [19], and
epidemiology [30] (see [32] for a review).

Networks often contain communities—groups of nodes
within which connections are especially dense [34]. Determin-
ing whether or not a network contains communities, which is
known as community detection, is a fundamental problem in
network data analysis [17]. Methods for community detection
typically fall into one of three categories [48]: greedy algo-
rithms [34], global optimization methods [33], [36], [39], or
probabilistic models [1], [2], [18], [24], [35].

In this work, we address community detection within a
probabilistic model using the framework of statistical hypoth-
esis testing. The Erdős–Rényi Model (ERM) [16] is perhaps
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the simplest probabilistic network model, in which n nodes
are connected independently at random with some probability
p ∈ (0, 1); however, modeling multiple communities requires
additional degrees of freedom. A generalization of the ERM,
the Stochastic Block Model (SBM) [18] consists of n nodes,
each of which belongs to one of 1 ≤ k ≤ n communities, a
community assignment function φ : [n] → [k], and an irre-
ducible symmetric matrix of probabilities P ∈ (0, 1)k×k. One
typically thinks of k as being much smaller than n. A network
is drawn from the SBM if any pair of nodes i, j ∈ [n] is
connected with probability (P )φ(i)φ(j) = (P )φ(j)φ(i) mutually
independently from all other node pairs. Although simple, the
SBM provides a capable sandbox for describing many interest-
ing problems, e.g., planted partition (or clique) detection [14],
and exhibits interesting phase transitions (see [1] for a recent
survey). The hypotheses for community detection in SBMs is
straightforward: the null hypothesis is that k = 1, i.e., the
SBM is an ERM. The alternative hypothesis is that k > 1.

Despite its merits, the SBM has limitations in capturing
real-world network features like the rich-club phenomenon,
where high-degree nodes tend to connect, even across different
communities [13], [49]. More generally, the SBM is too
simplistic to represent high levels of degree variation within a
single community [27], leading to underfitting in many real
networks. This underfitting increases the type I error rate,
i.e., the chance of incorrectly declaring that more than one
community is present, in the context of statistical hypothesis
testing for community detection [22].

To remedy this underfitting, the authors of [24] proposed
the Degree-Corrected Stochastic Block Model (DCSBM). This
generalization of the SBM includes additional parameters to
capture node-specific connection affinity: the likelihood for a
node to connect to other nodes regardless of community mem-
bership (cf. Definition II.1). However, while offering improved
modeling capabilities, working with this more complex model
presents significant mathematical challenges.

This paper proposes a statistical test, based on random ma-
trix theory, for community detection within a large DCSBM.
Our key contributions are summarized here:

1) We introduce a transformation method that converts the
heterogeneous and intractable adjacency matrix into a
tractable Wigner ensemble. Additionally, we present an
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approach for directly estimating the transformed matrix
from a single snapshot of the adjacency matrix.

2) We propose a method to determine the significance level
of the test, which is exact in the limit that n approaches
infinity.

3) We argue that our test achieves perfect detection for all
positive significance levels as n tends to infinity, and
provide empirical evidence of this claim.

In Section II, we provide a formal definition of the DCSBM
and identify the main problem addressed by this paper. In
Section III, we overview related work. In Section IV, we
initiate our analysis, providing relevant results from random
matrix theory when necessary. In Section V, we propose the
test, provide a method for estimating its false alarm rate,
and argue for its consistency in the limit as the number of
nodes approaches infinity. In Section VI, we provide empirical
evidence supporting the assertions of Section V. In Section
VII, we conclude and suggest directions for future study.

II. PRELIMINARIES

We begin with a formal definition of the Degree-Corrected
Stochastic Block Model (DCSBM).

Definition II.1 (Degree-Corrected Stochastic Block Model).
Let n, k ∈ N such that k < n, and let ϵ ∈ (0, 1/2].
Furthermore, let

• φ : [n] → [k] be surjective;
• W = (wµν)

k
µ,ν=1 ∈ Rk×k

+ be symmetric and irreducible;
• θ = (θ1, . . . , θn) ∈ (0, 1]n;

such that
•

∑
i∈φ−1({µ})

θi = 1 for all µ ∈ [k];

• wφ(i)φ(j)θiθj ∈ [ϵ, 1− ϵ] for all i, j ∈ [n].

