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Abstract—Reconfigurable intelligent surface (RIS) is consid-
ered a prospective technology for beyond fifth-generation (5G)
networks to improve the spectral and energy efficiency at a low
cost. Prior works on the RIS mainly rely on perfect channel
state information (CSI), which imposes a huge computational
complexity. This work considers a single-user RIS-assisted com-
munication system, where the second-order statistical knowledge
of the channels is exploited to reduce the training overhead. We
present algorithms that do not require estimation of the CSI and
reconfiguration of the RIS in every channel coherence interval,
which constitutes one of the most critical practical issues in an
RIS-aided system.

Index Terms—MISO, Downlink, RIS, CSI, statistical knowl-
edge, bilinear precoders

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems

can meet the ever-increasing demand of high throughput and

low energy consumption in current wireless communication

systems. However, equipping the base station (BS) with a

large number of antennas may lead to high circuit energy

consumption, including very high hardware costs. Recently,

reconfigurable intelligent surface (RIS) has emerged as a

promising low-cost solution to enhance the spectral efficiency

in a wireless communication system [1]. Specifically, an RIS is

a passive array composed of a large number of reconfigurable

reflecting elements. Each passive element of the RIS is able

to introduce a phase shift to the incident signal in a controlled

manner, thereby boosting the received power for the desired

user or creating a destructive interference for the non-intended

users. Additionally, the passive elements of the RIS do not

require any transmit radio frequency (RF) chain, and hence,

their energy and hardware costs are much lower as compared

to that of the traditional active antennas at the BS. Thus, they

can be scaled much more easily than the antennas at the BS.

Most of the existing algorithms for RIS rely on the assump-

tion of perfect channel state information (CSI), e.g., [1]–[3].

However, owing to the passive structure of the RIS as well

as its massive number of reflecting elements, the acquisition

of perfect CSI for the RIS-associated links is formidable.

Moreover, these algorithms demand the joint optimisation of

the phase shifts and the transmit filters to be performed in

every channel coherence interval, which is computationally

©This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

very expensive. This issue is being recently studied in the

literature [4]–[7], where the key idea is to exploit the statistical

knowledge of the channels to design the phase shifts of

the RIS. Since the structure of the channels varies slowly,

the covariance matrices remain constant for many channel

coherence intervals, and hence, it is possible to obtain accurate

information of the second-order statistics of the channels

through long-term observation. The phase shifts and the filters

which are designed based on the covariance matrices do

not need to be updated regularly, i.e., there is no need to

estimate the channels and perform the joint optimisation in

every channel coherence interval. This significantly reduces

the channel training overhead and the design complexity of the

RIS-assisted systems. The algorithms proposed in [5] and [6]

consider the statistical knowledge of the channels for the

phase-shift optimisation, however, they consider a hybrid on-

line/offline approach. The phase shifts of the RIS are designed

considering the long-term statistics of the channels during the

offline step, whereas the filters are designed considering the

perfect knowledge of the instantaneous CSI in the online step,

thereby, requiring the channel to be estimated perfectly in

every channel coherence interval again.

In this work, we present two low-complexity algorithms for

a single-user RIS-aided multiple-input single-output (MISO)

system, which are only based on the statistical knowledge

of the channels. These algorithms employ the lower bound

of the user’s rate as the figure of merit, which is based

on the worst-case noise bound [8]. We consider a more

realistic setup, where the covariance matrices of the channels

are known perfectly, however, the accurate knowledge of the

instantaneous CSI is not available. The bilinear precoders [9]

are used as the transmit filters, for which a closed-form

solution of the optimal filters can be obtained for the single-

user case. As such, the filters and the phase shifts can be

designed jointly. The algorithm in [4] is also based on the

statistical knowledge of the channels for a single-user MISO

system, however, it is based on the assumption that the RIS

is deployed at a favourable location and a line-of-sight (LOS)

channel exists to both the BS and the user. The phase shift

optimisation in [4] is only dependent on the LOS components,

which are assumed to be perfectly known. In this work, we

consider a general zero-mean channel model with perfectly

known covariance matrices. We compare our algorithms to

the one presented in [7], which assumes a similar zero-mean
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channel model for a multi-antenna single-user system. The

algorithm in [7] maximises the upper bound of the user’s

rate, which is computed using the Jensen’s inequality and it is

based on the alternating optimisation (AO) approach, where

the filters and the phase shifts are optimised alternatingly

in each subproblem. Such an AO method offers a good

performance but it has convergence and complexity issues

(discussed in [10]).

