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Abstract—This paper provides a solution for the activity
detection and channel estimation problem in grant-free access
with correlated device activity patterns. In particular, we consider
a machine-type communications (MTC) network operating in
event-triggered traffic mode, where the devices are distributed
over clusters with an activity behaviour that exhibits both
intra-cluster and inner-cluster sparsity patterns. Furthermore,
to model the network’s intra-cluster and inner-cluster sparsity,
we propose a structured sparsity-inducing spike-and-slab prior
which provides a flexible approach to encode the prior informa-
tion about the correlated sparse activity pattern. Furthermore,
we drive a Bayesian inference scheme based on the expectation
propagation (EP) framework to solve the JUICE problem.
Numerical results highlight the significant gains obtained by
the proposed structured sparsity-inducing spike-and-slab prior in
terms of both user identification accuracy and channel estimation
performance.

Index Terms—Bayesian inference, grant-free MTC, EP, struc-
tured sparsity

I. INTRODUCTION

Sparse signal recovery techniques have become prevalent

in the development of solutions for machine-type communi-

cations (MTC) with grant-free access protocols. One of the

main challenges in grant-free access is joint user identification

and channel estimation (JUICE). Motivated by the sporadic

nature of the activity pattern of the MTC devices, namely

user equipments (UEs), JUICE has been approached as a

problem of sparse recovery and addressed through several

algorithms, including approximate message passing (AMP),

sparse Bayesian learning (SBL), and mixed-norm minimiza-

tion. Most of the prior work on the JUICE considers MTC

networks with a random UE activity pattern [1]–[4]. This

could model, e.g., a scenario where UEs monitor independent

random processes and thus activate randomly based on certain

application criteria.

This paper makes the following distinction from the prior

works: we consider an MTC network where the UEs are

clustered in groups around the epicentre of alarm-event, thus,

rendering their activity highly correlated. For instance, this

models a network where the UEs form clusters based on their

geographical locations and each cluster is associated with a

monitoring task. Here, an event could trigger a small subset

of UEs belonging to a cluster to activate concurrently, leading

to clustered UE activity system-wise.

This paper addresses the JUICE in MTC under correlated

user activity. More precisely, We propose a solution based

on a variational Bayesian inference framework that utilizes

a structured spike-and-slab model [5] to account for such

correlation of the UEs sparse activity. Moreover, we derived

an expectation propagation-based (EP) algorithm [6] to solve

the Bayesian inference problem under the structured activity

pattern. Numerical results demonstrate the clear advantages

of the proposed solution over state-of-the-art sparse recovery

algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-cell uplink network consisting of a

set N of N UEs served by a single BS equipped with a

uniform linear array (ULA) of M antennas. The UEs are

geographically distributed so that they form Nc clusters. For

simplicity, we assume that each cluster contains L UEs such

that N = LNc, but the extension to a more general case is con-

ceptually straighforward. A cluster containing a subset of UE

indices is denoted by Cl ⊆ {1, 2, . . . , N}. We consider a block

Rayleigh fading channel response hi ∼ (0, βiIM ) ∈ CM ,

where βi represents the unknown path-loss and shadowing

component. In addition, the BS assigns to each UE i ∈ N
a unique unit-norm pilot sequence φi ∈ Cτp . Accordingly, the

received signal associated with the transmitted pilots at the

BS, Y ∈ Cτp×M , is given by

Y =

N
∑

i=1

γiφih
T
i +W = ΦX

T +W, (1)

where γi = 0 when the ith is active and γi = 0 when ith

UE is inactive, W∈ Cτp×M is an additive white Gaussian

noise with independent and identically distributed (i.i.d.) el-

ements as CN (0, σ2), Φ = [φ1, . . . ,φN ] ∈ C
τp×N , and

X = [x1, . . . ,xN ] ∈ CM×N , with xi = γihi.

