
  

Abstract - In this paper, we investigate the capacitated 

assortment optimization problem with pricing under the 

paired combinatorial logit model, whose goal is to identify the 

revenue-maximizing subset of products as well as their selling 

prices subject to a known capacity limit. We model 

customers’ purchase behavior using the paired combinatorial 

logit model, which allows for covariance among any pair of 

products. We formulate this problem as a non-linear mixed 

integer program. Then, we propose a two-step approach to 

obtain the optimal solution based on solving a mixed integer 

program and Lambert-W function. To further improve its 

performance, we design a greedy heuristic algorithm and a 

greedy randomized adaptive search procedure to obtain high-

quality solutions so as to balance the tradeoff between 

accuracy and computational efficiency. A series of numerical 

experiments are conducted to gauge the efficiency and quality 

of our proposed approaches. 
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I.  INTRODUCTION 

 

 In the field of revenue management, retailers who sell 

several categories of products, usually have flexibility on 

determining the subset of products to offer as well as their 

selling prices to some extent. Therefore, given a known 

capacity constraint to limit the total shelf space 

consumption or the total costs of introducing products to 

the store, these retailers face the capacitated assortment 

optimization problem with pricing, referred to as the 

CAOPP, to maximize the expected revenue obtained from 

customers. Take a home appliance store as an example, the 

retailer has to choose a revenue-maximizing subset of 

televisions, refrigerators, and other products with their 

corresponding prices of different sizes to display as the 

total shelf space is limited. 

 To tackle this problem, researchers mainly introduce 

variants of discrete choice models, especially the 

multinomial logit and the nested logit models [see, e.g., 1-

3], to capture customers’ purchase behavior as well as the 

substitution among products. Under the multinomial logit 

model, several efficient algorithms are proposed to solve 

the corresponding CAOPP with different side constraints 

[1-2, 4]. Reference [5] characterizes the equilibrium in a 

competitive environment with multiple retailers. Although 

analytically convenient, the multinomial logit model 

suffers from the independence of irrelevant alternative 

property, which is incapable of handling with the 

substitution among products [6]. Researchers, therefore, 

resort to the nested logit model developed by [7]. A 

sampling of these research on the CAOPP includes [3] and 

[8-10]. We refer interested readers to [11] for study with 

rank-based nonparametric model. 

 In this paper, we investigate the CAOPP under the 

paired combinatorial logit (PCL) model, which has been 

proven to be an effective model in capturing the decision 

making process. There are several benefits of the PCL 

model: (a) The PCL model is consistent with the random 

utility maximization principle; (b) The PCL model allows 

for covariance among any pair of products, which leads to 

a more accurate representation of choice setting without 

specifying a structural sequence; and (c) Most, if not all, of 

extant empirical studies point out that the PCL model 

outperforms the multinomial logit and the nested logit 

models in predicting users’ route choice [see, e.g., 12-15]. 

However, there are very scarce applications involving the 

PCL model in the field of revenue management. Reference 

[16] is the first to study the pricing problem under the PCL 

model. The authors show that the uniqueness of the optimal 

prices can be achieved under certain conditions based on 

the concept of P-matrix and develop the corresponding 

solution algorithms. Recently, Reference [17] shows that 

the assortment optimization problem under the PCL model 

is NP-hard even when there are no capacity constraints and 

develop a general approximation framework based on 

iterative variable fixing and coupled randomized rounding. 

Later, Reference [18] proposes another approximate 

algorithm based on approximations to the knapsack 

problem when there is a known capacity constraint. As far 

as the authors have concerned, no literature has ever 

contributed to the CAOPP under the PCL model, and our 

research fills this blank. 