A random matrix A ∈ {0, 1}n×n is an adjacency matrix
drawn from the Degree-Corrected Stochastic Block Model with
parameter (ϵ, φ,θ,W ), written A ∼ DCSBMn(ϵ, φ,θ,W ), if

(i) A is symmetric;
(ii) {Aij}1≤i≤j≤n is a mutually independent set of random

variables;
(iii) for all i, j ∈ [n], if i ∈ φ−1({µ}) and j ∈ φ−1({ν}),

then1 (A)ij ∼ Bern (θiθjwµν).

The symbols n and k will be used throughout the rest of
this paper to refer to the number of nodes and the number of
communities, respectively, in a DCSBM model. Interpretations
of the parameters θ and W may be found in [24]. We aim to
test the hypotheses

H0 : k = 1,

H1 : k > 1.

The crux of this paper is that the model under H0 is not, in
general, an ERM; rather, it is a DCSBM with 1 community.
The expected degree distribution of a one-community DCSBM
may be arbitrary, whereas the ERM expected degree distribu-
tion is always a single atom with mass one.

1A random variable X is Bernoulli with parameter p, p ∈ [0, 1], which we
denote by X ∼ Bern(p), if X = 1 with probability p and X = 0 otherwise.

III. RELATED WORK

We overview related work on community detection methods
that are based on matrices such as the adjacency, modularity,
or graph Laplacian matrices, within a DCSBM framework.

a) Signed Polygon Statistics: A class of Signed Polygon
statistics proposed in [21] assigns scores to each m-gon in
a network for some m ≥ 3. The scores are based on the
degree of each node in the m-gon, and the statistic is the
sum of all such scores. The detection performance of Signed
Polgyon statistics is shown to be robust to sparsity and mixed
membership, in which communities may overlap. Furthermore,
these statistics are capable of detecting small planted cliques
with size on the order n1/2 [22].

b) Spectral Clustering: The authors of [20] consider
entrywise ratios of a small number of leading eigenvectors of
the adjacency matrix. It is argued that these ratio vectors effec-
tively mod out community-independent degree heterogeneity,
and clustering the (k − 1)-tuple of ratios for each node via
k-means is capable of detecting communities. The authors of
[5] characterize the empirical spectral distributions of a class
of normalized modularity matrices drawn from the DCSBM.
In addition to describing phase transitions for community
detection, they propose a spectral clustering algorithm that
finds an optimal normalization for the modularity matrix,
followed by a k-means clustering of its eigenvectors.

c) Extreme Eigenvalue Tests for Special DCSBMs:
Perhaps the first work that uses the extreme (the largest
and smallest) eigenvalues for community detection, [31] es-
tablishes a phase transition in the largest eigenvalue of the
modularity matrix for a special case of the DCSBM, namely
the planted partition model. The authors of [8] also test the
extreme eigenvalues of a transformed adjacency matrix. The
transformation is similar to that of this paper in that they
are both entrywise centerings and rescalings of the adjacency
matrix; however, [8] does not consider a general DCSBM null
hypothesis, which is the main focus of this paper. Finally,
a goodness-of-fit test is proposed in [29] in which k = k0
vs k ̸= k0 is tested sequentially for k0 = 1, 2, . . . until the
k = k0 hypothesis is accepted. This method can be adapted to
community detection by terminating the sequence after testing
k0 = 1; however, like [8], [29] does not characterize the
significance level under a DCSBM null hypothesis.

IV. COMMUNITY DETECTION FOR THE DCSBM USING
RANDOM MATRIX THEORY

Let n, k, φ, θ = (θ1, . . . , θn), and W = (wµν)
k
µ,ν=1

be as in Definition II.1, and suppose A = (aij)
n
i,j=1 ∼

DCSBMn(ϵ, φ,θ,W ). We may write

A = EA+ (A− EA).