II. SYSTEM MODEL

This paper investigates the downlink (DL) of an RIS-

aided single-user MISO communication system. The system

consists of one BS equipped with M antennas, serving one

single-antenna user, and one RIS having N passive reflecting

elements. The phase-shift matrix of the RIS is defined by a

diagonal matrix Φ = diag(φ1, · · · , φN ), where φ1, · · · , φN
are the phase shift coefficients of the N elements of the RIS

with |φn| = 1 ∀ n, and φφφ = [φ1, · · · , φN ]T denotes the

corresponding phase-shift vector. The direct channel from the

BS to the user is denoted by hd ∈ CM×1, and it is assumed

to be circularly symmetric, complex Gaussian distributed with

zero mean and covariance matrix Cd, i.e., hd ∼ NC(0,Cd).
The channel from the RIS to the user is denoted by r ∈ CN×1,

which has a zero mean and the covariance matrix Cr. The

channel from the BS to the RIS is denoted by T ∈ CN×M ,

and it is assumed to follow the Kronecker channel model,

given by

T =
√

βR
1/2
RIS WR

1/2,H
Tx . (1)

The entries of W ∈ C
N×M are independent and identically

distributed with unit variance and zero mean. RRIS and RTx

denote the channel correlation matrices on the side of the RIS

and the BS respectively, and β ≥ 0 represents the scaling

factor such that tr(RTx) = tr (RRIS) is satisfied. The effective

channel of the RIS-assisted system is given by

hH = hH
d + rHΦHT (2)

which has zero mean and its covariance matrix is given by C.

It is assumed that the BS has only access to a noisy channel

observation ψψψ, but not the actual CSI. The observation ψψψ is the

Least-Squares (LS) estimate of the channel, which is obtained

by correlating the received signal with the pilot sequences

during the training phase, and is given by

ψψψ = h + n (3)

where n ∼ NC(0,Cn) denotes the noise in the channel

observation and Cn is the noise covariance matrix.

The transmit filter at the BS is designed such that it only

depends on the channel statistics and the noisy observation. To

this end, the bilinear precoder [9] is used as the transmit filter

in this work. The bilinear precoder (p) is designed such that

it linearly depends on the observation ψψψ, i.e., p = Aψψψ, with

p ∈ CM×1 and A ∈ CM×M being a deterministic transfor-

mation matrix, which needs to be designed such that the user’s

rate is maximised. The signal received by the user reads as:

y = hHp s+ v, where s ∼ NC(0, 1) denotes the data symbol

and v ∼ NC(0, σ
2) is the noise at the user’s side.

Because of the imperfect CSI, we cannot compute the

closed-form expression of the actual rate of the user. Instead

of that, a lower bound on the user’s rate based on the worst-

case error, which is extensively used in the massive MIMO

literature is employed here [8]. The lower bound of the user’s

rate is given by log2(1 + γlb), where γlb is the lower bound

of the actual signal-to-noise-ratio (SNR), expressed as

γlb =
|E[hHp]|2

E[|hHp− E[hHp]|2] + σ2
. (4)

Evaluating the terms in (4) yields (cf. [9], [11])

γlb =
| tr(AC)|2

tr
(

AQAHC
)

+ σ2
(5)

where Q = E[ψψψψψψH] = C+Cn is the covariance matrix of the

LS estimate of the channel. Note that the above closed-form

expression of the lower bound is obtained with the Gaussian

assumption of h, which is indeed true for a large N [12]. The

matrices C and Q implicitly depend on the phase-shift vector

φφφ (shown in the next section). The objective is to maximise

the user’s rate w.r.t. φφφ and the transformation matrix A of

the bilinear precoder. Since the logarithm is a monotonically

non-decreasing function, maximising the rate is equivalent to

maximising the SNR. Hence, the rate maximisation can be

equivalently written as

max
A,φφφ

γlb

s.t. E[||p||2] = tr
(

AQAH
)

≤ P (P1)

|φn| = 1 ∀ n = 1, · · · , N.

III. JOINT OPTIMISATION PROBLEM FORMULATION

Problem (P1) is non-convex, and hence, it is difficult to

obtain a closed-form solution. We next propose theorems to

simplify (P1) such that the filter and the phase shifts can be

optimised jointly.

