
Abstract - This paper considers a non-preemptive open
shop scheduling problem (OSSP), in which machines are not
available to process jobs on known periodic interval times
resulted from periodic service repair, rest period, and so on.
Asymmetric transportation time between machines is
considered, which can be different from one job to another.
The objective is to minimize the weighted mean completion
time (WMCT). Since the problem is categorized into NP-hard
class, two meta-heuristic algorithms including genetic
algorithm (GA) and differential evolution (DE) are proposed.
Meanwhile, a new initial population is introduced, which
significantly improves the performance of the algorithms.
Finally, the performance of the algorithms is validated
through some large-sized instances and the results are
discussed.

Keywords - Open shop scheduling, Machine availability,

Transportation time, Weighted mean completion time,
Differential evolution, Genetic algorithm.

I. INTRODUCTION

 In an open shop scheduling problem, each of n jobs is
supposed to be processed by m machines in arbitrary order
[1]. However, machines may be unavailable due to
preventive maintenance, rest period, uncompleted jobs
from the previous working shift which should be processed
at the beginning of the current shift, and so on [1]. OSSP
provides a wide range of applications including timetable
problem, manufacturing plants, optical network,
communication scheduling and so on [1]. Sheikhalishahi et
al. [2] illustrated a real application of OSSP considering
preventive maintenance in an automobile spare parts
manufactory where 9 jobs are supposed to be processed on
9 machines (i.e., 81 operations) in a pressing and forming
shop.

Strusevich [3] considered a known time lag between the
completion of a task and the beginning of the next task of
the same job in an OSSP. Due to the actual transportation
of a job between machines, he named this time lag as
transportation time. Also, he referred to another
interpretation of this time lag in chemical and metallurgic
applications, as the cooling or heating time.

Ma et al. [4] summarized scheduling problems with
availability constraints caused by preventive maintenance
taking into account their complexity. Accordingly, the
OSSP with availability constraint even in small cases is
categorized into NP-hard class. Hence, applying
approximation approaches can be more effective than exact
methods. Huang et al. [5] proposed four algorithms

including GA, Particle Swarm Optimization (PSO), cuckoo
search algorithm, and Ant Colony Optimization (ACO) for
OSSP. DE is another well-known algorithm that has rarely
been implemented for OSSP; however, there are some
studies using this algorithm to other scheduling problems,
such as parallel machines [6].

In this paper, a non-preemptive OSSP with machine
availability constraint is purposed in which machines are
not available to process jobs on known periodic intervals.
Available/unavailable intervals are assumed to be constant
and predefined for each machine while they vary from one
machine to another. Asymmetric transportation times
between machines is another feature of the purposed OSSP
caused by considering different routes to move between
machines which reduces route interception in the shop.
Moreover, different jobs have different transportation
times on the same route, which can be resulted from using
various vehicles to carry various parts. Furthermore, the
time which a job is on a machine is divided into three parts
including setup, process, and removal time. Meanwhile,
WMCT is considered as the objective function, which
should be minimized [7]. To solve the purposed OSSP, a
new initial population is introduced which significantly
improves the results of both GA and DE meta-heuristics.

The rest of this paper is organized as follows. In Section
II, considering some assumptions the problem is defined.
Then, encoding scheme and proposed initial populations
are introduced in Section III. Sections IV and V contain
GA and DE algorithms, respectively. Computational
evaluation is presented in Section VI. Finally, the paper is
concluded in Section VII.

II. PROBLEM DEFENITION

As shown in Fig. 1, the available times for each
machine are considered like batches which jobs should be
located into them while the total time of jobs does not
exceed the batch time (௝ܶ). In Fig. 1, ܬሾ௜ሿ indicates the job
in the i-th position of sequence and ܤ௝௟ is the l-th batch of
machine j. Moreover, the available (௝ܶ) and unavailable (ݐ௝)
intervals are constant and predefined for each machine.