 We first formulate this problem as a mixed integer 

program involving a non-linear objective function. Then, 

we propose a two-step approach to obtain the optimal 

solution based on the observation that the optimal prices 

for all offered products are identical. In the first step, we 

solve a non-linear auxiliary problem and provide its 

equivalent integer program, whose linear programming 

relaxation provide a numerically tight upper bound. In the 

second step, we obtain the optimal prices for all products 

based on Lambert-W function and the output in the first 

step. To further improve its empirical performance, we 

apply a greedy heuristic algorithm and a randomized 
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adaptive search procedure (GRASP) to obtain high-quality 

solutions. Numerical experiments indicate that our greedy 

heuristic algorithm is quite efficient. The optimality gap of 

the solutions obtained by the heuristic algorithm is less than 

0.18% on average and 0.46% at the worst case over 300 

randomly generated problem instances. 

We summarize the contributions of this research as 

follows: (a) To the best of authors’ knowledge, we are the 

first to investigate the capacitated assortment optimization 

problem with pricing under the paired combinatorial logit 

model; (b) We obtain the optimal assortment as well as the 

optimal prices through solving a mixed integer program 

and a Lambert-W function; (c) To further improve its 

performance, we proceed to develop a greedy heuristic 

algorithm and a GRASP to obtain high-quality solutions 

within reasonable time consumed; and (d) We demonstrate 

the efficiency and quality of our approaches through a 

series of numerical experiments. 

The remainder of this paper is organized as follows. In 

Section II, we formulate the CAOPP under the PCL model 

as a mixed integer program. In Section III, we develop a 

two-step approach based on an integer program to obtain 

the optimal solution, the upper bound of the original 

optimization problem, and to develop a greedy heuristic 

algorithm as well as a GRASP to obtain high-quality 

solutions quickly. In Section IV, we conduct a series of 

numerical experiments to gauge the performance of our 

approaches. Finally, we conclude and outline potential 

future research directions in Section V. 

II. MODELING FRAMEWORK

In this section, we formulate our joint capacitated 

assortment and price optimization problem under the PCL 

model. Consider a retailer, who has enough flexibility on 

determining the subset of products as well as their selling 

prices out with limited display space for offered products. 

Without loss of generality, we assume that the set of all 

possible products to offer is indexed by 𝑁 = {1,2, ⋯ , 𝑛}. 

For each product 𝑖 ∈ 𝑁, let 𝑝𝑖  be its selling price and 𝑤𝑖  be

its weight, or required display space. Moreover, we use 

𝑥𝑖 = 1 to indicate that product 𝑖 is offered; otherwise, 𝑥𝑖 =
0. Given a capacity limit, denoted by 𝐶 ∈ ℝ+, to limit the

total space consumption of the offered products, the retailer 

wishes to find the revenue-maximizing subset of products 

as well as their selling prices. 

 In this paper, we assume that customers’ choice 

behavior is captured by the PCL model, which can 

accurately capture the substitution effects among products 

[16-18]. Throughout this paper, the deterministic utility of 

product 𝑖  is captured through 𝛼𝑖 − 𝛽𝑝𝑖 , where 𝛼𝑖  is a

known constant to measure the quality of this product, and 

𝛽 > 0  is the price-sensitivity parameter to capture the 

utility variation when the selling price changes. Under the 

PCL model, products are partitioned into several nests 

which contain exact two products, and we use 〈𝑖, 𝑗〉(𝑖 < 𝑗) 

to denote the nest with only products 𝑖  and 𝑗 . Let 𝐩 =
(𝑝1, 𝑝2, ⋯ , 𝑝𝑛) and 𝐱 = (𝑥1, 𝑥2, ⋯ 𝑥𝑛). We use 𝛾𝑖𝑗 ∈ (0,1]

