
HAL Id: hal-03536894
https://imt-mines-albi.hal.science/hal-03536894

Submitted on 28 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Ontologies and Constraint Satisfaction
Problems for Product Configuration

M. Mohammad Amini, T. Coudert, Élise Vareilles, Michel Aldanondo

To cite this version:
M. Mohammad Amini, T. Coudert, Élise Vareilles, Michel Aldanondo. Integration of Ontologies and
Constraint Satisfaction Problems for Product Configuration. IEEM 2021 - International Conference
on Industrial Engineering and Engineering Management, Dec 2021, Singapore, France. pp.578-582,
�10.1109/IEEM50564.2021.9672918�. �hal-03536894�

https://imt-mines-albi.hal.science/hal-03536894
https://hal.archives-ouvertes.fr

 Abstract - In this work, the domain is a product or

system configuration. We focus on ontologies, Constraint

Satisfaction Problems (CSPs), and their integration. The aim

is to capitalize knowledge and define mechanisms that will

permit reasoning to find configuration problem solutions

regarding customers’ requirements. On one hand, an

ontology is used to formalize and capitalize knowledge about

products or systems structure including concepts, systems,

subsystems, components, relationships, attributes, and their

possible values. Protégé 5.5.0 is used to create the ontology.

On the other hand, we used CSPs to formalize the

relationships between attributes values or between concepts

that are allowed or forbidden. CSPs (restricted to

compatibility tables) are translated into rules to be

integrated into the ontology using the SWRL. Therefore, we

defined a filtering algorithm based on arc consistency to

restrict the domains by removing inconsistent values. First,

related works on ontologies, CSPs are presented. The

formalization of the ontology, CSPs, and their translation

into SWRL rules and their use are presented. Finally, an

illustrative application based on the configuration of a

simplified bike is presented.

Keywords – Product configuration, Knowledge,

Ontology, Constraints Satisfaction Problem

I. INTRODUCTION

 The context of industry 4.0 implies that companies

have to answer quickly to many customers’ demands and

to offer solutions that match perfectly numerous and often

complex requirements. In this context, configuration tools

which permit selection, among a great number of systems,

subsystems, components, etc., those that will permit to

satisfy the customer requirements are useful. It is

necessary to model knowledge about all these items and

their integration and to define efficient tools which can

use this knowledge to provide solutions. This work will

take place in the context of System Engineering (SE) and

in particular in systems or products configuration. The

problem is to choose solution elements (systems,

subsystems, components, attributes values) to integrate,

produce and deliver to the customer.

 In this work, we focus on the integration of two

formalisms: ontology and Constraint Satisfaction Problem

(CSP). The ontology provides a shared understanding of

the different items that compose products. It is useful to

structure, formalize and capitalize knowledge and reuse it.

An ontology represents a set of classes of the domain and

the relationships between them and also attributes values.

We used Protégé 5.5.0 to model and edit ontology. CSPs

allow formalizing the relationships between variables’

values which are allowed or forbidden. Then, a CSP

represents the restrictions on the combination of variables

domains. CSPs are restricted in this work to compatibility

tables and they are translated into rules to be integrated

into the ontology in Protégé 5.5.0 using the SWRL

language.

 To reuse this capitalized knowledge during a product

configuration process, it is necessary to be able to reason

based on the ontology and the rules representing the

different constraints. The aim is to restrict the domains of

the different characteristics of products following their

structure, the constraints, and the customer requirements.

That means that it is necessary to remove inconsistent

values from the domains of the variables. Standard

reasoners associated with ontologies do not allow non-

monotonic reasoning. Therefore, they do not allow

removing values from variables domains. To solve this

problem, we propose to use an arc-consistency-based

algorithm that allows removing inconsistent values.

 The contribution of this paper is to propose first

models and methods that permit integration of ontology

with CSPs and reason to configure products.

 In section 2, related works about product

configuration, ontologies, CSPs, and their integration are

presented. Then, in section 3, we describe the

representation of knowledge using the ontology, the

formalization of constraints using rules, and the generic

algorithm which allows configuring products. In section

4, an illustrative application based on a simplified bike

composed of a frame is presented. Two constraints are

defined to link the frame sizes to bike users and the bike

colors to bike users. Finally, in section 5, the conclusion

and future works are presented.

