
ar
X

iv
:2

30
6.

05
15

6v
3 

 [
cs

.I
T

] 
 1

7 
D

ec
 2

02
3

DFT-Based Channel Estimation for

Holographic MIMO

Antonio A. D’Amico, Giacomo Bacci, Luca Sanguinetti

Dipartimento Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

{antonio.damico, giacomo.bacci, luca.sanguinetti}@unipi.it

Abstract—Holographic MIMO (hMIMO) systems with a mas-
sive number N of individually controlled antennas make mini-
mum mean square error (MMSE) channel estimation particularly
challenging, due to its computational complexity that scales as
N

3. This paper investigates uniform linear arrays and proposes a
low-complexity method based on the discrete Fourier transform
approximation, which follows from replacing the covariance
matrix by a suitable circulant matrix. Numerical results show
that, already for arrays with moderate size (in the order of tens
of wavelengths), it achieves the same performance of the optimal
MMSE, but with a significant lower computational load that
scales as N logN . Interestingly, the proposed method provides
also increased robustness in case of imperfect knowledge of the
covariance matrix.

Index Terms—Holographic MIMO, channel estimation, circu-
lant matrix, uniform linear arrays, covariance matrix estimation.

I. INTRODUCTION AND MOTIVATION

Communication theorists are always on the lookout for

new technologies to improve the speed and reliability of

wireless communications. One such technology that has shown

significant progress is multiple antenna technology, with the

latest version being massive multiple-input multiple-output

(MIMO) [1], which was introduced with the advent of 5G [2].

Researchers are now exploring ways to deploy massive MIMO

with more antennas and optimized signal processing, given

the potential benefits of numerous antennas. This technology

evolution was named massive MIMO 2.0 [3], and new research

directions are being pursued under different names, such as

holographic MIMO (hMIMO) [2], [4], extremely large-scale

MIMO [5], and large intelligent surfaces [6].

The capacity of such technology evolution is theoretically

unlimited [3], but is practically limited, when the number of

antennas increases, by the high computational complexity and

the ability to learn the spatial channel correlation matrices. In

a hMIMO system with thousands of antennas, it is challenging

to both acquire the spatial correlation matrix and implement

the minimum mean square error (MMSE) estimator [7]. The

channel sparsity in the angular domain was exploited in [8] to

perform channel estimation while reducing the pilot overhead,

and [9] exploited the polar-domain sparsity when the angular-

domain one is not applicable. To reduce the complexity, [7]

derives a subspace-based channel estimation approach based

on the rank deficiency of the spatial correlation matrix caused

by the hMIMO geometry. In this case, the knowledge of the

channel statistics is not required, and the complexity is reduced

by considering isotropic scattering, which includes all possible

angular spreads.

Unlike the aforementioned literature, we propose a differ-

ent low-complexity channel estimation scheme, based on the

discrete Fourier transform (DFT), and derived from a suitable

circulant approximation of the channel covariance matrix [10]–

[12]. Unlike [7], the estimation of the channel covariance

matrix is required. To this aim, we also propose an improved,

low-complexity algorithm to estimate the channel correlation

matrix. Numerical results show that the proposed method

provides almost the same accuracy of the optimal MMSE

estimator, while significantly reducing the complexity thanks

to the DFT processing. This holds true for arrays of mod-

erate size (order of tens of wavelenghts). Furthermore, when

considering imperfect knowledge of the channel covariance

matrix, the DFT-based approach guarantees higher robustness

and stability compared to the MMSE method, thanks to a

simpler eigenvalue structure.

II. SYSTEM AND CHANNEL MODEL

We consider a hMIMO system where the base station (BS)

is equipped with a vertical uniform linear array (ULA) located

in the yz plane, and consisting of N antennas, with inter-

element spacing d [13, Fig. 1]. The location of the nth

antenna with respect to the origin is un = [0, 0, nd]T, with

n = 0, . . . , N −1.1 If a planar wave is impinging on the ULA

from the azimuth angle ϕ and elevation angle θ, the array

response vector is [1, Sect. 7.3]

a(ϕ, θ) =
[
ejk(ϕ,θ)Tu1 , . . . , ejk(ϕ,θ)TuN

]T
(1)

where k(ϕ, θ) = 2π
λ [cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)]T is

the wave vector for a planar wave at wavelength λ. We call

hk ∈ C
N the channel vector between the single-antenna user

equipment (UE) k and the BS, and assume that it consists of a

superposition of multipath components that can be expanded

as a continuum of plane waves [14]. Hence, we have

hk =

∫ π/2

−π/2

∫ π/2

−π/2

gk(ϕ, θ)a(ϕ, θ)dθdϕ (2)

where the angular spreading function gk(ϕ, θ) specifies gain

and phase-shift from each direction (ϕ, θ), and depends on UE

k’s position (i.e., angles ϕk and θk with respect to the ULA).