to denote the dissimilarity parameter associated with nest 

〈𝑖, 𝑗〉, the choice probability of purchasing product 𝑖 can be 

calculated through 𝑞𝑖
𝑖𝑗

= 𝑣
𝑖

1/𝛾𝑖𝑗(𝑝𝑖)𝑥𝑖/𝑉𝑖𝑗(𝐩, 𝐱) , where

𝑣𝑖 = exp(𝛼𝑖 − 𝛽𝑝𝑖) is the preference weight of product 𝑖 

and 𝑉𝑖𝑗(𝐩, 𝐱) = 𝑣
𝑖

1/𝛾𝑖𝑗(𝑝𝑖)𝑥𝑖 + 𝑣
𝑗

1/𝛾𝑖𝑗
(𝑝𝑗)𝑥𝑗  is  the total

preference weights of nest 〈𝑖, 𝑗〉. Moreover, the convention 

that 𝑞𝑖
𝑖𝑗

= 0 is adopted if 𝑥𝑖 = 𝑥𝑗 = 0. Then, the expected

revenue that we obtain from this customer is 𝑅𝑖𝑗(𝐩, 𝐱) =

𝑝𝑖𝑞𝑖
𝑖𝑗

+ 𝑝𝑗𝑞𝑗
𝑖𝑗

. Furthermore, the choice probability 𝑞𝑖𝑗 that

a customer will make a purchase under nest 〈𝑖, 𝑗〉 is 𝑞𝑖𝑗 =

𝑉
𝑖𝑗

𝛾𝑖𝑗
(𝐩, 𝐱)/(1 + ∑ ∑ 𝑉

𝑖𝑗

𝛾𝑖𝑗
(𝐩, 𝐱)) 𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1 .  Finally, the

choice probability of product 𝑖, denoted by 𝑞𝑖(𝐩, 𝐱) with

given 𝐱  and 𝐩, is 𝑞𝑖(𝐩, 𝐱) = ∑ ∑ 𝑞𝑖𝑗 ⋅ 𝑞𝑖
𝑖𝑗𝑛

𝑗
𝑛
𝑖 , and the no-

purchase option, which means the customer leaves without 

purchasing anything, is 𝑞0 = 1 − ∑ ∑ 𝑞𝑖𝑗𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 . As a

result, the CAOPP under the PCL model can be formulated 

as the following non-linear mixed integer program: 
1
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The objective function maximizes the expected revenue 

over all products. Constraint (2) ensures that the total 

weight consumption of offered products will not exceed the 

capacity limit. Constraints (3) restrict the decision 

variables. 

III. SOLUTION APPROACH

 In this section, we present our solution approaches to 

obtain the optimal solution as well as high-quality solutions 

to the problem defined in (1)-(3).  

 The starting point of our solution approaches is a result 

from the observation that with any given feasible 

assortment 𝐱  that satisfies Constraint (2), the joint 

optimization problem reduces to the multi-price 

optimization problem under the PCL model, which is well 

studied in [16]. In the price optimization problem, [16] 

proves that the optimal prices are identical for all products. 

That is, letting 𝑝𝑖
∗(𝐱) be the optimal price for product 𝑖, we

have that 𝑝𝑖
∗(𝐱) = 𝑝∗(𝐱) holds for any 𝑖 ∈ 𝑁. Furthermore,

the optimal expected revenue with given 𝐱  can be 

characterized using 𝑝∗(𝐱) , which leads to the following

lemma. 

Lemma 1. With given feasible assortment 𝐱, the optimal 

price to maximize 𝑅(𝑝∗(𝐱), 𝐱) can be represented by
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And the optimal expected revenue is 𝑅(𝑝∗(𝐱), 𝐱) =
𝑊(𝐴(𝐱)/𝑒)/𝛽 , where 𝑊(𝑦) is the Lambert-W function to 

solve 𝑤𝑒𝑤 = 𝑦 for 𝑤. 

 

 The proof of Lemma 1 is omitted here to save space 

since it is a direct generalization of Theorem 1 in [16] 

