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Abstract—Modern communication systems need to fulfill multi-
ple and often conflicting objectives at the same time. In particular,
new applications require high reliability while operating at low
transmit powers. Moreover, reliability constraints may vary over
time depending on the current state of the system. One solution
to address this problem is to use joint transmissions from a
number of base stations (BSs) to meet the reliability requirements.
However, this approach is inefficient when considering the overall
total transmit power. In this work, we propose a reinforcement
learning-based power allocation scheme for an unmanned aerial
vehicle (UAV) communication system with varying communication
reliability requirements. In particular, the proposed scheme aims
to minimize the total transmit power of all BSs while achieving
an outage probability that is less than a tolerated threshold. This
threshold varies over time, e.g., when the UAV enters a critical
zone with high-reliability requirements. Our results show that
the proposed learning scheme uses dynamic power allocation to
meet varying reliability requirements, thus effectively conserving
energy.

Index Terms—Reinforcement learning, Power allocation, Ultra-
reliable communications, UAV communications.

I. INTRODUCTION

Modern communication systems need to fulfill different, and
often conflicting, objectives at the same time. The transmission
power should be as low as possible while still meeting the high
reliability constraints of modern applications. Furthermore, the
reliability constraints vary over time and depend on the state
of the system. For instance, for safety, the communication
between a central controller and an unmanned aerial vehicle
(UAV) requires high reliability when the UAV is close to other
UAVs or close to an airport, and a self-driving vehicle requires
higher reliability when the vehicle is close to an intersection.
Varying reliability requirements may also be based on the
switching of services over time where each service has a
different reliability requirement [1].

For addressing the challenge of meeting demanding relia-
bility requirements, collaboration of multiple distributed base
stations (BSs) to serve users within the network’s coverage area
emerges as an effective strategy [2], [3]. However, using the
same transmit power at all the cooperating BSs to achieve high
reliability might not always be necessary. Also, in the context
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of UAV communication, UAVs at an altitude will experience
different channel gains which not only depend on the distances
but also on the line-of-sight (LoS) and non-line-of-sight (NLoS)
channel conditions [4], [5]. Therefore, to satisfy the reliability
demands and use minimal transmit power, it is necessary to
opportunistically leverage the LoS/NLoS channel conditions
between the UAV and the BSs.

Creating an optimal power allocation scheme that adapts
to the evolving environment and requirements due to user
movement presents a significant design challenge. While
employing advanced optimization techniques has the potential
to yield a globally optimal solution, the practical feasibility of
such approaches is often hindered by their high complexity [6].
Machine learning (ML), particularly reinforcement learning
(RL), offers an attractive solution for such dynamic problems.
By learning from the changing environment, RL can harness
unique characteristics of UAV communication networks, en-
abling the agent to strategically utilize movement patterns and
LoS/NLoS channel conditions between the UAV and the BSs.

In this work, we consider a UAV communication system in
which the reliability requirement of the communication depends
on the location of the UAV. We consider multiple cooperating
BSs which serve multiple aerial users simultaneously. For
this system, we employ an RL approach to minimize the
overall power consumption while keeping the outage probability
below a specified target. In particular, we propose a BS
selection and power allocation scheme based on RL for a UAV
communication system with varying reliability constraints. Our
approach contributes to the understanding and optimization of
jointly served UAVs, offering insights into enhancing network
efficiency while providing high reliability demands.

While some previous works use RL for power allocation
in UAV systems, they do not consider varying reliability
requirements with energy efficient BS selection. In [3], the
authors solve the cell association and power allocation scheme
for minimizing the inter-cell interference caused by UAV com-
munications. However, they do not consider the mobility of the
UAVs and its affect on solving the optimization problem. While
the considered scenario is dynamic, the service requirements
do not change over time or depending on the location. In [7],
RL is used to jointly optimize the UAV trajectory and mission
completion time, emphasizing the importance of maintaining
reliable communication connectivity with the ground cellular
network throughout the UAV flight. In [8], the authors use
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Figure 1. The considered communication scenario with fixed base stations
and moving UAVs. Within the highlighted zone in the center, the reliability
requirement is εmax,2, otherwise it is εmax,1 > εmax,2.