In contrast to the majority of the literature on grant-free

access MTC that consider random UE activation, we consider

herein the following technical observations on MTC under the

http://arxiv.org/abs/2310.14578v1


event-triggered traffic model: i) the UEs activity is triggered

by event concentrated around a very small subset of active

clusters, thus, giving rise to an inner cluster sparsity structure.

ii) An active cluster refers to any cluster with at least one

active UE, while containing at most Lc ≤ L active UEs, thus,

inducing a correlation between the UEs activity in the form

of intra-cluster sparsity structure.

Therefore, in order to encode the prior knowledge on

both the intra and inner-cluster sparsity of the network, we

introduce first the following parameters:

1) The binary indicator variable cl, l = 1, . . . , Nc, that

controls the intra-cluster sparsity, defined as cl = 1 if

the lth cluster is active, and cl = 0 otherwise. Thus, we

can statistically model cl as a Bernoulli random variable

with p(cl = 1) = ǫ and p(cl = 0) = 1− ǫ.

2) The hyper-parameter γ̄i ∈ R+, i ∈ N that controls

model the intra-cluster sparsity. Ideally, we aim to esti-

mate γ̄i = γiβi.

Subsequently, we can model the effective channel xi, N , using

the the structured spike-and-slab prior as

p(xi|cl, γ̄i) = (1− cl)δ(xi) + clCN (xi;0, γ̄iIM ). (2)

The main idea in (2) can be summarized as follow

• If cl = 0, the vector xi would have only the spike

component, delta function, from (2), thus estimated as

xi = 0.

• If cl = 1, xi would have only the slab component

from (2) in the form be a Gaussian random vector with

covariance γ̄iIM . Therefore, if γ̄i ≈ 0, the variance of

the slab component in (2) would be very small that we

could safely estimate that xi ≈ 0, whereas if γ̄i > 0, xi

would be a non-zero Gaussian random vector.

III. A BAYESIAN INFERENCE SOLUTION VIA EP

The JUICE problem can be formulated from a Bayesian per-

spective as maximum a posteriori probability (MAP) problem

as follows

{X̂, ĉ, γ̂}= max
X,c,γ̄

p(X, c, γ̂|Y) = max
X,c,γ̄

1

p(Y)
p(Y|X)p(X|γ̄, c)p(c)

= max
X,c,γ̄

1

p(Y)
f1(X)f2(X, c, γ̄)f3(c),

(3)

where

f1(X) = p(Y|X) = CN (Y;ΦX, σ2
I),

f2(X, c, γ̄) = p(X|γ, c) =
Nc
∏

l=1

f2(XCl
, cl, γ̄Cl

)

=

Nc
∏

l=1

[

(1 − cl)δ
(

XCl

)

+ cl
∏

i∈Cl

CN (xi;0, γiIM )

]

,

f3(c) = p(c) =
C
∏

l=1

B(cl|ǫ).

(4)

Unfortunately, the optimization problem (3) is intractable

for large N due to the presence of the delta function. Thus,

we settle for an approximated solution to (3). In particular, we

invoke the expectation propagation (EP) framework of [7].

In EP, the main objective is to approximate iteratively the

probability distributions in the true posterior p(X, c, γ̄|Y) by a

simpler distribution Q(X,γ, c) that belongs to an exponential

family. More precisely, EP aims is to approximate the factors

f1(·), f2(·), f3(·) by q1(·), q2(·), q3(·), respectively, such that

p(X, c, γ̄|Y) ≈ Q(X,γ, c) =
1

KEP
q1(X)q2(X, c)q3(c).

(5)

In the EP framework, each factor qk(·), k = 1, 2, 3, of

the joint variations approximation Q(X,γ, c) is obtained by

minimizing iteratively the Kullback-Leibler divergence [8] as

q∗k = min
qk

KL

(

fk(·)Q
\k(·)||qk(·)Q

\k(·)

)

(6)

where Q\k(·) = Q(·)
qk(·)

.

