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Abstract—In the ordered flow-shop scheduling problem
the processing times follow specific structures. We propose
a relax-and-solve matheuristic for the ordered flow-shop
problem to minimize the makespan, which is proven to be NP-
hard. We compare the performance of our method and that
of the state-of-the-art methods, and show that the proposed
method is capable of reporting new best solutions for a large
number of instances, and has the average gap of as low as
0.046% from the best known solutions.
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I. INTRODUCTION

As a subcategory of the flow-shop scheduling problem,
the ordered flow-shop deals with the case where there are
structured properties for the processing times, in particular,
jobs and machines are described by the following two
conditions: (1) if the processing time of a job j is smaller
than that of another job k on some machine, then job j
has smaller processing time than job k on all machines,
and (2) if the processing time of a job on a machine r is
smaller than that on another machine q, then all jobs have
smaller processing time on machine r than on machine
q. Those structured properties represent many real-world
industrial procedures, where the processing time of the jobs
are related to the physical characteristics of the jobs and/or
machines [1]. Typically, the processing of a small-sized job
is more time-consuming on any machine, or a machine with
an old technology is slow in processing any job. Two real-
world examples include the manufacturing facility of liquid
crystal display panels and the painting process of expensive
wooden doors [2].

The problem of minimizing the makespan on the ordered
flow-shop problem was first introduced by [3]. For the
problem when the largest processing times occur on the
first (last) machine, [1] proved that the longest processing
time (LPT) (shortest processing time (SPT)) first dispatch-
ing rule is optimal. The problem becomes NP-hard when
the largest processing times do not occur on either the
first or the last machine [4]. An intriguing result was
obtained by [5], where they showed that a pyramidal-
shaped sequence is optimal for the ordered flow-shop
problem. A pyramidal-shaped sequence consists of two
sub-sequences, where in the first sub-sequence the jobs are
ordered by the SPT rule, and in the second sub-sequence
the jobs are sequenced in the LPT order. Recently, [6]
utilized the pyramidal-shaped property and proposed two
heuristics and an iterated local search (ILS) algorithm for
the ordered flow-shop problem. For a detailed review of
earlier studies, we refer the interested reader to [4]. [6]

provided comprehensive computational comparisons of the
state-of-the-art methods.

The ILS algorithm of [6] is the only published meta-
heuristic for the ordered flow-shop problem with the
makespan minimization. The main contribution of this
study is to propose a new algorithm for the problem that
uses an exact solver within a heuristic framework, and
for that purpose we propose the relax-and-solve (R&S)
matheuristic. By solving a set of 120 challenging instances
we show that the new algorithm outperforms standard
optimization solvers, and has a good performance in com-
parison to the state-of-the-art methods. The remainder of
this paper is organized as follows. We define the problem
in Section II and present the solution method in Section III.
In Section IV, we report the results of our computational
experiments, and conclusions and future research directions
are provided in Section V.

II. PROBLEM DEFINITION AND FORMULATION

Given the sets J = {1, . . . , n} of jobs and M =
{1, . . . ,m} of machines, all jobs must be processed on
all machines in the order 1 to m. The processing time of
job j ∈ J on machine r ∈ M is denoted by prj , and the
processing times meet the followings:

1) if for any two jobs j, k ∈ J, prj < prk, r ∈M , then
pqj ≤ pqk,∀q ∈M ; and,

2) if for any two machines r, q ∈M,prk < pqk, k ∈ J ,
then prj ≤ pqj ,∀j ∈ J .

We consider the problem with the permutation assump-
tion, i.e., the job processing orders on all m machines are
identical. Additionally, all jobs are available at the time
zero and preemption of jobs is not allowed, meaning that
once the execution of a job is started on some machine,
it cannot be interrupted by other jobs. Also, each machine
can perform at most one job at a time. We consider the
objective of minimizing the length of the schedule, i.e.,
makespan denoted by Cmax.

Among the mixed-integer programming (MIP) formula-
tions for the flow-shop scheduling problem, we implement
the formulation proposed by [7], denoted by Model I in the
following, for the ordered flow-shop problem. According
to [8], Model I is the best performing model for solving
the permutation flow-shop problem. In Model I, binary
decision variables zji take the value of 1 if job j is assigned
to position i ∈ J in the sequence, and 0 otherwise. In
addition, the non-negative decision variables xri and yri are
used to indicate the idle time of machine r before starting
the job in position i, and the idle time of the job in position
i after finishing its process on machine r, respectively.