A. Simplification of the Objective Function

Theorem 1: For a fixed phase-shift vector φφφ of the RIS, the

optimal transformation matrix A ∈ CM×M maximising the

SNR expression in (5) and satisfying the DL power constraint

E[||p||2] ≤ P for a positive definite matrix C is given by

Aopt = η Q−1, where η =

√

P

tr(Q−1)
. (6)

Proof. The SNR expression in (5) is a positive real quantity,

hence, Wirtinger derivatives are used to find A maximising

γlb, which yields Aopt = η Q−1. Further, η can be found

from the DL power constraint tr(AQAH) = P .

Now replacing A in (5) with the optimal transformation

matrix, the lower bound of the SNR expression becomes

γlb =
η2 tr2

(

Q−1C
)

η2 tr
(

Q−1C
)

+ σ2
. (7)



Theorem 2: The lower bound of the SNR given in (7)

increases monotonically with tr
(

Q−1C
)

for a spatially white

noise covariance matrix Cn = ζ2IM with ζ2 > 0.

Proof. Please refer to Appendix A.

Since γlb is monotonically increasing with tr(Q−1C), it

is sufficient to maximise tr(Q−1C). Rewriting Q−1C as

IM −Q−1Cn along with the assumption of Cn to be spatially

white, i.e., Cn = ζ2IM , (P1) can be simplified to

min
φφφ

tr
(

Q−1
)

s.t. |φn| = 1 ∀ n = 1, · · · , N. (P2)

To solve (P2), we first need to express Q as a function of φφφ
explicitly.

B. Computation of the Channel Covariance Matrix

The channel covariance matrix of the effective channel can

be computed as

C = E

[

hhH
]

= E

[

(hd + TH
Φr)(hd + TH

Φr)H
]

(9)

(a)
= Cd + E

[

TH
ΦrrH

Φ
HT

]

(10)

where (a) follows from the fact that the random variables

hd, T and r are mutually independent with zero mean, and

hd ∼ NC(0,Cd).
Inserting the expression of T from (1), the covariance matrix

of the effective channel can be written as

C
(b)
= Cd + β E

[

R
1/2
Tx WHR

1/2,H
RIS ΦCrΦ

HR
1/2
RIS WR

1/2,H
Tx

]

where (b) follows from the fact that r and W are independent

random variables, and r ∼ NC(0,Cr). Since the entries of W

are i.i.d. with zero mean and unit variance, and Φ = diag(φφφ),
the above expression can be simplified as

C = Cd + βtr(RRISΦCrΦ
H)RTx (11)

= Cd + βtr
(

RRIS(Cr ⊙ φφφφφφ
H)

)

RTx (12)

where ⊙ denotes the Hadamard product. Using Lemma 1 of

Appendix B, the above expression can be rewritten as

C = Cd + βφφφH
(

RRIS ⊙CT
r

)

φφφRTx. (13)

Thus, the covariance matrix of the LS estimate is given by

Q = Cd + βφφφH
(

RRIS ⊙CT
r

)

φφφRTx +Cn. (14)

IV. LOW-COMPLEXITY ALGORITHMS DEPENDING ON THE

CHANNEL STATISTICS

In this section, we propose two low-complexity algorithms

to solve (P2).

A. Algorithm 1: Projected Gradient Descent Method

The minimisation problem in (P2) can be solved by the

iterative projected gradient descent method. The gradient of

tr(Q−1) w.r.t. φφφ∗ is given by [see (14)]

∂

∂φφφ∗
(

tr(Q−1)
)

= −βtr(Q−1RTxQ
−1)(RRIS ⊙CT

r )φφφ.

(15)

The expression of the gradient in (15) depends on Q−1,

which depends on φφφ. This means that the computation of each

gradient step would require the update of the Q matrix and

henceforth, the computation of the inverse. This can become

computationally very expensive if the size of the matrix Q is

large, e.g., as in the case of massive MIMO systems. However,

this problem can be easily averted by exploiting the structure

of the gradient. The matrix Q−1 only appears in the term

tr(Q−1RTxQ
−1). It can be easily observed that the term

βtr(Q−1RTxQ
−1) is a real non-negative quantity which can

be included in the step size optimisation, and thus, we do not

have to update the Q matrix after each gradient step. This

significantly reduces the computational complexity. The phase

shift update rule can hence be summarised as

φφφ← φφφ+ κ (RRIS ⊙CT
r )φφφ (16)

where κ is the optimal step size, which can be computed by

the Armijo rule [13]. The new phase-shift vector obtained after

every gradient step in (16) should be normalised to satisfy the

unit modulus constraints of (P2).