A. Analysis Under One-Community DCSBM Null Hypothesis

Under the null hypothesis H0,

EA = w11θθ
T ,

hence, A is the sum of a rank-one matrix EA and a centered
random matrix A−EA. Moreover, the entries in the diagonal



and upper triangle {aij : 1 ≤ i ≤ j ≤ n} are mutually
independent. The difficulty with directly analyzing A under
the DCSBM is that the variances

sij := E |aij − Eaij |2 = w11θiθj(1− w11θiθj), ∀i, j ∈ [n],

are, in general, heterogeneous in that they depend on i, j. Due
to this heterogeneity, the eigenvalues of A − EA can only
be described implicitly. Specifically, the empirical spectral
distribution of A− EA (cf. Definition IV.5) is asymptotically
characterized via its Stieltjes transform as the implicit solu-
tion to a quadratic vector equation [3], [4], the fundamental
properties of which have only recently been described. Even
less is known about finite-rank perturbations of such a matrix,
making it difficult to describe the extreme eigenvalues of A.

B. Special Case with Homogeneous Parameters

In the special case of homogeneous parameters where
θi = θj for all i, j ∈ [n], the DCSBM model under the null
hypothesis reduces to an ERM with parameter w11θ

2
1. In this

special case, A−EA is distributed as a scaled Wigner ensemble
[44]–[46], defined below.

Definition IV.1 (Wigner ensemble [6]). Let H = (hij)
n
i,j=1 ∈

Cn×n be a Hermitian random matrix. The random matrix
ensemble H is a Wigner ensemble if its entries are centered
and normalized, i.e., Ehij = 0 and E|hij |2= 1

n for all
i, j ∈ [n], and its entries in the diagonal and upper triangle
{hij : 1 ≤ i ≤ j ≤ n} are mutually independent.

Much is known about Wigner ensembles and, in particular,
their extreme eigenvalues and the extreme eigenvalues of low-
rank perturbations thereof. Therefore, it is desirable to work
with Wigner ensembles when possible. To this end, we define
a map that transforms a DCSBM adjacency matrix A to a
(scaled) Wigner matrix B.

Proposition IV.2. Let n, k, φ, θ = (θ1, . . . , θn), and
W = (wµν)

k
µ,ν=1 be as in Definition II.1, and suppose

A ∼ DCSBMn(φ,θ,W ). Furthermore, let B ∈ Rn×n such
that

(B)ij =
(A)ij − θiθjw√
θiθjw(1− θiθjw)

, ∀i, j ∈ [n],

where w ≡ w11. If k = 1, then n−1/2 ·B is a Wigner ensemble.

Proof. It follows from (i) and (ii) of Definition II.1 that B is
symmetric with independent entries in the diagonal and upper
triangle. The proof is complete by noticing that for any i, j ∈
[n],

1)

E
[
n−1/2 · (B)ij

]
= n−1/2 · E(A)ij − θiθjw√

θiθjw(1− θiθjw)

= n−1/2 · θiθjw − θiθjw√
θiθjw(1− θiθjw)

= 0,

and

2)

E
∣∣∣n−1/2 · (B)ij

∣∣∣2 =
E |(A)ij − θiθjw|2

n · θiθjw(1− θiθjw)

=
θiθjw − (θiθjw)

2

n · θiθjw(1− θiθjw)

=
1

n
.

C. Properties of Wigner Ensembles

We now discuss some important results from random matrix
theory. Following the seminal work of Baik, Ben Arous,
and Péché [7], which studies the extreme eigenvalues of
‘spiked’ sample covariance matrices [23], significant attention
was devoted to developing a parallel theory for low-rank
perturbations of Wigner ensembles [10], [11], [25], [26], [28],
[37], [38]. The key relevant results of this line of work, under
mild technical conditions, include:

1) the distributions of the extreme eigenvalues;
2) a sharpening of the empirical spectral distribution asymp-

totics (cf. Definition IV.5) from [44]–[46];
3) a phase transition for the extreme eigenvalues under an

additive low-rank perturbation.
Next, we provide the specific results required for our commu-
nity detection analysis.

1) Distribution of the Extreme Eigenvalues: Under mild
technical conditions, the marginal distributions of the extreme
eigenvalues of an appropriately centered-and-rescaled Wigner
ensemble each converge weakly (cf. [9, Section 25]) to the
Tracy-Widom distribution, defined next.

Definition IV.3 (Tracy-Widom ensemble [40], [41]). The
Tracy-Widom distribution TW1 is the probability measure on
(R,B(R)) with CDF

F1(x) = exp

[
−1

2

∫ ∞

x

q(y) + (y − x)q2(y)dy

]
,

where q(y) is the unique solution to the Painlevé II differential
equation

d2

dy2
q(y) = yq(y) + 2q3(y),

satisfying the boundary condition q(y) ≍ Ai(y) as y → ∞,
where Ai(y) denotes the Airy function of the first kind.