II. RELATED WORKS

 As mentioned, our application domain is SE and more

specifically product configuration. It is considered as the

problem of designing a product. This product is designed

after assembling some components which are predefined

and their connections are only possible in specific ways

[1]. In other words, a configuration can be defined as

using a set of pre-defined components while considering a

set of restrictions on how the components can be

Integration of Ontologies and Constraint Satisfaction Problems for

Product Configuration

M. Mohammad Amini1, T. Coudert1, E. Vareilles2, M. Aldanondo3

1INP-ENIT, University of Toulouse, Tarbes, France
2ISAE-SUPAERO, University of Toulouse, France

3IMT Mines Albi, University of Toulouse, Albi, France

 (maryam.mohammadamini@enit.fr, thierry.coudert@enit.fr, elise.vareilles@isae-supaero.fr, michel.aldanondo@mines-albi.fr)

mailto:mmohamma@enit.fr
mailto:thierry.coudert@enit.fr
mailto:elise.vareilles@isae-supaero.fr
mailto:michel.aldanondo@mines-albi.fr

combined. [2] also presented various types of

relationships that could exist between components such as

aggregation and generalization.

A. Ontology

 So far different definitions were mentioned for

ontology regarding the various contexts. [3] defined an

ontology as a “formal, explicit specification of a shared

conceptualization ”. In this definition, several words play

an important role. Formal refers to a machine-readable

representation, explicit means that the type of concepts

used and the constraints on their uses are explicitly

defined, shared refers to the fact that the knowledge

represented in an ontology are agreed upon by a group,

and conceptualization refers to an abstract model of the

world that describes knowledge by using various concepts

and their relationships.

 Applying ontologies to improve System Engineering

is attracting attention [4]. [5] presented an inclusive

review of ontology-based systems engineering. This paper

attempted to clarify what, where and how ontologies are

used in the field of SE and using what languages, tools,

and methods. [6] and [7] are two review articles on

product configuration that presented various definitions in

this area as well as future road-maps. [8] used

conceptualizations of four approaches, namely

connection-based, resource-based, product structure-

based, and function-based approaches in the definition of

the ontology.

B. Constraint Satisfaction Problems

 [9] defined a CSP as a triplet {X, D, C}. It includes a

set of variables (X), a set of domains of variables (D), and

a set of constraints (C). Constraints represent restrictions

on the combination of variable values. A CSP model

attempts to assign values to the variables to satisfy all

constraints. [10] presented a CSP-based approach for

modeling distributed configuration problems. [11]

presented an object-oriented approach to develop a web-

based configuration design system. It represented the

structures and rules of a configurable bicycle and then

applied the invasion algorithm. The product configuration

problem was also modeled as CSP. Considering the

definition of CSP, [12] defined the configuration task as a

CSP (X, D, C) where C is the union of both the

configuration knowledge base and the user requirements.

An empty variable is a variable without any value in its

domain. A non-valuated variable is a variable which in its

domain the number of values is more than one. Valuated

variable is a variable that has been assigned to one and

only one consistent value.

C. Ontology and CSP integration

 A few articles dealt with both ontology and

constraints. [13] represented an ontology-based approach

for modeling product configuration knowledge. It used

Web Ontology Language (OWL) to define classes and

their relationship to formalize product configuration then

used SWRL to define the constraints. The constraints are

mainly concerning the structure of products. The

proposed approach was applied to configuring the ranger

drilling machine. [14] presented an Ontology-based

method for product configuration knowledge. They used

OWL, SWRL, and a rule engine called JESS to improve

the product configuration system. The approach was

applied to a case for the personal computer. [15]

presented an ontology-based approach for product

extension services configuration. It also used OWL,

SWRL, and JESS. The approach was applied to an

example of configurable product extension services. As

far as we know, these approaches are based on the

modulization by rules of some constraints on allowed or

forbidden associations of components. They are not

explicitly integrating ontologies and CSPs.