1The analysis is valid for any orientation of the ULA with respect to the
reference system, and can be extended to an horizontal ULA straightforwardly.
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We consider the conventional block fading model, where

the channel hk is constant within one time-frequency block

and takes independent realizations across blocks from a sta-

tionary stochastic distribution. In accordance with [14], we

model gk(ϕ, θ) as a spatially uncorrelated circularly symmetric

Gaussian stochastic process with cross-correlation

E{gk(ϕ, θ)g∗k(ϕ′, θ′)} = βkfk(ϕ, θ)δ(ϕ − ϕ′)δ(θ − θ′) (3)

where βk is the average channel gain and fk(ϕ, θ) is

the normalized spatial scattering function [14] such that∫∫
fk(ϕ, θ)dθdϕ = 1. By using (1), the elements of Rk =

E{hkh
H
k } are computed as [1, Sect. 7.3.2]

[Rk]m,l = βk

∫∫
ejk(ϕ,θ)T(um−ul)fk(ϕ, θ)dϕdθ (4)

where the integration is over all angles. If a vertical ULA is

used, the expression simplifies as

[Rk]m,l = βk

∫
ej

2π
λ

d(m−l) sin(θ)fk(θ)dθ (5)

where fk(θ) =
∫
fk(ϕ, θ)dϕ.

III. CHANNEL ESTIMATION WITH PERFECT KNOWLEDGE

We assume that channel estimation is performed by using

orthogonal pilot sequences of length τp. We call φk ∈ Cτp the

pilot sequence used by UE k and assume that |[φk]i|2 = 1 and

φ
T
kφ

∗

k = τp. In the absence of pilot contamination and with

perfect knowledge of channel statistics, the linear MMSE esti-

mate of hk based on the observation vector yk = τp
√
ρhk+w,

where ρ is the transmit power, and w ∼ CN (0, τpσ
2IN ), is

[1, Sect. 3]

ĥ
MMSE

k = AMMSE
k yk (6)

where

AMMSE
k =

1

τp
√
ρ
RkQ

−1
k (7)

with Qk = Rk + 1
γ IN and γ = τpρ/σ

2 denoting the signal-

to-noise ratio (SNR). The MMSE channel estimator in (6)

is optimal, but it requires an intense computational effort

when N grows large. Indeed, once Rk is computed, O(N3)
operations are needed for the pre-computation of AMMSE

k . The

computation of (6) requires a matrix-vector product evaluation

whose complexity is O(N2). Its overall complexity is reported

in Table I. Note also that the MMSE estimator relies on the

perfect knowledge of Rk, which needs to be estimated.

An alternative estimation scheme is the least-squares (LS)

estimator ĥ
LS

k = ALS
k yk, with

ALS
k =

1

τp
√
ρ
IN (8)

which utilizes no prior information on the channel statistics

and array geometry. Unlike the MMSE channel estimator,

it does not require any pre-computation phase and has a

complexity of O(N), due to the product between the diagonal

matrix ALS
k and yk. The price to pay is a reduced accuracy.

TABLE I
COMPLEXITY OF CHANNEL ESTIMATION SCHEMES.

scheme pre-computation of Ak computation of Akyk

MMSE O(N3) O(N2)

LS – O(N)

LoS – O(N)

ISO – O(N2)

DFT O(N logN) O(N logN)

Two other alternatives are described next and can be applied

in specific propagation conditions. If propagation is assumed to

take place in a line-of-sight (LoS) scenario with a single plane-

wave arriving from θk and ϕk, then hk = gk(ϕk, θk)a(ϕk, θk)
and RLoS

k = βka(ϕk, θk)a(ϕk, θk)
H. Replacing Rk with RLoS

k

into (6) yields ĥ
LoS

k = ALoS
k yk, where

ALoS
k =

1

τp
√
ρ

βkγ

1 +Nβkγ
a(ϕk, θk)a(ϕk, θk)