accounting for given assortment 𝐱 . Due to the fact that 

𝑅(𝑝∗(𝐱), 𝐱) = 𝑝∗(𝐱) − 1/𝛽,  maximizing the expected 

revenue is equivalent to maximizing 𝑝∗(𝐱) . So, for any 

given assortment 𝐱, the optimal prices for all products are 

identical and can be calculated by (4), involving Lambert-

W function. Since Lambert-W function is a strictly 

increasing function in (0, +∞) , the optimal solution to 

maximize 𝐴(𝐱) subject to a capacity constraint must be the 

optimal assortment to the CAOPP. That is, we can further 

propose a two-step procedure to obtain the optimal solution 

to (1)-(3): In the first step, we find the feasible assortment 

𝐱∗ with the largest value of 𝐴(𝐱∗) subject to the capacity 

limit; In the second step, we calculate 𝑝∗(𝐱∗)  based on 

Lemma 1. As a result, (𝑝∗(𝐱∗), 𝐱∗) must be the optimal 

solution to the CAOPP. So, all that remains is to find 𝐱∗, 

which can be obtained by solving the following non-linear 

integer program: 
1
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 To solve the above problem, we first linearize the 

objective function by using the characteristic of the PCL 

model that there are exact two products under each nest. To 

do so, we follow the similar approach used in [17-18]. 

Letting 𝜌𝑖𝑗 = (exp(𝛼𝑖/𝛾𝑖𝑗) + exp (𝛼𝑗/𝛾𝑖𝑗))
𝛾𝑖𝑗

 and 𝜃𝑖 =

exp(𝛼𝑖) , 𝐴(𝐱)  can be re-written as 𝐴(𝐱) =
∑ ∑ 𝜌𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜃𝑖𝑥𝑖(1 − 𝑥𝑗) + 𝜃𝑗(1 − 𝑥𝑖)𝑥𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 =

∑ ∑ 𝜇𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜃𝑖𝑥𝑖 +𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 𝜃𝑗𝑥𝑗 , where 𝜇𝑖𝑗 = 𝜌𝑖𝑗 −

𝜃𝑖 − 𝜃𝑗 < 0. Replacing the product 𝑥𝑖𝑥𝑗  with 𝑦𝑖𝑗 ≥ 0, we 

can ensure that 𝑦𝑖𝑗 = 1  if and only if 𝑥𝑖 = 𝑥𝑗 = 1  by 

introducing additional constraints 1 + 𝑦𝑖𝑗 ≥ 𝑥𝑖 + 𝑥𝑗 , 𝑥𝑖 ≥

𝑦𝑖𝑗 , and 𝑥𝑗 ≥ 𝑦𝑖𝑗. Using the fact that 𝜇𝑖𝑗 < 0, it is shown in 

[17]  that the latter two constraints are redundant. Now, we 

can formulate our mixed integer program with linear 

objective function to solve (6) as follows: 
1
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 The advantage of this formulation is that any MIP 

software package can be implemented to obtain the optimal 

assortment 𝐱∗ with given capacity limit. However, solving 

an MIP to optimality can be quite time-consuming when 

there are thousands of products to consider since it is NP-

hard. This complexity result prompts us to develop 

efficient heuristic algorithms to obtain high-quality 

solutions to (7) quickly.  

 We first use the linear relaxation of the MIP in (7), 

whose optimal objective function is denoted as 𝐴(𝐱), to 

bound the value of 𝐴(𝐱∗) , which is used to gauge the 

quality of the solutions obtained by our heuristics. Since 

the optimal expected revenue is a non-decreasing with 

respect to 𝐴(𝐱) , we can have 𝑝∗(𝐱) = (1 + 𝑊(𝐴(𝐱)/

𝑒)))/𝛽 > 𝑝∗(𝐱∗)  and 𝑅 = 𝑝∗(𝐱) − 1/𝛽 > 𝑅(𝑝∗(𝐱∗), 𝐱∗) . 

That is, we can use the linear relaxation of the MIP in (7) 

and Lemma 1 to obtain an upper bound of CAOPP.  

 In our basic heuristic algorithm, a feasible solution is 

constructed as follows: (a) Sort the candidate products in 

decreasing order according to the values of {
exp(𝛼𝑖)

𝑤𝑖
: 𝑖 ∈

𝑁}; (b) Greedily add the feasible products, satisfying the 

capacity limits, into the current assortment until there is no 

feasible products that can be added into the assortment. As 

a result, we can obtain a feasible solution, denoted as 𝐱𝐻, 

within 𝑂(𝑛log𝑛 + 𝑛) = 𝑂(𝑛log𝑛) time.  