 For product configuration, ontologies are a powerful

model of knowledge to represent the different items at

different abstraction levels and what are their

relationships. They can formalize knowledge about

products and their structure by creating classes,

properties, individuals, etc. However, they cannot

represent constraints directly and impose to the user to

use specific components or to define a specific value for

an attribute. In contrast to ontologies, CSPs have

difficulties to represent abstract concepts and abstract

relationships. However, they can formalize relationships

between attributes values, or between classes or concepts

that are allowed or forbidden. That is the reason in this

article we propose an approach which permits to integrate

them and reason directly to configure products.

III. PROPOSITION

A. Ontology to represent knowledge about product

structure and characteristics

 To build and edit the ontology for product

configuration, Protégé 5.5.0 is used. It can also be used

for reasoning using some integrated reasoners. The Web

Ontology Language (OWL) is a standard Semantic Web

language that is designed for ontology representation.

Within the ontology, the elements we have to model are

classes, sub-classes, properties, and individuals (or

instances).

 A class provides an abstraction mechanism for

gathering individuals with common characteristics.

Classes allow modeling the different generic items:

products, sub-products, components... They are stored in

the ontology to represent hierarchical relationships

between classes and sub-classes (taxonomy). An

individual is an instance of a class. Classes relationships

and individuals’ relationships are represented using object

properties. Another kind of property is data property. A

data property permits to define attributes of a class with

their datatype (integer, string, etc.).

 Therefore, using the ontology, it is possible to

capitalize all the classes (or concepts) that are used by the

company to design the products as well as their

hierarchical relationships (generalization and

specialization of classes within the taxonomy). It is also

possible to represent the composition relationships

between some classes (e.g. a Car is composed of exactly

four Wheels). Data properties and object properties are

named “variables” in the next sections. The ontology is a

powerful piece of knowledge for product configuration

which permits to represent structures of the different

products with their characteristics but it does not allow

modeling constraints to restrict the different choices for

the designer.

B. Rules to represent constraints

In this article, we consider only constraints formalized

using tables of compatibility. A table of compatibility is

composed of rows corresponding to variables and lines

corresponding to the allowed values for the variables

(extension representation). This kind of constraint can be

easily represented and filtered by standard filtering tools

(Choco-solver, CoFiADe…). However, these tools are not

integrated with ontologies. Therefore, we propose to

represent constraints using rules which are integrated with

ontologies using standard first-order logic languages as

SWRL.

The Semantic Web Rule Language1 (SWRL) is an

expressive OWL-based rule language of the Semantic

Web. All rules are expressed based on the OWL concepts:

classes, properties, and individuals. SWRL provides

powerful deductive reasoning capabilities and that is why

it is chosen in our proposition.

An SWRL rule consists of two parts: an antecedent part

(or body) and a consequent part (or head) separated by an

arrow “→” such that (Atom ^ Atom ^ …) →

(Atom ^ Atom ^...). Both parts include conjunctions of

atoms. The consequent of the rule fires if and only if

every atom in the antecedent is satisfied.

An atom is an expression of the form: P(arg1, arg2, …).

P is a predicate symbol that could be a class or property

and arg1, arg2, ... can be variables, individuals, or data

properties. An atom can be on the form C(? x),

P(?x, ?y), sameAs(x, y) or differentFrom(x, y). C is an

OWL class, P is an OWL property, and x, y are either

variables, OWL individuals, or OWL data values. Only

variables that occur in the antecedent of a rule may occur

in the consequent.

For instance, the atom C1(?i) (resp. C2(?j)) links the

variable i to an instance of the class C1 (resp. the variable j

to an instance of C2). The atom isComposedOf(?i, ?j)

links the variable i (i.e. an instance of the class C1) to the

1 https://www.w3.org/Submission/SWRL/

variable j (an instance of C2). It is then a composition

relationship and the atom allows to check if i is composed

of j. SWRL supports various built-ins including

comparison built-ins (swrlb:lessThan,

swrlb:greaterThanOrEqual, etc.), mathematical built-ins

(swrlb:add, swrlb:multiply), etc. An atom can also add

data properties or object properties. Considering a data

property Prop, the execution of the atom Prop(?x, 15) in a

consequent will add the integer value “15” as a new

attribute value for the instance x.