B. Algorithm 2: Element-Wise Optimisation

The objective function in (P2) can be reformulated such

that it only depends on the n-th element of φφφ, i.e., φn, and

the remaining N − 1 elements are kept fixed in a particular

iteration step. To this end, the final expression of Q from (14)

can be rearranged such that it explicitly depends on φn.

Q = Cd + β

( N
∑

i=1

N
∑

j=1

φ∗iφj
[

RRIS ⊙CT
r

]

i,j

)

RTx +Cn.

Rearranging the above equation, we get

Q = D + φnBn + φ∗nB
H
n (17)

where the matrices D and Bn are independent of φn, and are

given by

D = Cd + β

N
∑

i=1
i6=n

N
∑

j=1
j 6=n

φ∗iφj
[

RRIS

]

i,j

[

Cr

]

j,i
RTx

+ β
[

RRIS

]

n,n

[

Cr

]

n,n
RTx +Cn

Bn = β

N
∑

i=1
i6=n

φ∗i
[

RRIS

]

i,n

[

Cr

]

n,i
RTx.

(18)

The optimisation problem in (P2) can now be reduced to

min
φn

tr
(

Q−1
)

s.t. |φn| = 1. (P3)
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The Lagrangian function for the above problem reads as

L = tr(Q−1) + µ(φnφ
∗
n − 1) (20)

where µ ∈ R is the dual variable corresponding to the unit

modulus constraint in (P3). Solving
∂L

∂φ∗n

!
= 0, we get a closed-

form update rule of φn as follows

φn ←
tr(Q̄

−1
BH

n Q̄
−1

)

|tr(Q̄
−1

BH
n Q̄

−1
)|

(21)

where Q̄ denotes the value of Q from the previous iteration. In

this approach, we do not need to find the optimal step size as in

Algorithm 1. However, after each update step, the matrices Q

and Bn need to be updated, which would be computationally

expensive for large M , as in the case of massive MIMO

systems.

V. RESULTS

In this section, numerical results are provided to validate the

effectiveness of the proposed algorithms. The system consists

of one BS equipped with M = 4 antennas, serving one single-

antenna user. The RIS is equipped with N = 40 reflecting

elements. The setup is illustrated in Fig. 1. The user is placed

at a distance Dm from the BS. Each of the channels is

generated according to its distribution as defined in Section II.

The covariance matrix of each channel is generated according

to the urban micro channel model described in the 3GPP

technical report [14]. For D = 20m, the convergence plot

of the two proposed algorithms is shown in Fig. (2). The

convergence analysis reveals that both algorithms converge
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Figure 3: User’s Rate vs Transmit Power P in dB

in a few iterations. The element-wise optimisation algorithm

converges in less than 4 iterations, and the gradient descent

based algorithm requires slightly more iterations to converge.

It is also observed that the low complexity gradient descent

algorithm converges to a similar value as the element-wise

optimisation method.

The user’s rate is taken as the performance metric in Fig. (3),

which is computed with the different algorithms and compared

over the transmit power levels P . The average rate of the user

is given by E
[

log2(1 + |hH
p|2/σ2)

]

, where σ2 is set to 1.

The estimation noise covariance matrix Cn is assumed to be

the identity matrix. The rate is averaged over 100 covariance

matrices, which are generated by varying the distance D in

between 15m to 60m and the path loss factors of the scatterers

randomly. For each of the generated covariance matrices,

the user’s instantaneous rate is averaged over 1000 channel

realisations. The performance of the proposed algorithms is

compared with the following baselines: (i) a system without

RIS with the bilinear precoders as the transmit filters [9],

(ii) a system with RIS where the phase shifts are chosen

randomly and the bilinear precoders are used as the transmit

filters, (iii) the SDR approach of [3] for the genie-aided

setup of perfectly known CSI, (iv) the SDR approach of [3]

used for the imperfect CSI setup, (v) the algorithm in [7]

based on the statistical channel knowledge, and (vi) the two-

timescale (TTS) approach of [5]. Fig. (3) compares the user’s

rate for the different schemes with respect to the transmit

power P in dB. The topmost curve represents the upper bound

of the rate that can be achieved for the considered system

setup when the CSI is perfectly known, and the optimisation of

filters and phase shifts is performed in every channel coherence

interval with the SDR method [3]. The SDR algorithm of [3]

is then employed in an imperfect CSI setup and the user’s

rate degrades by 9 dB approximately. The simulation results

reveal that the two proposed algorithms are very similar in

performance. Moreover, their performance gap to the SDR

approach for the imperfect CSI scenario is small, despite

the fact that these algorithms are computationally much less

expensive as the filters and the phase shifts do not need to be

optimised in every channel coherence interval. Furthermore,



these algorithms based on the maximisation of the lower bound

of the user’s rate considering the worst-case noise bound [8]

outperform the AO algorithm in [7], which maximises the

upper bound of the rate obtained through Jensen’s inequality.