The Tracy-Widom density, i.e., dF1

dx is plotted in red in
Figure 2.

Theorem IV.4 ( [28, excerpted from Theorem 1.2]). For each
n ∈ N, let Hn be an n× n Wigner ensemble. Suppose that

lim
s→+∞

s4 · P
(∣∣∣n1/2(H)12

∣∣∣ ≥ s
)
= 0. (1)

Then

P
(
n2/3 · (λ1(Hn)− 2) ≤ x

)
→ F1(x), ∀x ∈ R.



Moreover, the logical inverse holds, i.e., (1) is necessary. A
similar result holds for −λn(Hn).

Trivially, n−1/2 · B satisfies (1) because its entries are
bounded almost surely.

2) Bulk Characterization of the Spectrum: Other key results
offer characterizations of the bulk of the spectrum of a
Wigner ensemble, i.e., the eigenvalues outside of an epsilon
neighborhood of the extreme eigenvalues. Namely, the empir-
ical spectral distribution, defined below, of a Wigner matrix
converges almost surely to the semicircle law.

Definition IV.5 (Empirical spectral distribution). Let H ∈
Cn×n be a Hermitian matrix. The empirical spectral distri-
bution (ESD) of H is the probability measure

µH :=
1

n

n∑
i=1

δλi(H), (2)

where (λi(H))
n
i=1 is the multiset of eigenvalues of H , and δx

is the Dirac measure with support {x} for any x ∈ R.

Define

µsc(E) =

∫
E

ρsc(x)dx, ∀E ∈ B(R),

where ρsc(x) :=
1

2π

√
4− x21[−2, 2] for all x ∈ R.

Theorem IV.6 ( [6, Theorem 2.5]). For each n ∈ N, suppose
that Hn is an n× n Wigner ensemble. Then, with probability
one,

µHn → µsc

weakly.

D. Estimating the Transformed Matrix B

In section IV, we introduced a transformed adjacency matrix
B and proved that it is a Wigner ensemble under the null
hypothesis; however, B depends on the unknown quantities
θ and w11. Therefore, we must estimate B to form a viable
statistical test. We propose the estimator

(B̂)ij =
(A)ij − (A11TA)ij

1TA1√
(A11TA)ij

1TA1

(
1− (A11TA)ij

1TA1

) , ∀i, j ∈ [n],

informed by the following theorem.

Theorem IV.7. Let n, k, φ, θ = (θ1, . . . , θn), and
W = (wµν)

k
µ,ν=1 be as in Definition II.1, and suppose

A = (aij)
n
i,j=1 ∼ DCSBMn(ϵ, φ,θ,W ). If k = 1, then

P

(∣∣∣∣∣
(
A11TA

1TA1

)
ij

− wθiθj

∣∣∣∣∣ ≤ 8

ϵ

(√
tn−1/2 + tn−1

))
≥ 1− 2

(
2e−2t2 + e−

n2ϵ2

18

)
, ∀t > 0, ∀i, j ∈ [n],

where w ≡ w11.

Proof. See Appendix (Section VIII-B).

To summarize, (A11TA)ij
1TA1

fluctuates around the unknown
parameters w11θiθj at the scale n−1/2 for any i, j ∈ [n].
Moreover, the fluctuation is subgaussian. From these facts, we
conjecture the following.

Conjecture 1. Let n, k, φ, θ = (θ1, . . . , θn), and W =
(wµν)

k
µ,ν=1 be as in Definition II.1, and suppose A =

(aij)
n
i,j=1 ∼ DCSBMn(ϵ, φ,θ,W ). Then if k = 1,∣∣∣P (n2/3 ·

(
λ1

(
n−1/2 · B̂

)
− 2
)
≤ x

)
− F1(x)

∣∣∣ = o(1),

and∣∣∣P (n2/3 ·
(
−λn

(
n−1/2 · B̂

)
− 2
)
≤ x

)
− F1(x)

∣∣∣ = o(1),

for all x ∈ R.

In other words, the distributions of the extreme eigenvalues
of B̂ are the same as those of a Wigner ensemble asymptoti-
cally.