Fig. 1. Job sequencing on machine j with known unavailable times

Non-Preemptive Open Shop Scheduling Considering Machine Availability

A. Shojaei Barjouei1, Abbas Barabadi1, R. Tavakkoli-Moghaddam2

1 Department of Technology and Safety, UiT: The Arctic University of Norway, Tromsø, Norway
2 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

(E-mail: abbas.b.abadi@uit.no)

A. Assumptions
The following assumptions are considered in the

purposed OSSP.

1) Each machine can process at most one job at a
time.

2) Each job can be processed at most on one machine
at a time.

3) Jobs can be processed at any arbitrary sequence.
4) All jobs are ready to be processed at the time zero.
5) No job interruption is allowed.
6) Only one machine of each kind is in the shop.
7) Setup/removal times are dependent on jobs and

machines.
8) Available/unavailable times are dependent on

machines and they are constant during the
planning horizon.

B. Notations
The following notations including indices, parameters

and decision variables are used in this problem:

Indices
i job indices (i = 1,2,…,n).
j, h machine indices (j, h = 1,2,…,m).
l batch indices (l = 1,2,…,b).

Parameters ௜ܵ௝ setup time of job i on machine j. ݌௜௝ process time of job i on machine j. ܴ௜௝ removal time of job i on machine j. ܶݎ௜௝௛ travel time of job i from machine j to machine h. ௝ܶ consecutive available time length of machine j. ݐ௝ consecutive unavailable time length of machine j. ߭௜ importance of job i. ݓ௜ weight of job i; ݓ௜ = ߭௜/∑ ߭௜௡௜ୀଵ .

Decision variables ܥ௜௝ completion time of job i on machine j. ܥ௜ completion time of job i; ܥ௜ = ∑ ௜௝௠௝ୀଵܥ .

Accordingly, the objective function will be ܹܶܥܯ =∑ ௜௡௜ୀଵݓ .௜ܥ
III. ENCODING SCHEME AND INITIAL

POPULATION

A. Encoding scheme
A permutation of operations (genes) is considered as a
chromosome which represents a solution. For instance,
consider a shop, in which two types of shafts are supposed
to be produced by two machines including lathe machine
and milling machine while the sequence of operations can
be arbitrary. Taking into account different sizes and
substances of the raw materials, setup, process, and
removal times vary from one product to another. Moreover,
the positions of the machines and materials flow direction

in the shop lead to asymmetric transportation times. For
such an OSSP with 2 jobs and 2 machines, the chromosome
below is a possible solution, where ௜ܱ௝ is the operation
related to job i on machine j.

Fig. 2 illustrates a schematic view of the above
example, in which while job 1 (product 1) is being
processed on machine 1 (ଵܱଵ), job 2 (product 2) is on
machine 2 (ܱଶଶ). Thereafter, job 1 goes to machine 2 (ଵܱଶ)
to be finalized and job 2 goes to machine 1 (ܱଶଵ) as its last
operation.

Fig. 2. Schematic view of the OSSP considering availability due to
periodic maintenance and asymmetric transportations

B. Initial population

Two kinds of initial populations consist of the pure
random population (PRP) and semi-guided population
(SGP) are described following. In the PRP, a random
permutation of the set ሼ1,2, … , ݊݉ሽ is considered as an
individual, where ݊݉ is the number of operations. In the
SGP; however, some guides to improve WMCT are
considered. For instance, locating more important jobs
earlier in the sequence will considerably improve WMCT.
The proposed SGP will be obtained through the following
steps:

Step 1. While the stopping criterion is not met, repeat

steps 2 to 8.
Step 2. Set ܶ݊ݎݑ = 1.
Step 3. Assign the m first highest important jobs to the

m machines randomly as each machine
processes exactly one of the jobs.

Step 4. While all of the n jobs are not assigned ܶ݊ݎݑ
time(s) to any machine, repeat steps 5 to 7.