Model I

z = minCmax = min(
∑
j∈J

pmj +
∑
i∈J

xmi) (1)

subject to∑
j∈J

zji = 1, i ∈ J, (2)∑
i∈J

zji = 1, j ∈ J, (3)∑
j∈J

prjzj1 + xr1 + yr1 = xr+1,1, r ∈M \ {m}, (4)∑
j∈J

prjzj,i+1 + xr,i+1 + yr,i+1 =
∑
j∈J

pr+1,jzji

+ xr+1,i+1 + yri, i ∈ J \ {n}, r ∈M \ {m},
(5)

zji ∈ {0, 1}, i, j ∈ J, (6)

xri ≥ 0, yri ≥ 0, r ∈M, i ∈ J. (7)

The objective function (eq. (1)) minimizes the makespan.
The assignment constraints (2) and (3) ensure that each
position is filled with only one job and exactly one position
is assigned to each job. The job-adjacency and the machine-
linkage constraints presented in (4) and (5) ensure that the
process of job in position i cannot be started on machine
r + 1 until its process on machine r is finished, and the
process of job in position i+1 cannot be started on machine
r, until the process of the job in position i on that same
machine is finished. Constraints (6) and (7) ensure zji ∈
{0, 1}, xri ≥ 0 and yri ≥ 0.

III. THE PROPOSED RELAX-AND-SOLVE METHOD

In this section we propose an efficient relax-and-
solve (R&S) heuristic algorithm for the ordered flow-shop
scheduling problem. The R&S algorithm was designed
by [9, 10, 11, 12]. Given an initial sequence, the R&S
algorithm obtains an improved solution through iterative
relaxation of a subset (of the given sequence) of operations,
and solving the subset, i.e., re-ordering and re-scheduling
by using optimization techniques. The “relax” phase of the
R&S allows those operations in the subset to be able to
change their execution order, whereas the “solve” phase
ensures the subset is re-ordered and a feasible schedule
is constructed. Algorithm 1 summarizes the R&S heuristic
algorithm.

Algorithm 1: The R&S heuristic algorithm.
Input: The initial sequence π of performing the

operations on the machines, parameter K.
k := 1;
while the stopping condition is not met and k ≤ K do

Apply neighborhood k (Nk) to relax π′ ⊂ π;
Solve the problem by using an optimization solver;

end
return The best obtained schedule (the solution);

The pyramidal-shaped property of the ordered flow-shop
problem significantly reduces the size of the set of all
candidate feasible solutions, more precisely from n! to

2n−1 as discussed in [6]. Therefore, we utilize this property
in the development of the neighborhoods for the proposed
R&S algorithm. In what follows we discuss the components
of the proposed R&S heuristic.

A. Solution representation

Since the problem under study is considered with the
permutation assumption, any sequence of executing the
jobs on the machine is then feasible. We therefore present
a feasible solution by a sequence of jobs in positions 1 to
n, i.e., a permutation, where job J(i) represents the job in
position i in the sequence; see Figure 1.

J(1) . . . J(i) . . . J(n)

Fig. 1. The solution representation in the proposed R&S algorithm.

B. Initial solution

We utilize the pair-insert heuristic algorithm of [6]
to generate an initial solution for the R&S algorithm.
The pair-insert is a three-step procedure that utilizes the
pyramidal-shaped property of the problem, as well as the
general idea of the well-known NEH algorithm of [13].
Step 1 sorts the jobs in non-increasing order of their
total processing times. Step 2 generates a two-job partial
sequence and Step 3 completes the partial sequence by
adding unassigned jobs in pairs. We refer the interested
reader to [6] for details on the pair-insert algorithm.

C. Neighborhoods

The main body of the R&S algorithm, which is presented
in Algorithm 1, applies the relax operation by utilizing
a set of neighborhoods. We present three neighborhoods,
each of which applies a unique relaxation method that
results in two relaxed subsets (of performing operations).
Let π denote the complete sequence. From π, two subsets
π′1, π

′
2 ⊂ π are selected to be relaxed, and that by letting

variables zji ∈ {0, 1},∀i ∈ π′1 ∪ π′2 (see Model I),
i.e., letting Model I decide on the values of zji. For the
remaining variables, i.e., zji,∀i /∈ π′1 ∪π′2, their values are
kept as they appear in π. In other words, those variables
are treated as parameters. The solve operation consists of
solving Model I by using an optimization solver. It is
clear that Model I includes only a small number of binary
variables, and can therefore be solved by significantly less
efforts.