However, SWRL does not support non-monotonic

reasoning which means we cannot change values or

remove inconsistent ones, we can only add new

properties. To consider this problem and define a product

configuration method, we have proposed an algorithm

which is described in the next section.

C. Algorithm

 The proposed algorithm (named Configure) is based

on standard arc-consistency algorithms and allows to

remove non-consistent values from the different domains

when changes have been done by the application of rules

(i.e. the constraints) or by the user. An impacted variable

is a variable linked by a constraint to another variable for

which the domain has been changed.

Algorithm Configure

Begin

 Set up domains to their initial range

 While (we don’t have any empty variables AND there is

 still non-valuated variables)

 The user chooses a variable and restricts its domain

 Add the impacted variables to Simp

 While (Simp is not empty)

 Modify the domains of impacted variables (applying

 corresponding rules)

 Make the intersection of new domains and

 previous domains

 Add impacted variables in Simp only if their domain

 has been changed

 End while

 End While

If (each variable is valuated) then there is one solution

If (there is an empty variable) then there is no solution

End

 To illustrate the propositions, an illustrative

application based on the configuration of a simplified

bicycle is presented in the next section.

IV. ILLUSTRATIVE APPLICATION

 In this section, the application that consists in

configuring a bicycle is presented. First, the ontology

corresponding to bicycles is created. Second, two

constraints (tables of compatibility) are given and

translated into SWRL rules. Third, the algorithm

https://www.w3.org/Submission/SWRL/

Configure is applied following the interactions with the

user.

A. Ontology for Bikes

 Using Protégé 5.5.0, several classes are created and

stored into the ontology of Fig. 3. These classes are User,

System, Bike, Frame, and Color. The classes Bike and

Frame are sub-classes of the class System.

 Several individuals are also created. Bike1, Bike2, …,

Bike 5 are instances of the class Bike. They correspond to

five different categories of bikes. Five instances of Frame

are created and three colors Pink, Black, and Blue are

created as instances of Color. Three object properties are

created: isComposedOf, hasUser and hasColor. One data

property frameSize is also created to define the possible

frame sizes (integers between 10 and 25).

Fig. 1. Classes

Fig. 2. Object properties

Fig. 3. Ontology of bikes

B. Model of constraints and SWRL rules

 Two constraints are created with the tables of

compatibility (TABLE I, TABLE II). The variables are

the frame size (FS), the bike user (USR), and the color

(CL).

TABLE I

CONSTRAINT CT1

FS USR

[10, 17] Child

[16, 25] Adult

TABLE II

CONSTRAINT CT2

USR CL

Child Pink

Child Blue

Adult Blue

Adult Black

 In TABLE I, the constraint CT1 is formalized using

the R1 to R4. In TABLE II, the constraint CT2 is formalized

using the R5 to R9. All these rules are formalized and

integrated within the ontology using SWRL. It is

important to notice that the rules consider the object

properties, the data properties, the individuals, and the

constraints. The R1 can be interpreted as follows. If the

bike i is composed of the frame j AND the frame j has a

frame size x which is greater than or equal to 10 AND x is

less than or equal to 17 THEN the bike user of the bike i

is “Child”. When the rule is applied, if the body is true,

then the object property “Child” is added to the new

domain of the bike user variable.

TABLE III

RULES CORRESPONDING TO THE CONSTRAINT

R1
Bike(?i) ^ Frame(?j) ^ isComposedOf(?i, ?j) ^ frameSize(?j, ?x)
^ swrlb:greaterThanOrEqual(?x, 10) ^

swrlb:lessThanOrEqual(?x, 17) → hasUser(?i, Child)

R2

Bike(?i) ^ Frame(?j) ^ isComposedOf(?i, ?j) ^ frameSize(?j, ?x)

^ swrlb:greaterThanOrEqual(?x, 16) ^
swrlb:lessThanOrEqual(?x, 25) → hasUser(?i, Adult)