Step 5. Update the release time of machines.
Step 6. Select the highest important job which is not

assigned more than ܶ݊ݎݑ − 1 time(s).
Step 7. Considering travel times and unavailable times,

assign the selected job in step 6 to a machine
as the job starts at the earliest possible time.

Step 8. If ܶ݊ݎݑ > ݉ then go to step 9. Otherwise, put ܶ݊ݎݑ = ݊ݎݑܶ + 1 and go to step 4.
Step 9. Save the completed chromosome in an archive.
Step 10. Check the stopping criterion which is

producing several chromosomes.

IV. GENETIC ALGORITHM

GA is a very powerful and popular guided random
search techniques for solving optimization problems. GA
is an evolutionary algorithm (EA) which simulates the
natural evolution of asexual species to search solution
space. Accordingly, a new offspring is created by
combining two parents and the crossover operator is
applied as a fundamental component of this search
technique. GA parameters are the probability of crossover
(pc), probability mutation (pm), number of individuals in
each generation (popsize), and stopping criterion. A review
of this algorithm is presented by Goldberg [8].

In the following, some basic terms of GA are discussed
and then the structure of our proposed GA is defined.

A. Fitness function

Although the objective is minimization, to simplicity,
we transform it to maximization form as the fitness
function by subtracting the objective value from a large
positive number M. Hence, the fitness of individual k (௞݂)
is calculated as	 ௞݂ = ܯ ܥܯܹ− ௞ܶ , where ܹܥܯ ௞ܶ is the
objective function value of individual k. To calculate the ܹܶܥܯ, the algorithm starts from the first operation in the
sequence, assigns the operation to the related machine,
determines the earliest possible time at which the operation
can be processed on the machine based on the travel time
from the previous machine and unavailable intervals as
well as the release time of the machine from processing
operations in the earlier sequences, updates the release time
of the machine, which is, in fact, the completion time of the
current operation and follows this procedure for the next
operation in the sequence.

B. Selection

To select parents to be muted together the roulette
wheel scheme is used; in which individuals with higher
fitness value have more chance to be selected. Based on the
roulette wheel strategy, two parameters including the
probability of selecting (ܲ ௜ܵ) and cumulative probability
ܥ) ௜ܲ), should be calculated for individual i, which are
achieved through (1) and (2), respectively.

 ܲ ௜ܵ = ௙೔∑ ௙ೕ೛೚೛ೞ೔೥೐ೕసభ (1)

ܥ ௜ܲ = ∑ ܲ ௝ܵ௜௝ୀଵ (2)

Then, a random number r is chosen from [0 1] and the i-th
individual satisfying the condition ܥ ௜ܲିଵ < ݎ ≤ ܥ ௜ܲ , is
selected as one of the two parents. This process is repeated
to find the second parent.

C. Crossover
To combine two selected parents and generate two

offspring, 2-point crossover operator is applied with the
probability of pc. The 2-point crossover operator is defined
through the following four steps (See [9] for more details):

Step 1. Select two genes of parent 1 at random.
Step 2. Copy all the genes between two selected

genes from parent 1 to offspring 1 exactly in
the same positions.

Step 3. Find the genes which do not exist in offspring
1 from parent 2 in order from left to right and
fill the empty positions of offspring 1 from
left to right.

Step 4. Repeat Steps 1 to 3 to produce offspring 2,
but reverse the role of parents 1 and 2.

D. Mutation
To avoid falling in local optima, the mutation operator

is applied to each offspring with the probability of pm.
Accordingly, two genes are selected at random and their
positions will be exchanged (see [9] for more details).

E. Stopping criterion
The algorithm continues and new generations are

produced until the stopping criterion, which is ݊݉ߠ
seconds from the start of the algorithm is met. Where, n, m
and ߠ are number of jobs, number of machines and time
coefficient, respectively. Consequently, more time for
larger problems will be considered.

