
Abstract - This paper considers a non-preemptive open 
shop scheduling problem (OSSP), in which machines are not 
available to process jobs on known periodic interval times 
resulted from periodic service repair, rest period, and so on. 
Asymmetric transportation time between machines is 
considered, which can be different from one job to another. 
The objective is to minimize the weighted mean completion 
time (WMCT). Since the problem is categorized into NP-hard 
class, two meta-heuristic algorithms including genetic 
algorithm (GA) and differential evolution (DE) are proposed. 
Meanwhile, a new initial population is introduced, which 
significantly improves the performance of the algorithms. 
Finally, the performance of the algorithms is validated 
through some large-sized instances and the results are 
discussed.  
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I.  INTRODUCTION 

 In an open shop scheduling problem, each of n jobs is 
supposed to be processed by m machines in arbitrary order 
[1]. However, machines may be unavailable due to 
preventive maintenance, rest period, uncompleted jobs 
from the previous working shift which should be processed 
at the beginning of the current shift, and so on [1]. OSSP 
provides a wide range of applications including timetable 
problem, manufacturing plants, optical network, 
communication scheduling and so on [1]. Sheikhalishahi et 
al. [2] illustrated a real application of OSSP considering 
preventive maintenance in an automobile spare parts 
manufactory where 9 jobs are supposed to be processed on 
9 machines (i.e., 81 operations) in a pressing and forming 
shop. 

Strusevich [3] considered a known time lag between the 
completion of a task and the beginning of the next task of 
the same job in an OSSP. Due to the actual transportation 
of a job between machines, he named this time lag as 
transportation time. Also, he referred to another 
interpretation of this time lag in chemical and metallurgic 
applications, as the cooling or heating time.  

Ma et al. [4] summarized scheduling problems with 
availability constraints caused by preventive maintenance 
taking into account their complexity. Accordingly, the 
OSSP with availability constraint even in small cases is 
categorized into NP-hard class. Hence, applying 
approximation approaches can be more effective than exact 
methods. Huang et al. [5] proposed four algorithms 

including GA, Particle Swarm Optimization (PSO), cuckoo 
search algorithm, and Ant Colony Optimization (ACO) for 
OSSP. DE is another well-known algorithm that has rarely 
been implemented for OSSP; however, there are some 
studies using this algorithm to other scheduling problems, 
such as parallel machines [6].  

In this paper, a non-preemptive OSSP with machine 
availability constraint is purposed in which machines are 
not available to process jobs on known periodic intervals. 
Available/unavailable intervals are assumed to be constant 
and predefined for each machine while they vary from one 
machine to another. Asymmetric transportation times 
between machines is another feature of the purposed OSSP 
caused by considering different routes to move between 
machines which reduces route interception in the shop. 
Moreover, different jobs have different transportation 
times on the same route, which can be resulted from using 
various vehicles to carry various parts. Furthermore, the 
time which a job is on a machine is divided into three parts 
including setup, process, and removal time. Meanwhile, 
WMCT is considered as the objective function, which 
should be minimized [7]. To solve the purposed OSSP, a 
new initial population is introduced which significantly 
improves the results of both GA and DE meta-heuristics. 

The rest of this paper is organized as follows. In Section 
II, considering some assumptions the problem is defined. 
Then, encoding scheme and proposed initial populations 
are introduced in Section III. Sections IV and V contain 
GA and DE algorithms, respectively. Computational 
evaluation is presented in Section VI. Finally, the paper is 
concluded in Section VII. 

 
II. PROBLEM DEFENITION 

As shown in Fig. 1, the available times for each 
machine are considered like batches which jobs should be 
located into them while the total time of jobs does not 
exceed the batch time ( ௝ܶ). In Fig. 1, ܬሾ௜ሿ indicates the job 
in the i-th position of sequence and ܤ௝௟ is the l-th batch of 
machine j. Moreover, the available ( ௝ܶ) and unavailable (ݐ௝) 
intervals are constant and predefined for each machine. 

 

 
Fig. 1. Job sequencing on machine j with known unavailable times 
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A. Assumptions 
The following assumptions are considered in the 

purposed OSSP. 

1) Each machine can process at most one job at a 
time. 

2) Each job can be processed at most on one machine 
at a time. 