RL for obtaining the optimal transmission power and cell
association in addition to the optimal path of the UAV. They
consider the tradeoff between the energy efficiency (EE) and
wireless latency and uplink interference.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Throughout this work, we consider the following UAV down-
link communication scenario, which is depicted in Figure 1.
In a given area, K cooperating BSs are deployed at fixed
locations. A total of N UAVs are moving inside of the area
at the same time, and they are being served by the BSs on
orthogonal resource blocks. We assume that the network has
the location information of the UAVs moving in the service
area. Therefore, the total receive power Pi at user i at time t
is given as

Pi(t) =

K∑
k=1

|hik(t)|2PT,ik(t), i = 1, . . . , N , (1)

where PT,ik denotes the transmit power of BS k to user i, and
|hik|2 is the power attenuation between BS k and user i, i.e.,
the combined path loss and fading effects. These effects are
modeled according to [9]. Each BS has a maximum transmit
power of PT,max.

While we assume that the positions of the UAVs and the
fading statistics are known [10], the exact channel state is
assumed unknown. Hence, the system will be in outage with
a non-zero probability when the received power at a user is
below its sensitivity s, i.e., the outage probability for user i at
time t is given as

εi(t) = Pr (Pi(t) < si) . (2)

Throughout the following, we assume that the channels
are independent and identically distributed (i.i.d.) complex
Gaussian distributions, which yields that |hik|2 follows an
exponential distribution. For a single time slot t, i.e., for a
fixed power allocation and fixed positions of all users, we
can rewrite the outage probability as the probability of a sum

of exponentially distributed random variables with different
expected values,

εi(t) = Pr (Pi(t) < si)

= Pr

(
K∑

k=1

|hik(t)|2PT,ik(t) < si

)
= Pr (Ti < si)

= 1− F̄Ti(si) . (3)

Based on the above model, the random variable Ti is given as
the sum of exponentially distributed variables |hik|2PT,ik ∼
Exp(αik) with different expected values αik. The expected
values are given by the product of transmit power, antenna
gain, and path loss. The survival function F̄Ti

of Ti is given
by [11]

F̄Ti
(s) =

K∑
k=1

Aik · exp (−αik · s), (4)

Aik =

K∏
j=1
j ̸=k

αik

αij + αik
, for k = 1, . . . ,K. (5)

For this expression to hold, we need to assume that all αik

are distinct. However, since they are the product of transmit
power, antenna gain, and path loss, this assumption will hold
almost surely in practice.

Depending on the application, a certain outage probabil-
ity εmax can be tolerated. However, this tolerated threshold may
depend on various factors and vary over time. In this work,
we consider the scenario where a certain area is a critical area
with a higher reliability constraint. Whenever a user is within
this area, the outage probability should be less than εmax,2,
while it only needs to be less than εmax,1 > εmax,2 everywhere
outside the critical area.

A. Problem Formulation

In this communication scenario, the primary goal is to adjust
the transmit powers from the group of BSs that are serving the
mobile UAVs, such that the overall transmit power is minimized.
At the same time, the system aims to minimize the outage
probabilities experienced by the users, such that each user
remains below a specified threshold that is acceptable for the
application. These two objectives are in conflict with each other,
since reducing the transmit power to increase EE will lead to
an increase of the outage probability. Additionally, due to the
movement of the users, the optimal power allocation varies
over time. Based on this, the optimization problem for this
work is finding the optimal power allocation for the following
multiobjective programming problem

min
PT,ik

∑
i,k

PT,ik,

N∑
i=1

1(εi > εmax)

 (6)

s.t. 0 ≤ PT,ik ≤ Pmax

where the aim is to simultaneously minimize the total transmit
power and the number of users with a too high outage



probability. Each transmit power PT,ik is limited by a maximum
power Pmax.

III. REINFORCEMENT LEARNING APPROACH

In order to solve the power allocation problem described
in (6), we propose the use of RL, since it is a powerful
optimization tool for the time-varying environment of the
considered communication scenario.

The action that the RL agent takes, corresponds to a matrix
of all transmit powers A ∈ RN×K

+ for all BS-user pairs. The
observation space consists of the current locations of all UAVs
and the LoS/NLoS conditions between each user and base
station pair. Based on the action (power allocation) and obser-
vations (locations, LoS condition), the outage probabilities εi
for all users can be calculated according to [9] and (3). For the
reward function r, we employ the following function that takes
both the total transmit power and the reliability requirements
into account:

r =

(
1−

∑
i,k PT,ik

KPT,max

)
− 1

N

N∑
i=1

1(εi > εmax) . (7)

The power reward is given by the fraction of the unused
power out of the total available transmit power. From this, the
reliability penalty is subtracted, which is given by the fraction
of users which are in the outage.