IV. NUMERICAL RESULTS

Fig. 1 compares the performance of the proposed EP

solution in terms of normalized mean square error (NMSE)

and support recovery rate (SRR) against two sparse recovery

algorithms: iterative reweighted ℓ2,1-norm minimization (IRW-

ℓ2,1) [4], and M-SBL [9] as well as an oracle minimum mean

square error (MMSE) estimator that is given both the set of

true active UEs and the exact values of βi, i = 1, . . . , N .

Fig. 1 shows two main features for the proposed solution. 1)

The proposed algorithm, which considers the activity correla-

tion, provides a significant gain over M-SBL and IRW-ℓ2,1 in

terms of both channel estimation quality and activity detection

accuracy. In fact, the proposed EP algorithm provides near-

optimal NMSE performance by approaching the performance

provided by the oracle MMSE denoiser which is computed

with the set of true active UEs given by the oracle. 2)

Although the proposed algorithm performance degrades when

the activity correlation is not taken into consideration by

setting each cluster to contain only one UE, i.e., Nc = N ,

it still outperforms IRW-ℓ2,1 and matches the performance

of M-SBL. The obtained results highlight clearly: 1) the

importance of using the structured spike-and-slab prior, 2) the

gains obtained by using the EP framework to solve the MAP

problem.

V. CONCLUSIONS AND EXTENSIONS IN THE FINAL PAPER

We provided a solution for activity detection and chan-

nel estimation in grant-free MTC under correlated activity

patterns. First, we introduced the structured spike-and-slab

model, which allows for incorporating the prior knowledge

of the network traffic pattern. Second, we derived an EP-

based approximation to solve the JUICE formulation under

the variational Bayesian framework.

In the final paper, we will provide in detail the derivations

for the proposed EP algorithm. Furthermore, we will discuss

in more detail the computational complexity of the algo-

rithms and propose a few modifications aiming to reduce the

computational costs while maintaining the same performance.

Finally, we will provide more simulation results to quantify
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Fig. 1: Performance evaluation of the proposed algorithm with 2 active clusters each containing 8 active UEs, N = 200,

NC = 20, M = 10.

the effect of system parameters, such as the number of BS

antennas, transmission power, etc.

REFERENCES

[1] M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, “Compressive sensing-
based adaptive active user detection and channel estimation: Massive
access meets massive MIMO,” IEEE Trans. Signal Processing, vol. 68,
pp. 764–779, 2020.

[2] L. Liu and W. Yu, “Massive connectivity with massive MIMO—part I:
Device activity detection and channel estimation,” IEEE Trans. Signal

Processing, vol. 66, no. 11, pp. 2933–2946, 2018.
[3] Y. Cheng, L. Liu, and L. Ping, “Orthogonal AMP for massive access in

channels with spatial and temporal correlations,” IEEE J. Select. Areas

Commun., vol. 39, no. 3, pp. 726–740, 2021.
[4] H. Djelouat, M. Leinonen, and M. Juntti, “Spatial correlation aware

compressed sensing for user activity detection and channel estimation
in massive MTC,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp.
6402–6416, 2022.

[5] M. R. Andersen, O. Winther, and L. K. Hansen, “Bayesian inference
for structured spike and slab priors,” Advances in Neural Information

Processing Systems, vol. 27, 2014.
[6] T. P. Minka, “Expectation propagation for approximate Bayesian infer-

ence,” in Proceedings of the Seventeenth Conference on Uncertainty in

Artificial Intelligence, ser. UAI’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, p. 362–369.

[7] J. M. Hernández-Lobato, D. Hernández-Lobato, and A. Suárez, “Expecta-
tion propagation in linear regression models with spike-and-slab priors,”
Machine Learning, vol. 99, no. 3, pp. 437–487, 2015.

[8] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4, no. 4.
[9] D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for solving

the simultaneous sparse approximation problem,” IEEE Trans. Signal

Processing, vol. 55, no. 7, pp. 3704–3716, 2007.


	Introduction
	System Model and Problem Formulation
	A Bayesian Inference solution via EP
	Numerical Results
	Conclusions and Extensions in the Final Paper
	References