3) Jobs can be processed at any arbitrary sequence. 
4) All jobs are ready to be processed at the time zero. 
5) No job interruption is allowed. 
6) Only one machine of each kind is in the shop. 
7) Setup/removal times are dependent on jobs and 

machines. 
8) Available/unavailable times are dependent on 

machines and they are constant during the 
planning horizon. 

B. Notations 
The following notations including indices, parameters 

and decision variables are used in this problem: 
 

Indices 
i job indices (i = 1,2,…,n). 
j, h machine indices ( j, h = 1,2,…,m). 
l batch indices (l = 1,2,…,b). 

 
Parameters ௜ܵ௝ setup time of job i on machine j. ݌௜௝ process time of job i on machine j. ܴ௜௝ removal time of job i on machine j. ܶݎ௜௝௛ travel time of job i from machine j to machine h. ௝ܶ consecutive available time length of machine j. ݐ௝ consecutive unavailable time length of machine j. ߭௜ importance of job i. ݓ௜ weight of job i; ݓ௜ = ߭௜/∑ ߭௜௡௜ୀଵ . 
 
Decision variables ܥ௜௝ completion time of job i on machine j. ܥ௜ completion time of job i; ܥ௜ = ∑ ௜௝௠௝ୀଵܥ . 

Accordingly, the objective function will be ܹܶܥܯ =∑ ௜௡௜ୀଵݓ  .௜ܥ
III. ENCODING SCHEME AND INITIAL 

POPULATION 

A. Encoding scheme 
A permutation of operations (genes) is considered as a 
chromosome which represents a solution. For instance, 
consider a shop, in which two types of shafts are supposed 
to be produced by two machines including lathe machine 
and milling machine while the sequence of operations can 
be arbitrary. Taking into account different sizes and 
substances of the raw materials, setup, process, and 
removal times vary from one product to another. Moreover, 
the positions of the machines and materials flow direction 

in the shop lead to asymmetric transportation times. For 
such an OSSP with 2 jobs and 2 machines, the chromosome 
below is a possible solution, where ௜ܱ௝  is the operation 
related to job i on machine j. 

 

Fig. 2 illustrates a schematic view of the above 
example, in which while job 1 (product 1) is being 
processed on machine 1 ( ଵܱଵ ), job 2 (product 2) is on 
machine 2 (ܱଶଶ). Thereafter, job 1 goes to machine 2 ( ଵܱଶ) 
to be finalized and job 2 goes to machine 1 (ܱଶଵ) as its last 
operation. 
 

Fig. 2. Schematic view of the OSSP considering availability due to 
periodic maintenance and asymmetric transportations 

 
B. Initial population 

Two kinds of initial populations consist of the pure 
random population (PRP) and semi-guided population 
(SGP) are described following. In the PRP, a random 
permutation of the set ሼ1,2, … , ݊݉ሽ is considered as an 
individual, where ݊݉ is the number of operations. In the 
SGP; however, some guides to improve WMCT are 
considered. For instance, locating more important jobs 
earlier in the sequence will considerably improve WMCT. 
The proposed SGP will be obtained through the following 
steps: 

 
Step 1. While the stopping criterion is not met, repeat 

steps 2 to 8. 
Step 2. Set ܶ݊ݎݑ = 1. 
Step 3. Assign the m first highest important jobs to the 

m machines randomly as each machine 
processes exactly one of the jobs. 

Step 4. While all of the n jobs are not assigned ܶ݊ݎݑ 
time(s) to any machine, repeat steps 5 to 7. 

Step 5. Update the release time of machines. 
Step 6. Select the highest important job which is not 

assigned more than ܶ݊ݎݑ − 1 time(s). 
Step 7. Considering travel times and unavailable times, 

assign the selected job in step 6 to a machine 
as the job starts at the earliest possible time. 



 

Step 8. If ܶ݊ݎݑ > ݉ then go to step 9. Otherwise, put ܶ݊ݎݑ = ݊ݎݑܶ + 1 and go to step 4. 
Step 9. Save the completed chromosome in an archive. 
Step 10. Check the stopping criterion which is 

producing several chromosomes.  
 