R3

Bike(?i) ^ hasUser(?i, Child) ^ Frame(?j) ^ isComposedOf(?i, ?j)

→ frameSize(?j, 10) ^ frameSize(?j, 11) ^ frameSize(?j, 12) ^
frameSize(?j, 13) ^ frameSize(?j, 14) ^ frameSize(?j, 15) ^

frameSize(?j, 16) ^ frameSize(?j, 17)

R4

Bike(?i) ^ hasUser(?i, Adult) ^ Frame(?j) ^ isComposedOf(?i, ?j)
→ frameSize(?j, 16) ^ frameSize(?j, 17) ^ frameSize(?j, 18) ^

frameSize(?j, 19) ^ frameSize(?j, 20) ^ frameSize(?j, 21) ^

frameSize(?j, 22) ^ frameSize(?j, 23) ^ frameSize(?j,
24) ^frameSize(?j, 25)

R5
Bike(?i) ^ hasUser(?i, Child) →hasColor(?i, Pink) ^ hasColor(?i,

Blue)

R6
Bike(?i) ^ hasUser(?i, Adult) → hasColor(?i, Black) ^
hasColor(?i, Blue)

R7 Bike(?i) ^ hasColor(?i, Pink) → hasUser(?i, Child)
R8 Bike(?i) ^ hasColor(?i, Blue) →

hasUser(?i, Child) ^ hasUser(?i, Adult)
R9 Bike(?i) ^ hasColor(?i, Black) → hasUser(?i, Adult)

C. Illustration of configuration

 We illustrate the configuration using the algorithm

Configure with a simple scenario. For the three variables

FS, USR, and CL, the initial domains of validity are 10 ≤

FS ≤ 25, USR∈ {Child, Adult}, CL∈ {Pink, Blue, Black}.

The variable FS is represented as a data property that

takes values within the integers range.

 The user decides to restrict the domain of the variable

FS in order to know what are the users and colors allowed

by the constraints: . The variable USR is the

only impacted variable considering the R1 to R4

(corresponding to CT1). Applying these rules, the new

domain of USR is . The intersection of

the new domain and previous domain gives:

 Therefore, as the domain of USR has been modified,

the impacted variables are FS (following R3 and R4) and

CL (following R5 and R6). The R3, R4, R5, R6 are applied to

define the new domains of CL and FS:

, . The intersection of

the new domains with the previous domains gives:

 As the domain of CL is modified, the variable USR is

the only impacted variable considering R7, R8, and R9

(CT2). Then, these rules are applied to obtain:

. The intersection of the new domain and

the previous domain gives:

 The domains have not been modified but the user

chooses the color to be pink: . USR is the

only impacted variable. The R7, R8, and R9 are applied:

. The intersection with the previous

domain gives:

 There are no new impacted variables because the

domains have not been changed. The obtained solution is

then:

, , . Therefore, if

the designer chooses a frame size of 10 and a pink color

for a bike, this bike is only suitable for children.

V. CONCLUSION

 In this work, we proposed an approach to integrate

ontology and Constraint Satisfaction Problem (CSP). The

aim was to define, using the ontology, a model of

knowledge which can represent the different products,

sub-products, components structures, and characteristics

as well as their relationships (composition, properties...).

The ontology helped us to represent classes at different

abstraction levels. The ontology is suitable to represent

possible associations of items for several products.

However, it does not allow to represent constraints such

that the choice of a specific component impacts the choice

of another one. Moreover, it is not possible to guarantee

that the designer has selected the right number of items

even if it is specified by object properties. For instance, it

is possible to represent the knowledge about a car that

must be composed of four wheels, but it is not possible to

define a constraint that imposes it. Therefore, to solve the

problem, CSPs have been chosen to model constraints

between variables values. As CSPs are not directly

integrated within ontologies, we have proposed to

translate constraints into SWRL rules. Because SWRL

rules do not support non-monotonic reasoning, we defined

an arc-consistency-based algorithm to restrict the domain

and remove inconsistent values for product configuration.