H (9)

whose complexity is CLoS = O(N), due to the evaluation of

the product between ALoS
k in (9) and yk (no pre-computation

phase is required). However, the LoS-based estimator works

well only when the channel vector is generated by a single

plane-wave arriving from (ϕk, θk), whose knowledge must be

perfectly known at the BS. When the propagation scenario is

highly scattered, and plane waves arrive uniformly within the

angular domain in front of the ULA, we can make use of the

isotropic (ISO) approximation proposed in [15]. According to

[15], RISO
k = UΛU

H
where U and Λ are the (reduced-order)

eigenvector and eigenvalue matrices, obtained through the

compact eigenvalue decomposition of a matrix whose (m, l)th
entry is sinc [2 (m− l) d/λ], with sinc(x) = sin(πx)/(πx).
Note that the rank of RISO

k is approximately 2Nd/λ, given

by the degrees of freedom observed in the ISO propagation

conditions [16]. Replacing Rk with RISO
k into (6) yields

ĥ
ISO

k = AISO
k yk, with

AISO
k =

1

τp
√
ρ
UΛ

(
Λ+

1

γ
IN

)
−1

U
H
. (10)

Compared to MMSE, the main advantage of using the ISO

estimator derives from the fact that it does not require any

matrix estimation and inversion, since all the quantities in

AISO
k are known. Accordingly, its complexity is only due to the

matrix-vector product computation between AISO
k and yk and

is CISO = O(N2). Note also that the ISO estimator does not

require any prior knowledge of the channel statistics and can

be applied to any propagation conditions, since the eigenspace

of RISO
k covers the eigenspace of any spatial correlation matrix

Rk [15], and exploits the array geometry only.

A. Discrete Fourier transform approximation

We now develop a channel estimation scheme that exploits

the correlation induced by the array geometry and propagation

conditions to approach MMSE performance, while having a

computational complexity that scales log-linearly with N . To

this aim, we proceed as follows.
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Fig. 1. NMSEE as a function of the ratio L/λ.

If an ULA is used, the covariance matrix Rk is Her-

mitian Toeplitz, and it can be approximated with a suit-

able circulant matrix Ck [10]–[12], whose first row ck =
[ck(0), ck(1), · · · , ck(N − 1)] is related to the first row rk =
[rk(0), rk(1), · · · , rk(N − 1)] of Rk by [12]

ck(n) =




rk(0) n = 0,
(N − n)rk(n) + nr∗k(N − n)

N
n = 1, . . . , N − 1.

(11)

Any circulant matrix can be unitarily diagonalized using the

DFT matrix, i.e., Ck = FΛkF
H where F = [f0 f1 · · · fN−1]

is the inverse DFT matrix, with [fn]m = ej2πmn/N
/√

N for

0 ≤ m,n ≤ N − 1, and Λk is the diagonal matrix containing

the eigenvalues of Ck, i.e.,

[Λk]n,n =

N−1∑

m=0

ck(m)e−j2πmn/N (12)

which are obtained by taking the DFT of the first row of Ck.

Replacing Rk with Ck into (6) yields ĥ
DFT

k = ADFT
k yk, with

ADFT
k =

1

τp
√
ρ
FΛk

(
Λk +

1

γ
IN

)
−1

FH. (13)

We call it the DFT-based channel estimator. Its complexity

derives from the pre-computation phase, which is O(N logN)
due to the computation of Λk through (12), and from the

computation of the matrix-vector product, which is again

O(N logN), since the DFT matrix F and its inverse are

involved. Hence, the complexity of the DFT-based estimator

is CDFT = O(N logN). Unlike the ISO estimator, the DFT-

based estimator depends on the true covariance matrix Rk,

which must be estimated as with the MMSE estimator.

B. Performance analysis

Fig. 1 shows the normalized mean square estimation error

(NMSEE), given by [1, Sect. 3]

tr(Rk)− 2
√
ρτpℜ (tr(RkAk)) + ρτ2p tr

(
AkQkA

H
k

)

tr(Rk)
(14)
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Fig. 2. NMSEE as a function of σθ .

where Ak depends on the estimation strategies defined above

(e.g., (7) for MMSE, and (8) for LS), as a function of the

array size L, normalized with respect to the wavelength λ.