IV. GENETIC ALGORITHM 

GA is a very powerful and popular guided random 
search techniques for solving optimization problems. GA 
is an evolutionary algorithm (EA) which simulates the 
natural evolution of asexual species to search solution 
space. Accordingly, a new offspring is created by 
combining two parents and the crossover operator is 
applied as a fundamental component of this search 
technique. GA parameters are the probability of crossover 
(pc), probability mutation (pm), number of individuals in 
each generation (popsize), and stopping criterion. A review 
of this algorithm is presented by Goldberg [8]. 

In the following, some basic terms of GA are discussed 
and then the structure of our proposed GA is defined. 

 
A. Fitness function 

Although the objective is minimization, to simplicity, 
we transform it to maximization form as the fitness 
function by subtracting the objective value from a large 
positive number M. Hence, the fitness of individual k ( ௞݂) 
is calculated as	 ௞݂ = ܯ ܥܯܹ− ௞ܶ , where ܹܥܯ ௞ܶ  is the 
objective function value of individual k. To calculate the ܹܶܥܯ, the algorithm starts from the first  operation in the 
sequence, assigns the operation to the related machine, 
determines the earliest possible time at which the operation 
can be processed on the machine based on the travel time 
from the previous machine and unavailable intervals as 
well as the release time of the machine from processing 
operations in the earlier sequences, updates the release time 
of the machine, which is, in fact, the completion time of the 
current operation and follows this procedure for the next 
operation in the sequence. 

 
B. Selection 

To select parents to be muted together the roulette 
wheel scheme is used; in which individuals with higher 
fitness value have more chance to be selected. Based on the 
roulette wheel strategy, two parameters including the 
probability of selecting (ܲ ௜ܵ) and cumulative probability 
ܥ) ௜ܲ ), should be calculated for individual i, which are 
achieved through (1) and (2), respectively. 

 

 ܲ ௜ܵ = ௙೔∑ ௙ೕ೛೚೛ೞ೔೥೐ೕసభ  (1) 

ܥ  ௜ܲ = ∑ ܲ ௝ܵ௜௝ୀଵ  (2) 
 

Then, a random number r is chosen from [0 1] and the i-th 
individual satisfying the condition ܥ ௜ܲିଵ < ݎ ≤ ܥ ௜ܲ , is 
selected as one of the two parents. This process is repeated 
to find the second parent. 
 

C. Crossover  
To combine two selected parents and generate two 

offspring, 2-point crossover operator is applied with the 
probability of pc. The 2-point crossover operator is defined 
through the following four steps (See [9] for more details): 

 
Step 1. Select two genes of parent 1 at random.  
Step 2. Copy all the genes between two selected 

genes from parent 1 to offspring 1 exactly in 
the same positions. 

Step 3. Find the genes which do not exist in offspring 
1 from parent 2 in order from left to right and 
fill the empty positions of offspring 1 from 
left to right. 

Step 4. Repeat Steps 1 to 3 to produce offspring 2, 
but reverse the role of parents 1 and 2. 

D. Mutation 
To avoid falling in local optima, the mutation operator 

is applied to each offspring with the probability of pm. 
Accordingly, two genes are selected at random and their 
positions will be exchanged (see [9] for more details). 

E. Stopping criterion 
The algorithm continues and new generations are 

produced until the stopping criterion, which is ݊݉ߠ 
seconds from the start of the algorithm is met. Where, n, m 
and ߠ are number of jobs, number of machines and time 
coefficient, respectively. Consequently, more time for 
larger problems will be considered. 

 
F. Proposed GA 

The proposed GA works through the following steps: 
Step 1. Generate popsize individuals as initial 

population using PRP or SGP. 
Step 2. Compute the fitness of each individual. 
Step 3. Apply roulette wheel to select a pair of 

individuals as parents. 
Step 4. Apply the crossover operator with the 

probability of pc and generate two offspring. 
Step 5. Apply mutation operator with the probability 

of pm for each offspring. 
Step 6. Compute the fitness of each offspring. 
Step 7. Repeat steps 3 to 6 till the popsize offspring is 

produced.  
Step 8. Sort all new and old individuals based on their 

fitness value in descending order (2×popsize 
individuals). 

Step 9. Copy the popsize number of the best 
individuals to the next generation. 

Step 10. Repeat Steps 3 to 9 while the stopping 
criterion is not met. 