For our dynamic problem characterized by a continuous
action space and a fluctuating environment, we employed
different RL algorithms, including deep deterministic policy
gradient (DDPG). Through empirical analysis, we determined
that soft actor-critic (SAC) provides the best solution to our
problem. The adaptability of SAC to sudden changes in the
environment aligns seamlessly with the challenges posed by our
time-varying conditions. More precisely, our problem requires
an advanced strategy for continuous decision-making that
adapts to the evolving dynamics of the environment. In this
context, the emphasis placed by SAC on effective exploration
becomes imperative for obtaining the optimal solution to the
problem.

SAC employs a deep neural network (DNN) policy to
generate stochastic actions based on the current state. Notably,
SAC introduces entropy regularization, striking a balance
between exploration and exploitation and avoiding premature
convergence to sub-optimal policies [12]. The algorithm aims to
maximize the weighted sum of reward and entropy of the action
distribution, aligning with the need for a flexible yet focused
decision-making strategy in our dynamic problem. SAC utilizes
a soft Q-value function, considering the policy’s entropy, and
leverages a value function ensemble to enhance stability and
robustness. With off-policy learning and re-parameterization,
SAC efficiently learns from experiences collected during
interaction with the environment.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed RL-
based optimization in two different scenarios. First, we consider
only a single UAV moving on a deterministic path. Next,

we also evaluate a more complex setting with multiple users
moving according to a stochastic movement model. In both
cases, we consider an example with a square area, in which
K BSs are placed in the bottom-left corner, cf. Figure 1. The
critical area is located in the center of the overall area. In
this critical zone, the outage probability target is set to εmax,2,
while it is εmax,1 > εmax,2 everywhere else.

The implementation of the proposed RL solution from
Section III and the numerical simulations in this section are
made publicly available in [13].

A. Comparison Schemes

We compare our RL results with the following two baseline
algorithms.

1) Full Power: As a first comparison, we use the Full Power
scheme. These results are obtained by setting the transmit power
to the maximum power at all BSs at all times. This is expected
to yield the lowest outage probabilities as the receive power
will be maximized. However, this comes at the cost of not
saving any transmit power.

2) Closest Base Station: In the second strategy that we
use for comparison, only the BS, which is the closest to a
user is using the maximum power while all other BSs do not
transmit to that user. In the following, we will refer to this
scheme as Closest. With this baseline, we will get a much
lower, yet constant, power consumption compared to the Full
Power scheme. Specifically, since only one BS is active at full
power, this strategy will use a constant power of 1/K of the
maximally available transmit power for each user. However,
this reduced power will increase the outage probability of the
UAV compared to using the full power at all BSs.

B. Single User – Deterministic Path

In the first numerical example, we assume that there is only
a single UAV within the area. It moves in a straight line at
a constant speed diagonally across the area as depicted in
Figure 1. The area has a total size of 1.5 km×1.5 km with the
critical area being located between [0.75, 1] km in both x- and
y-direction. In the critical area, the outage probability target
is set to εmax,2 = 10−7, while it is εmax,1 = 10−2 everywhere
else. The user is served by K = 6 BSs.

The numerical results for this example can be found in
Figure 2. First, we show the outage probability of the user over
time in Figure 2(a). Since the UAV moves in a straight line
at a constant speed, the time directly translates to the position
within the area. Between time slots t = 750 and t = 1000,
the UAV is inside the critical zone with the higher reliability
target.

As expected, the outage probability is very low for the Full
Power baseline. In particular, it is way lower than the target
outage probabilities εmax,i in both the normal and critical zone.
This indicates that transmit power could be saved without
violating the outage requirements. For the Closest strategy,
the outage probability is very low initially as the UAV starts
close to the BSs. However, as it moves further away over time,
the outage probability increases while using the same total
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(a) Outage probability of the UAV over time.
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(b) Total transmit power as a fraction of the maximum total transmit power.