V. TEST STATISTIC

We propose the statistic

T = max
{
n2/3 ·

(
λ1

(
n−1/2 · B̂

)
− 2
)
,

n2/3 ·
(
−λn

(
n−1/2 · B̂

)
− 2
)}

.

This statistic is reasonable because
1) under the null hypothesis, given Conjecture 1, T fluctu-

ates around 0, following a TW1 distribution asymptoti-
cally;

2) under the alternative hypothesis, we expect that∣∣∣λ1

(
n−1/2 · B̂

)
− 2
∣∣∣ ≫ n−2/3 for a large class of

alternative models W, θ, and φ, with a similar statement
holding for −λn

(
n−1/2 · B̂

)
.

The latter point comes from a BBP-type phase transition
for low-rank perturbations of Wigner ensembles, e.g., [25,
Theorem 2.7]. In section VI, we provide empirical evidence
that indicates a threshold test based on T attains power one in
the limit as n → ∞ for all positive significance levels, i.e., the
test is asymptotically consistent. We leave a thorough power
analysis for future work.

A. False Alarm Rate

Based on Conjecture 1, we pose the following conjecture
on the false alarm rate of the proposed statistic T .

Conjecture 2. Let G1 = 1− F1. If k = 1, then

P
(
T ≥ G−1

1 (α/2)
)
≲ α, ∀α ∈ (0, 1).

Remark 1. We note that G−1
1 exists because F1 is strictly

monotonic: the TW1 distribution is absolutely continuous.

In summary, rejecting the null hypothesis if T ≥ G−1
1 (α/2)

yields a type I error of at most α, for any α ∈ (0, 1),
at least asymptotically. The argument α/2 of the quantile
function G−1

1 is due to Bonferonni correction, because we
are simultaneously testing two eigenvalues.



VI. EMPIRICAL RESULTS

In this section, we present empirical evidence supporting the
assertion that the eigenvalues of n−1/2 · B̂ behave like those
of a Wigner ensemble. For all simulations, we generate θ via

θi =
Xi∑n
j=1 Xj

, ∀i ∈ [n],

where Xj ∼ Unif[0.1, 0.9], for all j ∈ [n]. For Figure 3, we
set

W = D ·

0.4 0.2 0.2
0.2 0.6 0.3
0.2 0.3 0.5

 ·D,

where

D = diag

 n∑
j∈φ−1({1})

Xj ,

n∑
j∈φ−1({2})

Xj ,

n∑
j∈φ−1({3})

Xj

 ,

and ∣∣φ−1({µ})
∣∣ = n

3
, ∀µ ∈ [3].

For Figures 1 and 2, we set w11 = 1
2

∑n
j=1 Xj .

Figures 1 and 2 support that n−1/2 · B̂ has a spectrum close
to that of a Wigner ensemble. In particular, Figure 2 indicates
that the extreme eigenvalues of n−1/2 · B̂ converge to those
of a Wigner ensemble at a rate faster than n−2/3. Figure 3
offers a glimpse into the asymptotic power of the proposed
test, indicating that it is asymptotically one for any positive
significance level.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 1. A histogram of the eigenvalues of a single realization of n−1/2 · B̂
under the null hypothesis k = 1, with n = 3000. Overlaid on the histogram

is the semicircle density ρsc(x) =
1

2π

√
4− x2 · 1[−2, 2].

VII. CONCLUSION

In this paper, we proposed a test for detecting communities
within a Degree-Corrected Stochastic Block Model. The test
is based on the extreme eigenvalues of a an element-wise
centered and rescaled adjacency matrix. Roughly, the proposed
centering and rescaling are consistent with a transformation
that maps the adjacency matrix A to a Wigner ensemble.

-8 -6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Observed Statistics
Tracy-Widom Law

Fig. 2. A histogram of n2/3 ·
(
λ1

(
n−1/2 · B̂

)
− 2

)
over 2000 independent

realizations with n = 500. Overlaid on the histogram is the TW1 density
dF1

dx
, computed in software using [12].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n=180
n=210
n=240
n=270
n=300

Fig. 3. Receiver operating characteristics for different values of n.

Because of this, we are able to approximate the distribution
of the proposed statistic using the Tracy-Widom distribution:
the asymptotic distribution of the extreme eigenvalues of a
Wigner ensemble. Additionally, we provided a method for
controlling the false alarm rate of the proposed test. Future
work includes an analysis of the power of this test, which
we believe converges as n → ∞ to one for any positive
significance level, and rigorous proofs of Conjectures 1 and 2.