 To further improve the quality of the obtained heuristic 

solution, we introduce a meta-heuristic algorithm based on 

a Greedy Randomized Adaptive Search Procedure, 

referred to as GRASP. In our GRASP, a feasible solution 

is randomized constructed based on our greedy heuristic 

and local perturbations are followed to get a local optimal 

solution. To do so, we introduce a parameter 𝛼 ∈
[1, Alpha]  in the second procedure (b) of our heuristic. 

That is, we randomly add the feasible product in the list 

composed of the 𝛼 best indices according to the values of 

exp(𝛼𝑖) /𝑤𝑖  for any product 𝑖, which has not been selected 

in the current assortment, until no feasible products exist. 

Then, in the local search phase, we randomly choose two 

variables 𝑥𝑖 , 𝑥𝑗(𝑥𝑖 ≠ 𝑥𝑗)  and flip their values to zero or 

one. If the new solution is feasible and improves the 

objective function, we store the change and keep it as the 

current solution. Otherwise, we continue the random 

perturbation until the prescribed maximum number of 

iteration is reached. For ease of reading, the pseudo-code 

for our GRASP is shown in Procedure 

GRASP(𝐴𝑙𝑝ℎ𝑎, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟). As a result, we can obtain a 

feasible solution, denoted as 𝐱𝐺𝑅𝐴𝑆𝑃  and we can have 

𝐴(𝐱𝐺𝑅𝐴𝑆𝑃) ≥ 𝐴(𝐱𝐻)  because when 𝛼 = 1 , the 

construction phase is the same with the heuristic algorithm.  

 

Procedure GRASP(𝐴𝑙𝑝ℎ𝑎, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟)  
 For 𝛼 = 1,2, ⋯ , 𝐴𝑙𝑝ℎ𝑎 do  

  Obtain a feasible solution with heuristic algorithm 

  With parameter 𝛼 

  For iteration=1,2, ⋯ , 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do 

   Local search for better solutions by flipping  

   the values of 𝑥𝑖 , 𝑥𝑗  

  End For 

 End For 



 

 To sum up, we can now solve the MIP in (7) to obtain 

the optimal assortment, apply the greedy heuristic 

algorithm as well as the GRASP to obtain high-quality 

assortment with reasonable time consumed, and solve the 

linear relaxation of (7) to get an upper bound of 𝐴(𝑥) . 

Then, for these four approaches, we can further use Lemma 

1 to obtain the corresponding optimal price for all products 

as well as the corresponding expected revenue obtained 

from each customer. Therefore, we can have 𝑅(𝑝∗(𝐱),
𝐱) ≥ 𝑅(𝑝∗(𝐱∗), 𝐱∗) ≥ 𝑅(𝑝∗(𝐱𝐺𝑅𝐴𝑆𝑃), 𝐱𝐺𝑅𝐴𝑆𝑃) ≥
𝑅(𝑝∗(𝐱𝐻), 𝐱𝐻) based on the discussions in this section. 

Now, we try to test the numerical performance of our 

approaches in the next section.  

 

IV.  RESULTS 

 

In this section, we compare the numerical performance 

of proposed algorithms in Section III based on the quality 

of the solutions obtained and the running time consumed. 

Throughout our numerical experiments, we use the 

following approach for generating problem instances. We 

vary the number of total products over 𝑛 ∈
{400, 600, 800, 1000} . We set the capacity limit 𝐶 =
𝜅 ∑ 𝑤𝑖

𝑛
𝑖=1 , where 𝜅  is a fraction of the total space 

consumption of all products and varies over 𝜅 ∈
{0.02, 0.04, 0.06} . This setup provides 12 parameter 

combinations for (𝑛, 𝜅) . For each combination, we 

generate 25 random problem instance, each of which we 

sample the parameters as follows: we sample 
{exp(𝛼𝑖) : 𝑖 ∈ 𝑁}  from the uniform distribution 𝑈(0, 5] ; 

the weight 𝑤𝑖  of product 𝑖 is generated from the uniform 

distribution 𝑈[1,10]; and the scale parameter 𝛾𝑖𝑗  for nest 

〈𝑖, 𝑗⟩ is generated from the uniform distribution 𝑈[0.1, 1] 
and 𝛾𝑖𝑗 = 𝛾𝑗𝑖. Moreover, we set price sensitivity 𝛽 = 0.1. 