 The limits of the approach concern the translation of

constraints into SWRL rules when constraints imply

several variables and when structures of products are

complex. Moreover, to execute specific rules and make

the intersections between domains, it is necessary to

develop an external program as a plug-in to connect to

Protégé. In order to better integrate CSP within

ontologies, we will investigate the use of SHACL and

SPARQL languages. The SHACL language can model

constraints directly in the ontology and reason with them.

However, the reasoning only shows what are the

unsatisfied constraints. SPARQL will also be studied

concerning non-monotonic reasoning requirements.

REFERENCES

[1] F. Mittal, S., & Frayman, “Towards a Generic Model of

Configuration Tasks,” IJCAI Int. Jt. Conf. Artif. Intell., vol.
89, pp. 1395–1401, Nov. 1989.

[2] D. Sabin and R. Weigel, “Product configuration frameworks -

A survey,” IEEE Intell. Syst. Their Appl., vol. 13, no. 4, pp.
42–49, 1998, doi: 10.1109/5254.708432.

[3] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge

Engineering: Principles and methods,” Data Knowl. Eng., vol.
25, no. 1–2, pp. 161–197, 1998, doi: 10.1016/S0169-

023X(97)00056-6.

[4] N. Hallberg, E. Jungert, and S. Pilemalm, “Ontology for
systems development,” Int. J. Softw. Eng. Knowl. Eng., vol.

24, no. 3, pp. 329–345, 2014, doi:

10.1142/S0218194014500132.
[5] L. Yang, K. Cormican, and M. Yu, “Ontology-based systems

engineering: A state-of-the-art review,” Comput. Ind., vol.

111, pp. 148–171, 2019, doi: 10.1016/j.compind.2019.05.003.
[6] L. L. Zhang, “Product configuration: A review of the state-of-

the-art and future research,” Int. J. Prod. Res., vol. 52, no. 21,

pp. 6381–6398, 2014, doi: 10.1080/00207543.2014.942012.
[7] G. Oddsson and K. R. Ladeby, “From a literature review of

product configuration definitions to a reference framework,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, vol. 28, no. 4,

pp. 413–428, 2014, doi: 10.1017/S0890060413000620.

[8] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen,
“Towards a general ontology of configuration,” Artif. Intell.

Eng. Des. Anal. Manuf. AIEDAM, vol. 12, no. 4, pp. 357–372,

1998, doi: 10.1017/s0890060498124083.
[9] U. Montanari, “Networks of constraints: Fundamental proper-

ties and application to picture processing,” Inf. Sci. (Ny)., vol.

7, pp. 95–132, 1974.
[10] D. Jannach and M. Zanker, “Modeling and solving distributed

configuration problems: A CSP-based approach,” IEEE Trans.

Knowl. Data Eng., vol. 25, no. 3, pp. 603–618, 2013, doi:
10.1109/TKDE.2011.236.

[11] S. K. Ong, Q. Lin, and A. Y. C. Nee, “Web-based

configuration design system for product customization,” Int. J.
Prod. Res., vol. 44, no. 2, pp. 351–382, 2006, doi:

10.1080/00207540500244153.

[12] J. Felfernig, A., Hotz, L., Bagley, C., & Tiihonen, Knowledge-
Based Configuration From Research to Business Cases.

Newnes, 2014.

[13] D. Yang, M. Dong, and R. Miao, “Development of a product
configuration system with an ontology-based approach,” CAD

Comput. Aided Des., vol. 40, no. 8, pp. 863–878, 2008, doi:

10.1016/j.cad.2008.05.004.
[14] D. Yang, R. Miao, H. Wu, and Y. Zhou, “Product

configuration knowledge modeling using ontology web

language,” Expert Syst. Appl., vol. 36, no. 3 PART 1, pp.
4399–4411, 2009, doi: 10.1016/j.eswa.2008.05.026.

[15] J. Shen, L. Wang, and Y. Sun, “Configuration of product

extension services in servitisation using an ontology-based
approach,” Int. J. Prod. Res., vol. 50, no. 22, pp. 6469–6488,

2012, doi: 10.1080/00207543.2011.652744.