 
V. DIFFERENTIAL EVOLUTION 

DE is one of the modern EAs which was defined by 
Storn and Price during their attempts to solve the 
Chebychev polynomial fitting problem [10]. DE utilizes 



 

mutation and crossover operators and a selection strategy 
while they are different from those of the GA. According 
to DE, a trial vector of a solution is generated by adding a 
weighted difference vector between two vectors to a third 
vector. Thereafter, the crossover operator is applied. Then, 
if the resulted vector improves the objective function, the 
old vector will be replaced by the newly generated vector.  

 
A. Mutation 

The mutation operator in DE generates a new child by 
adding the scaled difference of two parents to a third one 
as shown in (3). 

 

where ߙ ≠ ߚ ≠ ߛ ≠ ߜ  are selected randomly from ሼ1,2, … , ሽ݁ݖ݅ݏ݌݋݌ ,ߙ . ,ߚ ߛ  are the indices of individuals 
related to the current generation and ߜ is the index of a new 
individual for the next generation. So, ܿℎ݉݋ݎሺߙ, ݅, ݆ሻ 
indicates ௜ܱ௝ in ߙ-th individual of the current generation. ܨ 
is the scale parameter which controls enlarging of 
differential variation. However, the mutation operator 
usually generates an illegal individual. Therefore, a repair 
procedure based on integer order criterion (IOR) is used 
[11]. According to IOR, the smallest gene in the illegal 
chromosome is set to 1, the second gene evaluated as 2 and 
consequently, the last one will be n×m (See [11] for more 
details). 

 
B. Crossover 

After mutation, the crossover operation is applied with 
the probability of ܴܥ according to (4). 

 

where ݀݊ܽݎ௜௝  is randomly chosen from interval ሾ0	1ሿ, ݅௥ 
and ௥݆ are randomly selected from the indices of jobs and 
machines in a row. Meanwhile, ܿℎ݉݋ݎሺߜ, ݅, ݆ሻ  indicates ௜ܱ௝ in the ߜ-th individual of the current generation. 

 
C. Selection 

After applying the mutation and crossover operators, to 
guarantee the improvement of individuals in each 
generation, the generated trials will be transferred to a new 
generation if and only if they improve the current 
generation. The selection procedure is defined in (5) where ݂ሺܼሻ indicates the fitness of Z and G refers to the current 
generation. 

 

 
 
D. Stopping criterion 

The same stopping criterion described for the GA used 
for DE. Therefore, the DE algorithm continues ݊݉ߝ 
seconds from the start of the generating procedure. 

 

E. Proposed DE 
The structure of the proposed DE is briefly outlined in 

Fig. 3. 
 

 
Fig. 3. Outline of the proposed DE 

 
VI. COMPUTATIONAL EVALUATION 

The relative percentage deviation (RPD) is used as a 
popular performance measure taken from (6) to investigate 
the performance of different combinations of the proposed 
algorithms and initial populations (i.e., DEPRP, DESGP, 
GAPRP and GASGP) [12]. To this aim, four sets of large-
sized instances are generated at random in which ݊ =30,40  and ݉ = 5,10 . Considering five replications for 
each combination of ሺ݊,݉ሻ, we have 20 instances. The 
number of batches is regarded as ܾ = 2݊. Furthermore, the 
parameters of the problem are the processing times with a 
uniform distribution in the interval ሺ1, 99ሻ, the setup and 
removal times taken to be uniform in range ሺ1, 25ሻ, the 
importance of jobs with uniform distribution over ሺ1, ݊ሻ, 
the travel times considered to be uniformly distributed in 
range ሺ1, 20ሻ , the consecutive unavailable time lengths 
with a uniform distribution in range ሺ1, 50ሻ  and 
consecutive available time lengths ௝ܶ = max ቄܽ ∑ ൫ ௜ܵ௝ +௡௜ୀଵ݌௜௝ + ܴ௜௝൯ ,max௜ ൫ ௜ܵ௝ + ௜௝݌ + ܴ௜௝൯ቅ , where ܽ  is selected 

randomly from ቄ1 5ൗ , 1 4ൗ , 1 3ൗ ቅ  [12-13]. Accordingly, the 

objective function will be ܹܶܥܯ = ∑ ௜௡௜ୀଵݓ ௜ܥ ; where ݓ௜ = ߭௜/∑ ߭௜௡௜ୀଵ  . 
ܦܴܲ  = ௦௢௟݈݃ܣ − ௦௢௟݊݅ܯ௦௢௟݊݅ܯ × 100 (6) 

where ݈݃ܣ௦௢௟  is WMCT of an instance achieved from a 
given algorithm and ݊݅ܯ௦௢௟ is the lowest WMCT for the 
instance obtained by any of the algorithms. 