VIII. APPENDIX

A. Notation and Conventions

Let N be the set of positive integers. For n ∈ N, let [n] :=
{1, . . . , n}. Let C be the set of complex numbers, let R be the
set of real numbers, and define R+ := (0,∞]. For a matrix
A ∈ Cm×n, we write (A)ij for the element in the ith row
and jth column of A. Let 1n := (1, 1, . . . , 1) ∈ Rn. For
i, j ∈ [n], we set δij = 1 if i = j and δij = 0 otherwise. For
n ∈ N, we reserve the letter In ∈ Cn×n to denote the identity
matrix throughout this paper. For a diagonalizable matrix A ∈



Cn×n, we write (λi(A))
n
i=1 for the multiset of eigenvalues

of A such that λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). For a set
S ⊆ C, we use the notation A = (aij)

n
i,j=1 ∈ Sn×n to denote

the matrix A with elements (A)ij = aij ∈ S for all i, j ∈
[n]. For a vector u = (u1, . . . , un) ∈ Cn, we let diag(u) ∈
Cn×n denote the matrix with elements (diag(u))ij = δijui.
For a topological space X , we use B(X ) to denote the Borel
σ−algebra generated by the open sets in X .

B. Proof of Theorem IV.7

1) Useful Lemmas:

Theorem VIII.1 (Hoeffding’s inequality for bounded random
variables [42, Theorem 2.2.6]). Let X1, . . . , Xn be indepen-
dent random variables. Assume that Xi ∈ [mi, Mi] for every
i ∈ [n]. Then, for any t > 0, we have

P

(
n∑

i=1

(Xi − EXi) ≥ t

)
≤ exp

(
− 2t2∑n

i=1(Mi −mi)2

)
.

Lemma VIII.2. Let a, b, c, d ∈ R such that b ̸= 0, b+ d ̸= 0,

and
∣∣∣a
b

∣∣∣ ≤ 1. Then∣∣∣∣a+ c

b+ d
− a

b

∣∣∣∣ ≤ |c|+ |d|
|b+ d|

.

Proof. ∣∣∣∣a+ c

b+ d
− a

b

∣∣∣∣ = ∣∣∣∣ bc− ad

b(b+ d)

∣∣∣∣
≤
∣∣∣∣ c

b+ d

∣∣∣∣+ ∣∣∣ab ∣∣∣
∣∣∣∣ d

b+ d

∣∣∣∣
≤ |c|+ |d|

|b+ d|
.

2) Proof of Main Result:

Proof. We seek to apply Lemma VIII.2 with a = w2θiθj ,
b = w, c = (A11TA)ij − w2θiθj , and d = 1TA1 − w.
We begin by establishing fundamental bounds on the absolute
“errors”

∣∣(A11TA)ij − w2θiθj
∣∣ and

∣∣1TA1− w
∣∣. Then, we

show that these error bounds are “small” via a concentration
inequality for sums of independent random variables. Finally,
we apply Lemma VIII.2 to yield the result.

Fix i, j ∈ [n] and write Eij ≡
(
A11TA

1TA1

)
ij

− wθiθj . To

this end, we begin with fundamental bounds on the “error”
terms 1TA1− w and (A11TA)ij − w2θiθj . We have

(A11TA)ij =

n∑
l=1

ail

n∑
m=1

amj ,

and

1TA1 =

n∑
p=1

n∑
q=1

apq

= 2

n∑
p=1

n∑
q=p+1

apq +

n∑
r=1

arr.

Then,

∣∣(A11TA)ij − w2θiθj
∣∣ = ∣∣∣∣∣

n∑
l=1

ail

n∑
m=1

amj − w2θiθj

∣∣∣∣∣
=

∣∣∣∣∣
(

n∑
l=1

ail − wθi

)(
n∑

m=1

amj − wθj

)

−2w2θiθj + wθj

n∑
l=1

ail + wθi

n∑
m=1

amj

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

l=1

ail − wθi

∣∣∣∣∣
∣∣∣∣∣

n∑
m=1

amj − wθj

∣∣∣∣∣
+ wθj

∣∣∣∣∣
n∑

l=1

ail − wθi

∣∣∣∣∣+ wθi

∣∣∣∣∣
n∑

m=1

amj − wθj

∣∣∣∣∣ , (3)

and ∣∣∣∣∣1TA1−
n∑

p=1

n∑
q=1

wθpθq

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
r=1

arr −
n∑

r=1

θ2rw

∣∣∣∣∣ (4)