The value of Alpha and the number of maximum iteration 

in local search used in our GRASP are set to 5 and 80, 

respectively. Then, for each problem instance, we obtain 

the optimal solution through solving MIP and Lambert-W 

function. We also apply the greedy heuristic algorithm and 

the GRASP to obtain high-quality solutions. Our numerical 

experiments are conducted on a Windows server with CPU 

of 2.00 GHz and RAM of 512 GB. The algorithms are all 

coded in Matlab linked to the CPLEX 12.6 optimization 

routines. 

The numerical results for solving the CAOPP under 

the PCL model is summarized in Table I. Column 1 shows 

the parameter combination for instances in the form of 

(𝑛, 𝜅) . Let 𝑂𝑝𝑡𝑜𝑏𝑗
𝑘 , 𝑈𝐵𝑜𝑏𝑗

𝑘 , 𝐻𝑒𝑜𝑏𝑗
𝑘 ,  and 𝐺𝑅𝐴𝑆𝑃𝑜𝑏𝑗

𝑘  be the 

expected revenue obtained by the MIP in (7), the linear 

relaxation of the MIP, the heuristic algorithm, and the 

GRASP, respectively, for problem instance 𝑘 ∈
{1,2, ⋯ , 25} with given parameter combination. Columns 

2-3 report the average and maximum running time in 1 

second to obtain the optimal solution based on solving the 

MIP and Lemma 1, respectively. Similarly, Columns 4-9, 

respectively, report the average and maximum running 

time in 1 second of obtaining an upper bound through 

linear relaxation of the MIP, a feasible solution through our 

greedy heuristic algorithm, and a solution through the 

GRASP. Columns 10-11 report the average and maximum 

optimality gap with MIP, defined as (1 −
𝑂𝑝𝑡𝑜𝑏𝑗

𝑘

𝑈𝐵𝑜𝑏𝑗
𝑘 ) × 100%, 

respectively. The average and maximum optimality gaps 

with heuristic algorithm and GRASP, defined as (1 −

𝐻𝑒𝑜𝑏𝑗
𝑘

𝑈𝐵𝑜𝑏𝑗
𝑘 ) × 100% and (1 −

𝐺𝑅𝐴𝑆𝑃𝑜𝑏𝑗
𝑘

𝑈𝐵𝑜𝑏𝑗
𝑘 ) × 100%, respectively, 

are reported in Columns 12-15 correspondingly.  

Shown in Table I, the running time for our optimal 

approach based on MIP increases dramatically as the 

number of products and 𝜅  increase. For combination 

(1000, 0.06), the maximum running time can reach 2263.0 

seconds. On the other hand, the heuristic algorithm can 

obtain a feasible solution within 0.764 second. With a local 

search phase, the GRASP does need more time to 

terminate. Meanwhile, solving a linear relaxation for upper 

bounds seems to be a practical way to gauge the quality of 

solutions obtained by other algorithms with limited time 

TABLE I 
NUMERICAL RESULTS FOR DIFFERENT APPROACHES 

 

Para. comb. 