F. Proposed GA

The proposed GA works through the following steps:
Step 1. Generate popsize individuals as initial

population using PRP or SGP.
Step 2. Compute the fitness of each individual.
Step 3. Apply roulette wheel to select a pair of

individuals as parents.
Step 4. Apply the crossover operator with the

probability of pc and generate two offspring.
Step 5. Apply mutation operator with the probability

of pm for each offspring.
Step 6. Compute the fitness of each offspring.
Step 7. Repeat steps 3 to 6 till the popsize offspring is

produced.
Step 8. Sort all new and old individuals based on their

fitness value in descending order (2×popsize
individuals).

Step 9. Copy the popsize number of the best
individuals to the next generation.

Step 10. Repeat Steps 3 to 9 while the stopping
criterion is not met.

V. DIFFERENTIAL EVOLUTION

DE is one of the modern EAs which was defined by
Storn and Price during their attempts to solve the
Chebychev polynomial fitting problem [10]. DE utilizes

mutation and crossover operators and a selection strategy
while they are different from those of the GA. According
to DE, a trial vector of a solution is generated by adding a
weighted difference vector between two vectors to a third
vector. Thereafter, the crossover operator is applied. Then,
if the resulted vector improves the objective function, the
old vector will be replaced by the newly generated vector.

A. Mutation

The mutation operator in DE generates a new child by
adding the scaled difference of two parents to a third one
as shown in (3).

where ߙ ≠ ߚ ≠ ߛ ≠ ߜ are selected randomly from ሼ1,2, … , ሽ݁ݖ݅ݏ݌݋݌ ,ߙ . ,ߚ ߛ are the indices of individuals
related to the current generation and ߜ is the index of a new
individual for the next generation. So, ܿℎ݉݋ݎሺߙ, ݅, ݆ሻ
indicates ௜ܱ௝ in ߙ-th individual of the current generation. ܨ
is the scale parameter which controls enlarging of
differential variation. However, the mutation operator
usually generates an illegal individual. Therefore, a repair
procedure based on integer order criterion (IOR) is used
[11]. According to IOR, the smallest gene in the illegal
chromosome is set to 1, the second gene evaluated as 2 and
consequently, the last one will be n×m (See [11] for more
details).

B. Crossover

After mutation, the crossover operation is applied with
the probability of ܴܥ according to (4).

where ݀݊ܽݎ௜௝ is randomly chosen from interval ሾ0	1ሿ, ݅௥
and ௥݆ are randomly selected from the indices of jobs and
machines in a row. Meanwhile, ܿℎ݉݋ݎሺߜ, ݅, ݆ሻ indicates ௜ܱ௝ in the ߜ-th individual of the current generation.

C. Selection

After applying the mutation and crossover operators, to
guarantee the improvement of individuals in each
generation, the generated trials will be transferred to a new
generation if and only if they improve the current
generation. The selection procedure is defined in (5) where ݂ሺܼሻ indicates the fitness of Z and G refers to the current
generation.

D. Stopping criterion

The same stopping criterion described for the GA used
for DE. Therefore, the DE algorithm continues ݊݉ߝ
seconds from the start of the generating procedure.

E. Proposed DE
The structure of the proposed DE is briefly outlined in

Fig. 3.

Fig. 3. Outline of the proposed DE

VI. COMPUTATIONAL EVALUATION

The relative percentage deviation (RPD) is used as a
popular performance measure taken from (6) to investigate
the performance of different combinations of the proposed
algorithms and initial populations (i.e., DEPRP, DESGP,
GAPRP and GASGP) [12]. To this aim, four sets of large-
sized instances are generated at random in which ݊ =30,40 and ݉ = 5,10 . Considering five replications for
each combination of ሺ݊,݉ሻ, we have 20 instances. The
number of batches is regarded as ܾ = 2݊. Furthermore, the
parameters of the problem are the processing times with a
uniform distribution in the interval ሺ1, 99ሻ, the setup and
removal times taken to be uniform in range ሺ1, 25ሻ, the
importance of jobs with uniform distribution over ሺ1, ݊ሻ,
the travel times considered to be uniformly distributed in
range ሺ1, 20ሻ , the consecutive unavailable time lengths
with a uniform distribution in range ሺ1, 50ሻ and
consecutive available time lengths ௝ܶ = max ቄܽ ∑ ൫ ௜ܵ௝ +௡௜ୀଵ݌௜௝ + ܴ௜௝൯ ,max௜ ൫ ௜ܵ௝ + ௜௝݌ + ܴ௜௝൯ቅ , where ܽ is selected