Additionally, we extend the algorithms to the TTS approach

of [5]. The algorithm in [5] employs the stochastic successive

convex approximation (SSCA) method [15] to compute the

optimal phase shifts based on the channel statistics. In the

TTS approach, the optimal phase shifts obtained by (16),

(21) or the SSCA method [5] are kept fixed in the coher-

ence interval of the covariance matrices and the filters are

updated in every channel coherence interval with the matched

filter (MF). It is observed that the TTS approach employing

Algorithm 2 outperforms the algorithm in [5] for our system

setup, i.e., the performance of the TTS optimisation is boosted

by the method underlying Algorithm 2 and it offers the best

performance among other approaches involving the statistical

channel knowledge in Fig. (3).

VI. CONCLUSION

In this work, we have presented algorithms for the single-

user RIS-aided MISO systems based on the bilinear precoders.

The simulation results illustrate that a performance gain can be

achieved by optimising the phase shifts of the RIS, even when

the actual CSI is not available, by exploiting the second-order

statistics. This significantly reduces the training overhead as

the channels do not need to be estimated in every channel

coherence interval and the phase shifts of the RIS do not need

to be updated frequently. The extension of the algorithms for

the multi-user setup will be presented in our next work.

VII. APPENDIX

A. Proof of Theorem 2

With η =

√

P

tr(Q−1)
, γlb can be rewritten as

γlb =
tr2(Q−1C)

tr
(

Q−1C
)

+ σ2 tr
(

Q−1
)

/P
. (22)

Assuming Cn = ζ2 IM , where ζ2 > 0, the term tr
(

Q−1
)

can

be written as tr
(

Q−1(Q−C)
)

/ζ2, which, in fact, equals to
(

M − tr
(

Q−1C
)

)

/ζ2. Plugging this into (22), and replacing

the term tr
(

Q−1C
)

by x for the ease of notation, the lower

bound of the SNR can be expressed as a function of x by

γlb = f(x) =
x2

(

1−
σ2

Pζ2

)

x+
σ2M

Pζ2

. (23)

Replacing

(

1−
σ2

Pζ2

)

by k1 and
σ2M

Pζ2
by k2, we get

f(x) =
x2

k1 x+ k2
and f ′(x) =

k1x
2 + 2 k2 x

(k1 x+ k2)2
. (24)

It can be easily observed that x = tr
(

Q−1C
)

is always

positive because Q and C are positive definite matrices.

Hence, we are interested in the sign of the term k1x + 2 k2
to determine the sign of f ′(x). Also, note that k2 > 0 since

M, P, ζ2, σ2 > 0.

Case 1: Pζ2 − σ2 ≥ 0, i.e., k1 ≥ 0.

It is easy to verify that f ′(x) > 0 for this case.

Case 2: Pζ2 − σ2 < 0, i.e., k1 < 0.

k1x+ 2 k2 =

(

1−
σ2

Pζ2

)

tr
(

Q−1C
)

+
2 σ2M

Pζ2

(a)
= M +

σ2M

Pζ2
− k1 tr

(

Q−1Cn

)

> 0 (25)

where (a) follows from C = Q − Cn. This shows that

f ′(x) > 0 holds for this case too. Hence, f(x) is always

monotonically increasing in x. This proves Theorem 2.

B. Lemma 1

For any three matrices A, B and C of the same dimensions,

we have

tr
(

A(B ⊙C)
)

= tr
(

(A⊙BT)C
)

. (26)

Proof.

tr
(

A(B ⊙C)
)

=
∑

i

[

A(B ⊙C)
]

i,i

=
∑

i

(

∑

k

[

A
]

i,k

[

B
]

k,i

[

C
]

k,i

)

tr
(

(A⊙BT)C
)

=
∑

i

[

(A⊙BT)C
]

i,i

=
∑

i

(

∑

k

[

A
]

i,k

[

B
]

k,i

[

C
]

k,i

)

Hence, L.H.S. = R.H.S., and this proves Lemma 1.
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