Selection of the relaxed subsets π′1 and π′2 results
in new “smaller” optimization problems that have less
variables and constraints than Model I associated with
the original problem. Also, changing the relaxed subsets
results in different optimization problems. An optimization
problem generated in a neighborhood is hereafter called a
“sub-problem” of that neighborhood. For example, given
π = (J(1), . . . , J(i′), J(i′+1), . . . , J(i′′), J(i′′+1), . . . , J(n)),
we generate a sub-problem where the decision variables
related to J(1) to J(i′) and J(i′′+1) to J(n) (i.e., zj1 to zji′



and zj,i′′+1 to zjn in Model I) are optimized. We treat the
decision variables related to J(i′+1) to J(i′′), i.e., zj,i′+1 to
zji′′ as parameters.

We relax two equally-sized subsets π′1 and π′2 in each
neighborhood, due to the pyramidal-shaped property. We
denote the neighborhoods by N1, N2 and N3, and the
size of the subsets by n1, n2 and n3, associated with N1,
N2 and N3, where, e.g., n1 denotes the number of jobs
that are relaxed in π′1 (and also in π′2) in N1. A certain
number of sub-problems is solved in each neighborhood,
while ensuring that any part of the sequence is subject
to optimization at least once within each neighborhood.
The number of sub-problems that are solved in each
neighborhood N1, N2 and N3 is equal to b n

n1
c, b n

n2
c and

b n
n3
c. Next, we explain the mechanism of selecting π′1 and

π′2 for each neighborhood.

1) Neighborhood N1: The pyramidal-shaped property
of the problem is considered in the mechanism of selecting
π′1 an π′2 in N1. Let S1 = {1, . . . , b n

n1
c} be the set of all

sub-problems generated by N1. Then, π′1 an π′2 in the sub-
problem s ∈ S1 are the sth and the (b n

n1
c − s+1)th parts

of the sequence, respectively. We note that each part of
the sequence contains n1 jobs. As an example, for s = 1,
π′1 an π′2 are the first and the last n1 jobs, respectively,
that means π′1 includes jobs 1 to n1 and π′2 includes jobs
n− n1 +1 to n, as shown in Figure 2. The reason behind
selecting N1 as the first neighborhood in the algorithm is
that the initial solution of the algorithm, that is obtained by
the pair-insert heuristic, is a pyramidal-shaped sequence.

J(1) . . . J(n1)
. . . J(n−n1+1) . . . J(n)

π′1 π′2

Fig. 2. Selection of π′
1 and π′

2 in the first sub-problem of N1.

2) Neighborhood N2: The mechanism of selecting π′1
an π′2 in N2 is similar to the rolling horizon method.
Let S2 = {1, . . . , b n

n2
c} be the set of all sub-problems

generated by N2. Then, π′1 an π′2 in the sub-problem
s ∈ S2 are the sth and the (s+ 1)th part of the sequence,
respectively. Similar to N1, each part of the sequence
contains n2 jobs. As an example, for s = 1, π′1 an π′2 are
the first and the second n2 jobs, respectively, that means
π′1 includes jobs 1 to n2 and π′2 includes jobs n2 + 1 to
2n2, as presented in Figure 3.

J(1) . . . J(n2) J(n2+1) . . . J(2n2)
. . . J(n)

π′1 π′2

Fig. 3. Selection of π′
1 and π′

2 in the first sub-problem of N2.

3) Neighborhood N3: The mechanism of selecting π′1
an π′2 in N3 is a disjoint version of the mechanism used
in N2. Precisely, let S3 = {1, . . . , b n

n3
c} be the set of all

sub-problems generated by N3. Then, π′1 and π′2 in the

sub-problem s ∈ S3 are the sth and the (s + 2)th part of
the sequence, respectively. Like in N1 and N2, each part of
the sequence contains n3 jobs. As an example, for s = 1,
π′1 an π′2 are the first and the third n3 jobs, respectively,
that means π′1 includes jobs 1 to n3 and π′2 includes jobs
2n3 + 1 to 3n3, as depicted in Figure 4.

J(1) . . . J(n3)
. . . J(2n3+1) . . . J(3n3)

. . . J(n)

π′1 π′2

Fig. 4. Selection of π′
1 and π′

2 in the first sub-problem of N3.

We will discuss the order of applying the neighborhoods
in Section IV.