(𝑛, 𝜅) 

Run. time (s)  

for MIP 

Run. time (s)  

for UB 

Run. time (s)  

for Heuristic 

Run. time (s)  

for GRASP 

Gap (%) with 

MIP 

Gap (%) with 

Heuristic 

Gap (%) with 

GRASP 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

(400, 0.02) 9.9 11.8 3.6 5.6 0.150 0.176 39.1 39.7 0.11 0.20 0.28 0.46 0.20 0.31 

(400, 0.04) 17.5 28.7 11.6 19.4 0.153 0.167 40.1 40.6 0.05 0.08 0.20 0.30 0.18 0.23 

(400, 0.06) 38.5 50.2 32.3 51.7 0.156 0.173 40.9 41.2 0.03 0.05 0.22 0.26 0.21 0.25 

(600, 0.02) 27.0 33.2 12.3 14.5 0.281 0.322 88.9 89.6 0.06 0.10 0.17 0.27 0.13 0.20 

(600, 0.04) 220.7 228.8 57.7 84.4 0.285 0.303 91.2 91.9 0.03 0.05 0.17 0.23 0.16 0.19 

(600, 0.06) 275.2 285.7 141.6 194.1 0.296 0.320 92.9 94.0 0.02 0.03 0.19 0.23 0.18 0.22 

(800, 0.02) 84.5 691.3 30.1 35.6 0.458 0.505 161.7 163.5 0.05 0.08 0.15 0.22 0.12 0.18 

(800, 0.04) 699.4 733.8 159.7 215.3 0.470 0.500 165.2 167.2 0.02 0.03 0.15 0.19 0.13 0.16 

(800, 0.06) 827.2 856.5 395.2 480.0 0.483 0.535 168.1 169.9 0.01 0.02 0.17 0.20 0.16 0.19 

(1000, 0.02) 244.9 1778.0 68.1 80.0 0.663 0.698 246.4 249.3 0.04 0.06 0.13 0.19 0.11 0.13 

(1000, 0.04) 1919.3 2134.3 379.0 475.5 0.674 0.732 250.4 256.1 0.01 0.02 0.14 0.17 0.13 0.15 

(1000, 0.06) 2143.5 2263.0 951.5 1166.7 0.717 0.764 257.6 263.6 0.01 0.02 0.16 0.19 0.16 0.18 

Average ---- ---- ---- ---- ---- ---- ---- ---- 0.03 0.06 0.18 0.24 0.16 0.20 

               

 



 

consumed. As for the optimality gaps, we found that the 

average optimality gaps with MIP over all 300 instances is 

only 0.03% and the maximum is only 0.20%. That is, our 

approach to obtain an upper bound of the joint optimization 

problem is numerically tight. Meanwhile, the optimality 

gaps with our heuristic is 0.18% on average and 0.46% at 

the worst case. That is, our greedy heuristic algorithm can 

generate a considerable high-quality solution much more 

efficiently compared to the approach based on MIP. As for 

the GRASP, the numerical results indicate that it does 

improve the solution quality, especially, it can significantly 

improve the solution quality at the worst case. As we can 

see from Table 1, the optimality gap at the worst case is 

reduced from 0.46% to 0.31% compared with the naïve 

heuristic algorithm. To sum up, our heuristic algorithms are 

quite efficient to obtain high-quality feasible solutions with 

reasonable time consumed.    

 

V.  CONCLUSION 

 

 In this paper, we investigate the capacitated assortment 

optimization problem with pricing. The customers’ 

purchase behavior is modeled using the paired 

combinatorial logit model. We first formulate this problem 

as a non-linear mixed integer program and propose a two-

step approach to obtain the optimal solution based on 

solving an MIP and a Lambert-W function. To further 

improve the numerical performance, we develop a greedy 

heuristic and a GRASP to obtain high-quality solutions 

quickly. The numerical experiments indicate that our 

heuristic can obtain high-quality solutions whose 

deviations from the upper bound are only 0.16% on 

average and 0.48% at the worst case. We now outline two 

possible future research directions: (a) In our settings, the 

price sensitivity is identical for all products. However, 

there can be scenarios where customers have different 

sensitivities over different products. It would be of interest 

to investigate the case with different price sensitivities; (b) 

When the retailer can determine the prices and the 

assortment dynamically over finite selling periods, our 

algorithms may not remain efficient. Therefore, it is of 

great interest to study the corresponding problem in a 

dynamic environment.  
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