randomly from ቄ1 5ൗ , 1 4ൗ , 1 3ൗ ቅ [12-13]. Accordingly, the

objective function will be ܹܶܥܯ = ∑ ௜௡௜ୀଵݓ ௜ܥ ; where ݓ௜ = ߭௜/∑ ߭௜௡௜ୀଵ .
ܦܴܲ = ௦௢௟݈݃ܣ − ௦௢௟݊݅ܯ௦௢௟݊݅ܯ × 100 (6)

where ݈݃ܣ௦௢௟ is WMCT of an instance achieved from a
given algorithm and ݊݅ܯ௦௢௟ is the lowest WMCT for the
instance obtained by any of the algorithms.

To set the parameters of the algorithms different levels
of each are examined and all the instances are solved five

times with different combinations. The GA parameters are
assumed as probabilities of crossover and
mutation: ,௖݌	 ௠݌ ∈ ሼ0.85,0.9, 0.95∗ሽ , population
size: ݁ݖ݅ݏ݌݋݌ ∈ ሼ20,50, 80∗ሽ , and the coefficient of
time:ߠ ∈ ሼ0.2, 0.3∗, 0.4ሽ, where the starred ones provide
the best combination. In the same way, the DE parameters
are assumed as a parameter of scale: 	ܨ ∈ ሾ0.3	0.9ሿ ,
probability of crossover: ܴܥ ∈ ሾ0.8	1ሿ , population size: ݁ݖ݅ݏ݌݋݌ ∈ ሼ20,50, 80∗ሽ, and the coefficient of time: ߝ ∈ሼ0.2,0.3, 0.4∗ሽ. Therefore, ܴܥ is different for each problem
and ܨ changes in each generation.

The algorithms are programmed by Visual Basic.Net
2008 and run on a 2.4 GHz Intel® Core™ i5 CPU and 4GB
of RAM. All of the 20 large-sized instances are solved five
times by all combinations of algorithms and initial
populations (i.e., DEPRP, DESGP, GAPRP and GASGP). To
compare these algorithms, the results transformed into the
RPD and the average for each problem size is indicated in
Table I. Accordingly, the significant improvement by using
SGP is evident, while GA and DE show similar
performances. Meanwhile, the average computational
times of the algorithms in seconds for each problem size is
shown in Table II, where the GA works moderately faster
except in the largest case. The computational time is not
significantly influenced by the initial population. Also, the
sensitivity of all combinations of algorithms and initial
populations toward job importance (߭௜) were investigated.
However, no significant sensitivity was observed either in
the computational time or in the RPD. The only case that
influences on RPD of DEPRP and GAPRP is the case in which
all ߭௜ s are supposed to be equal (i.e., no weight in the
objective function). Accordingly, the average RPD of both
DEPRP and GAPRP will be 0.42 which is around 50 percent
better than weighted scenario. However, since SGP is
based on job importance and weight, considering equal
weights while applying SGP seems unreasonable.