We consider an ULA characterized by d = λ/4 at 3GHz (and

hence λ = 10 cm). Three estimation schemes are considered:

MMSE, LS, and DFT. We evaluate the average performance

for a UE randomly placed in the sector ϕ ∈ [−π/3,+π/3]
of a cell with minimum and maximum distances from the

ULA of 5 and 100 meters, respectively. The ULA is elevated

by b = 10m with respect to the UE plane (and thus,

considering the distance range, θ ∈ [−63.4◦,−5.7◦], with

negative elevations due to the fact that the UE plane is below

the ULA), and the received SNR is βkτpρ/σ
2, where: βk is

computed following [1, Sect. 2] assuming a reference distance

of 1 km, a path loss exponent α = 3.76, and a channel

gain at 1 km equal to −148.1 dB; τp = 10; ρ = 20 dBm;

and σ2 = −87 dBm, obtained considering a communication

bandwidth B = 100MHz. We assume a local scattering

model with a Laplacian distribution characterized by angular

scattering spread σθ = 10◦. We see that the accuracy of the

DFT-based estimator is comparable with the optimal MMSE

one, and the gap decreases as L/λ increases. This is due to

the fact that the circulant approximation Ck of the covariance

matrix Rk improves as the number of antennas N (or, equiv-

alently, the ratio L/λ) grows large. Interestingly, the circulant

approximation is already quite tight for L/λ = 16 (L = 1.6m
and N = 64). More importantly, this is obtained with a

complexity of O(N logN), instead of O(N3). If N = 64,

this corresponds to two orders of magnitude of computational

saving compared to MMSE.

To evaluate the impact of the angular spread, Fig. 2 plots

the NMSEE as a function of σθ in the same simulation setup

of Fig. 1. The results show that the DFT-based estimator

significantly outperforms (with a gap that increases with L/λ)

both the LoS and the ISO-based estimators for values of σθ in

the range (5◦, 20◦) and attains good performance compared to

the (optimal) MMSE. As expected, the LoS estimator is close

to optimal only for very low values of σθ .



IV. CHANNEL ESTIMATION WITH IMPERFECT KNOWLEDGE

So far, we have assumed perfect knowledge of Rk. This

may not be the case in practical scenarios since Rk changes

due to different reasons [3]. Measurements suggest roughly

two orders of magnitude slower variations compared to the fast

variations of channel vectors. Therefore, we may reasonably

assume that they do not change over τs coherence blocks,

where τs can be in the order of thousands [3]. Suppose that

the BS has received the pilot matrix yk in M ≤ τs coherence

blocks. We denote these M observations by yk[1], . . . ,yk[M ].
An estimate of Qk can be obtained by computing the sample

correlation matrix given by

Q̂
sample

k =
1

M

M∑

m=1

yk[m]yH
k [m]. (15)

A better estimator is typically obtained through matrix regu-

larization by computing the convex combination [3]:

Q̂k(η) = ηQ̂
sample

k + (1− η)Q̂
diag

k η ∈ [0, 1] (16)

where Q̂
diag

k contains the main diagonal of Q̂
sample

k . Once

Q̂k(η) is computed, an estimate of Rk follows:

R̂k(η) = Q̂k(η)−
1

γ
IN (17)

which requires only knowledge of γ, i.e., the SNR during the

pilot transmission phase.

A. Improved estimation of the channel correlation matrix

We now develop an improved estimation scheme of the

correlation matrix Qk that can be used with ULAs. In this

case, Qk is Hermitian Toeplitz, i.e.,

[Qk]1,j = [Qk]1+m,j+m (18)

for j = 1, . . . , N − 1 and m = 1, . . . , N − j, and [Qk]i,j =

[Qk]
∗

j,i. To proceed, we denote by Q̂
toe

k the estimate of Qk

obtained by taking the Toeplitz structure (18) into account.