To set the parameters of the algorithms different levels 
of each are examined and all the instances are solved five 



 

times with different combinations. The GA parameters are 
assumed as probabilities of crossover and 
mutation: ,௖݌	 ௠݌ ∈ ሼ0.85,0.9, 0.95∗ሽ , population 
size: ݁ݖ݅ݏ݌݋݌ ∈ ሼ20,50, 80∗ሽ , and the coefficient of 
time:ߠ ∈ ሼ0.2, 0.3∗, 0.4ሽ, where the starred ones provide 
the best combination. In the same way, the DE parameters 
are assumed as a parameter of scale: 	ܨ ∈ ሾ0.3	0.9ሿ , 
probability of crossover: ܴܥ ∈ ሾ0.8	1ሿ , population size: ݁ݖ݅ݏ݌݋݌ ∈ ሼ20,50, 80∗ሽ, and the coefficient of time: ߝ ∈ሼ0.2,0.3, 0.4∗ሽ. Therefore, ܴܥ is different for each problem 
and ܨ changes in each generation. 

The algorithms are programmed by Visual Basic.Net 
2008 and run on a 2.4 GHz Intel® Core™ i5 CPU and 4GB 
of RAM. All of the 20 large-sized instances are solved five 
times by all combinations of algorithms and initial 
populations (i.e., DEPRP, DESGP, GAPRP and GASGP). To 
compare these algorithms, the results transformed into the 
RPD and the average for each problem size is indicated in 
Table I. Accordingly, the significant improvement by using 
SGP is evident, while GA and DE show similar 
performances. Meanwhile, the average computational 
times of the algorithms in seconds for each problem size is 
shown in Table II, where the GA works moderately faster 
except in the largest case. The computational time is not 
significantly influenced by the initial population. Also, the 
sensitivity of all combinations of algorithms and initial 
populations toward job importance (߭௜) were investigated. 
However, no significant sensitivity was observed either in 
the computational time or in the RPD. The only case that 
influences on RPD of DEPRP and GAPRP is the case in which 
all ߭௜ s are supposed to be equal (i.e., no weight in the 
objective function). Accordingly, the average RPD of both 
DEPRP and GAPRP will be 0.42 which is around 50 percent 
better than weighted scenario. However, since SGP is 
based on job importance and weight, considering equal 
weights while applying SGP seems unreasonable. 

 
TABLE I 

AVERAGE RPD FOR THE LARGE-SIZED INSTANCES ݊.݉. ܾ DEPRP DESGP GAPRP GASGP 

30.5.60 0.71 0.01 0.70 0.01 
30.10.60 0.96 0.02 0.98 0.02 
40.5.80 0.80 0.01 0.80 0.01 

40.10.80 0.98 0.02 1.02 0.02 

Average 0.86 0.015 0.87 0.015 

 
TABLE II 

AVERAGE COMPUTATIONAL TIME IN SECONDS ݊.݉. ܾ DEPRP DESGP GAPRP GASGP 

30.5.60 64.8 66.2 50.8 50.6 
30.10.60 145.6 145.6 128.2 130.6 
40.5.80 82.6 82.4 75 74.4 
40.10.80 174 172.6 216 215 

 
VII. CONCLUSION 

In this paper, a new initial population namely SGP was 
introduced, which considerably improves the performance 
of the two powerful meta-heuristics including GA and DE 

to deal with the non-preemptive OSSP with the machine 
availability constraint and asymmetric transportation 
times. To investigate the performance of the algorithms 
with two initial populations including SGP and PRP, 20 
large-sized instances were generated at random and the 
results transformed into the RPD. Accordingly, although 
both GA and DE have similar performances, SGP makes 
both algorithms much more effective and robust. 
Moreover, the computational time is not significantly 
influenced by the initial population. 
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