+ 2

∣∣∣∣∣
n∑

p=1

n∑
q=p+1

apq −
n∑

p=1

n∑
q=p+1

θpθqw

∣∣∣∣∣ . (5)

By Theorem VIII.1 (Hoeffding’s inequality), for any t ≥ 0 we
have

(i) P

(∣∣∣∣∣
n∑

l=1

ail − θiw

∣∣∣∣∣ ≥ t

)
≤ exp

(
−2t2

n

)
;

(ii) P

(∣∣∣∣∣
n∑

m=1

amj − θjw

∣∣∣∣∣ ≥ t

)
≤ exp

(
−2t2

n

)
;

(iii)

P

(∣∣∣∣∣
n∑

p=1

n∑
q=p+1

apq −
n∑

p=1

n∑
q=p+1

θpθqw

∣∣∣∣∣ ≥ t

)

≤ exp

(
− 2t2

n2 − n

)
≤ exp

(
−2t2

n2

)
;

(iv) P

(∣∣∣∣∣
n∑

r=1

arr −
n∑

r=1

θ2rw

∣∣∣∣∣ ≥ t

)
≤ exp

(
−2t2

n

)
,

where in (i) and (ii) we used the normalization condition∑n
l=1 θl = 1 (cf. Definition II.1). Combining (3), (i), and (ii),

we find from union bound and DeMorgan’s law that

P
(∣∣(A11TA)ij − w2θiθj

∣∣ ≤ t2 + w(θi + θj)t
)

≥ 1− 2 exp

(
−2t2

n

)
, ∀t ≥ 0. (6)

Similarly, from (iii), (iv), and (4), it follows that

P
(∣∣1TA1− w

∣∣ ≤ 3t
)
≥ 1−

(
exp

(
−2t2

n2

)
+ exp

(
−2t2

n

))
≥ 1− 2 exp

(
−2t2

n2

)
, ∀t ≥ 0.

(7)



Note that w =
∑n

p=1

∑n
q=1 wθpθq ≥ n2ϵ, thus, (7) implies

P
(∣∣1TA1− w

∣∣ ≤ w

2

)
≥ 1− 2 exp

(
− w2

18n2

)
≥ 1− 2 exp

(
−n2ϵ2

18

)
. (8)

Assuming
∣∣w − 1TA1

∣∣ ≤ w
2 and, thus, 1TA1 > 0, Lemma

VIII.22 yields

|Eij | ≤
∣∣(A11TA)ij − w2θiθj

∣∣+ ∣∣1TA1− w
∣∣

1TA1

=

∣∣(A11TA)ij − w2θiθj
∣∣+ ∣∣1TA1− w

∣∣
|w − (w − 1TA1)|

≤
∣∣(A11TA)ij − w2θiθj

∣∣+ ∣∣1TA1− w
∣∣

|w − |w − 1TA1||

≤ 2

∣∣(A11TA)ij − w2θiθj
∣∣+ ∣∣1TA1− w

∣∣
|w|

≤ 2

∣∣(A11TA)ij − w2θiθj
∣∣+ ∣∣1TA1− w

∣∣
n2ϵ

. (9)

Noting that wθp = wθp
∑n

q=1 θq ≤ n(1 − ϵ) for all p ∈ [n]
and letting t > 0 be arbitrary, it follows that

P

(
|Eij | ≤ 2

√
t(2n3/2(1− ϵ)) + 4tn

n2ϵ

)
≥ P

(
|Eij | ≤ 2

(√
tn
)2

+ w(θi + θj)
√
tn+ 3tn

n2ϵ

)
≥ 1− 2

(
2e−2t2 + e−

n2ϵ2

18

)
,

where in the last step we combined (6), (7), (8), and (9).
Finally, for any t > 0,

2

√
t(2n3/2(1− ϵ)) + 4tn

n2ϵ
=

4(1− ϵ)
√
tn−1/2 + 8tn−1

ϵ

≤ 8

ϵ

(√
tn−1/2 + tn−1

)
.
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