The first row of Q̂
toe

k is computed by simply averaging the

entries of Q̂
sample

k in (15) over the diagonals, i.e.,

[Q̂
toe

k ]1,j =
1

N − j + 1

N−j+1∑

m=1

[Q̂
sample

k ]m,j+m−1. (19)

Once the first row is computed, the other elements are easily

found. In particular, from (18) we have that

[Q̂
toe

k ]1+m,j+m = [Q̂
toe

k ]1,j (20)

for j = 1, . . . , N − 1 and m = 1, . . . , N − j, and

[Q̂
toe

k ]j,i = [Q̂
toe

k ]∗i,j for j > i (21)

because of the Hermitian symmetry of the covariance matrix.

An estimate of Rk is finally obtained as

R̂
toe

k = Q̂
toe

k − 1

γ
IN . (22)

(a) MMSE estimator.

(b) DFT-based estimator.

Fig. 3. Box plot of the NMSEE as a function of the elevation θ with imperfect
statistical knowledge (N = 64).

The complexity of the estimator above is mainly due to the

computation of Q̂
sample

k in (19) and thus is comparable to the

one not exploiting the Toeplitz structure. We can then replace

the elements of Rk with the ones in R̂
toe

k to implement (11),

when considering the proposed DFT-based estimator with

imperfect knowledge of channel statistics.

B. Performance analysis

We now evaluate the accuracy of the estimators when

the covariance matrix is estimated using (22). Figs. 3(a)

and (b) report the box charts for the MMSE and the DFT-

based estimators, respectively, showing median, lower and

upper quartiles, minimum and maximum non-outlier values,

and outliers (the latter depicted by circular markers), com-

puted over 200, 000 independent realizations per box. Blue,

red, and yellow boxes correspond to the different values of

M considered for the estimation of the covariance matrix:

M = 20, 50 and 100, respectively. The system setup is

the same considered in Sect. III-B. For comparison, we also
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Fig. 4. NMSEE as a function of the ratio L/λ with imperfect statistical
knowledge (DFT-based estimator).

report the NMSEE with perfect knowledge of Rk (dashed

line). By inspecting Fig. 3, the following considerations can

be drawn: the average estimation accuracy improves as the

(absolute) elevation increases, thanks to a reduced distance

(which is related to the elevation angle through b/| sin θ|),
and thus to an increased SNR. However, especially for the

MMSE case, the robustness of the estimator decreases as

the (absolute) elevation increases, owing to the reduced array

directivity at large elevations. This is confirmed by the huge

presence of outliers, which highly affect the reliability of the

MMSE estimation, especially when M decreases. This result is

somewhat expected, as we are using a reduced set of snapshots

compared to the degrees of freedom offered by the N -sized

ULA, which prevents from a stable and accurate estimation of

the channel statistics.

Most interestingly, although the same trends apply to both

Figs. 3(a) and (b), a significant difference can be observed

when focusing on the DFT-based estimator. As can be seen,

not only the average performance is close to the one with

perfect knowledge, but also the standard deviation is orders of

magnitude lower than the MMSE counterpart, and so does the

number of outliers, already at M = 20. This is due to a simpler

estimation scheme, which requires a reduced number of inde-

pendent realizations, and thus exhibits larger robustness. To

provide further insights, Fig. 4 reports the average NMSEE

(which also includes the outliers) as a function of the ratio

L/λ, obtained by averaging over all possible UE positions

in the range [5, 100]m and ϕ ∈ [−π/3,+π/3], and using

the same system parameters considered for Fig. 3. As can be

seen, an estimation accuracy comparable to that obtained with

perfect knowledge of Rk is already achieved with M = 20.

Similar conclusions can be drawn by considering different

simulation setups (not reported for space limitations), in which

different array sizes and/or scattering scenarios are considered.

V. CONCLUSION

We proposed a low-complexity scheme, based on the cir-

culant approximation of the channel covariance matrix, to

perform channel estimation in hMIMO systems equipped with

ULAs. The estimation accuracy was evaluated with perfect

and imperfect knowledge of the channel covariance matrix.

Comparisons were made against the optimal MMSE estimator

and other alternatives with lower complexity. The proposed

scheme achieves close to optimal estimation accuracy for

ULAs of moderate size (in the order of tens of wavelength),

while considerably reducing the estimation complexity by a

factor that scales with the square of array size. Moreover,

it is more robust to the imperfect knowledge of channel

statistics. This makes it more suited for applications in which

the statistics changes rapidly over time and must be estimated

frequently using a limited number of coherence blocks. Future

work is needed to extend the proposed scheme to uniform

planar arrays.
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