Figure 2. Numerical results of the outage probability ε and the fraction of the total available power used to transmit over time. The single aerial user moves in
a straight path diagonally across the 1.5 km× 1.5 km area, in which K = 6 BSs are placed. During the highlighted interval t ∈ [750, 1000], the UAV is
within the critical zone with a stricter reliability target. (Section IV-B)
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(a) Distribution of the outage probability.
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(b) Distribution of the fraction of used transmit power for a single user.

Figure 3. Numerical results of the distributions of outage probability ε and the fraction of the total available power. There are N = 3 aerial users that move in
an area of size 3 km× 3 km according to the stochastic UAV movement model from [14]. A total of K = 19 BSs is placed in the area to serve them. At
[0.75, 2] km in both x- and y-coordinates, there is the critical zone with a higher reliability target. (Section IV-C)

power, which is 1/K = 16.7% of the total available transmit
power. In contrast to this, the RL approach with SAC achieves
a lower outage probability while simultaneously using less or
about the same power as the Closest baseline. Additionally,
it can be seen from Figure 2(a) that the RL algorithm learns
about the stricter reliability constraint within the high-reliability
zone. It is able to adapt the power accordingly to meet the
requirement, while it reduces the power again after the UAV
leaves the critical zone. This can be clearly seen by the drop
in the outage probability in Figure 2(a) and increase of power
in Figure 2(b) between t = 750 and t = 1000.

C. Multiple Users – Random Movement

After showing that the proposed RL-based solution performs
well in a simple single user scenario, we next consider a more

realistic scenario with multiple UAVs. In particular, we have
N = 3 aerial users in an area of size 3 km× 3 km, in which
K = 19 BSs are placed randomly at a height of 25m. The
critical area is located between [0.75, 2] km in both x- and
y-direction. In this area, the outage probability target is set
to εmax,2 = 10−5, while it is εmax,1 = 10−2 everywhere else.
Instead of following a deterministic path, the UAVs now move
according to the stochastic movement model from [14].

The numerical results for this scenario are shown in Figure 3.
Since we now have multiple users with a random movement,
we show both the outage probabilities and the transmit power
in terms of their statistical distribution. In particular, Figure 3(a)
shows the cumulative distribution function (CDF) of the outage
probability ε. First, it can be noted that the outage probability
for the Full Power scheme is also very small, i.e., the CDF



reaches 1 at very small ε. This is expected and consistent with
the single user results from Figure 2(a) in Section IV-B. Second,
it can be seen that the outage probability almost never goes
below 10−7 for the Closest baseline. Additionally, around half
of the time, the outage probability to the users is above 10−3.
In contrast, our proposed solution using the SAC algorithm
achieves a better outage performance, which is also taking
the varying reliability requirements into account. Inside of
the critical zone, almost all realizations are below the target
threshold εmax,2 = 10−5. Similarly, the same holds for the area
outside the critical zone and its target threshold εmax,1 = 10−2.

The distribution of the used transmit power averaged over
all users can be found in Figure 3(b). Since the Full Power
baseline always uses full power, we do not show it in the
figure. The Closest scheme again uses a constant power of
1/K for each UAV, which results in the step function from 0
to 1 at 1/K = 1/19 ≈ 0.053 in Figure 3(b), i.e., it constantly
uses around 5.3% of the totally available power. For the RL-
based solution, the transmit power varies between almost no
output power and around 40% of the maximum. On average,
the system uses 7.0% when the user is outside the critical
zone and 8.6% when within. The higher transmit power for
the critical zone is necessary to achieve the stricter reliability
requirement εmax,2. While the power consumption of the RL
scheme is slightly above the Closest baseline, it achieves a
significantly better reliability, cf. Figure 3(a).

V. CONCLUSION

Energy efficient power allocation within the realm of
multi-connectivity, where reliability requirements vary over
time, demands complex real-time decision making processes.
Traditional optimization tools do not adequately and efficiently
address this complexity. In contrast, the application of machine
learning, notably RL, is a well suited solution for such a
dynamic problem.

In this work, we have implemented a model-free RL algo-
rithm to optimize the power allocation in a UAV communication
system under changing reliability demands. Our primary goal
is to minimize the total transmit power of all BSs within
the coverage area, while ensuring that outage probabilities
stay below predefined thresholds. These thresholds change
with position, such as when a UAV enters a critical zone
with heightened reliability requirements. Numerical simulations
show the effectiveness of our proposed solution for both single
user and multi-user scenarios with stochastic movements.
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