TABLE I

AVERAGE RPD FOR THE LARGE-SIZED INSTANCES ݊.݉. ܾ DEPRP DESGP GAPRP GASGP

30.5.60 0.71 0.01 0.70 0.01
30.10.60 0.96 0.02 0.98 0.02
40.5.80 0.80 0.01 0.80 0.01

40.10.80 0.98 0.02 1.02 0.02

Average 0.86 0.015 0.87 0.015

TABLE II

AVERAGE COMPUTATIONAL TIME IN SECONDS ݊.݉. ܾ DEPRP DESGP GAPRP GASGP

30.5.60 64.8 66.2 50.8 50.6
30.10.60 145.6 145.6 128.2 130.6
40.5.80 82.6 82.4 75 74.4
40.10.80 174 172.6 216 215

VII. CONCLUSION

In this paper, a new initial population namely SGP was
introduced, which considerably improves the performance
of the two powerful meta-heuristics including GA and DE

to deal with the non-preemptive OSSP with the machine
availability constraint and asymmetric transportation
times. To investigate the performance of the algorithms
with two initial populations including SGP and PRP, 20
large-sized instances were generated at random and the
results transformed into the RPD. Accordingly, although
both GA and DE have similar performances, SGP makes
both algorithms much more effective and robust.
Moreover, the computational time is not significantly
influenced by the initial population.

REFERENCES

[1] J. Y. T. Leung, Handbook of scheduling: Algorithms,
models, and performance analysis, Chapman & Hall/CRC
Computer and Information Science Series, 2004.

[2] M. Sheikhalishahi, N. Eskandari, A. Mashayekhi, A.
Azadeh, “Multi-objective open shop scheduling by
considering human error and preventive maintenance,”
Applied Mathematical Modelling, vol. 67, pp. 573-587,
2019.

[3] V. A. Strusevich, “A heuristic for the two-machine open-
shop scheduling problem with transportation times,”
Discrete Applied Mathematics, vol. 93, no. 2-3, pp. 287-304,
1999.

[4] Y. Ma, C. Chu, C. Zuo, “A survey of scheduling with
deterministic machine availability constraints,” Computers
& Industrial Engineering, vol. 58, no. 2, pp. 199-211, 2010.

[5] Z. Huang, Z. Zhuang, Q. Cao, Z. Lu, L. Guo, W. Qin, “A
survey of intelligent algorithms for open shop scheduling
problem,” The 11th CIRP Conference on Industrial Product-
Service Systems, vol. 83, pp. 569-574, 2019.

[6] G. Deng, K. Zhang, X. Gu, “A hybrid discrete differential
evolution algorithm to minimise total tardiness on identical
parallel machines,” International Journal of Computer
Integrated Manufacturing, vol. 26, no. 6, pp. 504-512, 2013.

[7] H. Kellerer, M. A. Kubzin, V. A. Strusevich, “Two simple
constant ratio approximation algorithms for minimizing the
total weighted completion time on a single machine with a
fixed non-availability interval,” European Journal of
Operational Research, vol. 199, no. 1, pp. 111-116, 2009.

[8] D. E. Goldberg, Genetic algorithms in search, optimization
and machine learning, Addison–Wesley: Wokingham, UK,
1989.

[9] M. E. Matta, “A genetic algorithm for the proportionate
multiprocessor open shop,” Computers & Operations
Research, vol. 36, no. 9, pp. 2601-2618, 2009.

[10] R. Storn, K. Price, Differential Evolution: A Simple and
Efficient Adaptive Scheme for Global Optimization over
Continuous Spaces, TR-95-012, International Computer
Science Institute: Berkeley, California, 1995.

[11] C. Erbao, L. Mingyong, “A hybrid differential evolution
algorithm to vehicle routing problem with fuzzy demands,”
Journal of Computational and Applied Mathematics, vol.
231, no. 1, pp. 302-310, 2009.

[12] B. Naderi, M. Zandieh, “Modeling and scheduling no-wait
open shop problems,” International Journal of Production
Economics, vol. 158, pp. 256-266, 2014.

[13] C. J. Hsu, C. Low, C. T. Su, “A single-machine scheduling
problem with maintenance activities to minimize
makespan,” Applied Mathematics and Computation, vol.
215, no. 11, pp. 3929–3935, 2010.