D. Stopping criterion

Two stopping criteria are considered for the algorithm.
First, a time-limit criterion that works as follows is applied.
Before performing each neighborhood, if the total elapsed
computation time exceeds the time limit T , the algorithm
stops. Otherwise, the neighborhood is completely explored.
The second criterion terminates the algorithm if the algo-
rithm goes back to a visited neighborhood with no improve-
ment in the objective function. That is, if the best objective
function is obtained in neighborhood k, and there has been
no improvement with other neighborhoods, the algorithm
then stops. The reason for applying this criterion is that if
no improvement is gained in the neighborhoods other than
k, the algorithm returns to the same neighborhood where it
reached the best obtained solution. Although, because the
sub-problems are heuristically solved by setting the time-
limit t for the solver, finding an improving solution in the
same neighborhood is unlikely.

IV. COMPUTATIONAL EXPERIMENTS

In this section we report the computational results
of the proposed R&S algorithm on a benchmark T in
[6]. The benchmark consists of a set of 120 challeng-
ing instances ranging from 20 to 500 jobs, i.e., n =
{20, 50, 100, 200, 500}, and 5 to 20 machines, i.e., m =
{5, 10, 20}. We implement the R&S algorithm in the
programming language Python version 2.7, and solve the
underlying mathematical program by using the Gurobi
version 8.0.0 [14]. Apart from a time limit that we use
as a stopping criterion for Gurobi, we set the value of
the remaining parameters of the solver to their default
values. All computational experiments were performed on
a standard PC with Intel R© CoreTM i5-7500 CPU clocked
at 3.40GHz with 8GB of memory under Linux ubuntu
16.04 operating system. We compare the performance of
the proposed R&S with that of ILS and CPLEX that are
reported in [6].

Recall that R&S includes two time limits. The first time
limit, denoted by t, is for the solver Gurobi, i.e., Gurobi is
allowed to spend t seconds on solving each sub-problem.
We set t = 20 because it leads to good quality solutions
in a reasonable amount of time. We observe that smaller



or greater values of t led to poor quality solutions or
unnecessarily long run time for the algorithm. The second
time limit, which we denote by T , is the total time limit of
R&S. Because of the different instance sizes (number of
jobs and machines) we consider parameter T = 2×n×Tm,
i.e., as a function of the number of jobs and machines,
where Tm = 0.8, 1.0, 1.2 for m = 5, 10, 20 is a machine-
dependent coefficient. We set the relaxation size of sub-
problems, i.e., parameters n1, n2 and n3 to 15, 20 and 15
for N1, N2 and N3. We apply the neighborhoods in order
N1, N2, N3 and that for two times.

Table I summarizes the performance of three solution
methods of R&S, ILS and CPLEX [15]. We compare the
methods across three criteria of “Best”, “Gap” (from the
best solution, in %), and “Time” (in seconds). The value
of gap is obtained as z−z∗

z∗ × 100, where z is the objective
function value delivered by the solution method and z∗ is
the best known objective function value obtained by at least
one of three solution methods.

TABLE I
SUMMARY OF THE OUTCOMES OF DIFFERENT SOLUTION METHODS.

R&S ILS CPLEX
Best 51 85 39
Gap (%) 0.046 0.012 0.197
Time (seconds) 280.66 27.44 2694.25

According to Table I, the performance of R&S is su-
perior to solving Model I with CPLEX, because R&S
obtains a larger number of best solutions, and that with a
smaller gap. Both R&S and ILS methods have small values
of gap, which are less than 0.05%. While the proposed
R&S method does not outperform ILS, it has a promising
performance because R&S obtains the best solution in 51 of
the instances. That corresponds to about 42% of instances.
This very good performance along with the straightforward
implementation of the proposed R&S method are among
the main benefits of the R&S algorithm. With respect to the
computational time, the R&S time is almost 280 seconds on
average, that is small enough for real-world applications.

The instance size-wise analyses reported in Table II,
show that the performance of R&S is reliable among
different sizes of the instances, and even in large instances
its gap from the best solution is less than 0.09%.

TABLE II
SUMMARY OF THE OUTCOMES OVER DIFFERENT INSTANCE SIZES.

R&S ILS CPLEX
Size Best Gap % Best Gap % Best Gap %
Small 38 0.031 33 0.022 39 0.029
Medium 13 0.056 42 0.002 0 0.365
Large 0 0.087 10 0.000 0 0.359

V. CONCLUSION

We investigated solving the ordered flow-shop schedul-
ing problem with the objective of minimizing the
makespan. We utilized the pyramidal-shaped property of

the problem and designed an efficient relax-and-solve
(R&S) algorithm that includes three neighborhood struc-
tures. We solved a set of 120 benchmark instances and
compared the outcomes and that of the ILS algorithm
and the solver CPLEX. We showed that our R&S obtains
good quality solutions. Future researches may focus on
proposing new neighborhoods for the R&S method.
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