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Abstract — In the recent years, industries such as aeronautical,
railway, and petroleum has transitioned from
corrective/preventive  maintenance to  condition based
maintenance (CBM). One of the enablers of CBM is Prognostics
which primarily deals with prediction of remaining useful life of
an engineering asset. Besides physics-based approaches, data
driven methods are widely used for prognostics purposes, however
the latter technique requires availability of run to failure datasets.
In this manuscript authors have aimed at performing exploratory
data analysis (EDA) on the New Commercial Modular Aero-
Propulsion System Simulation (N-CMAPSS) dataset published by
NASA. Although 8 datasets are publicly available, authors have
chosen dataset 3 (DS03) for EDA in this paper which consists of
9.8 million instances and 47 features. The main aim of doing EDA
is to gain better understanding of the dataset as it would facilitate
in building a deep learning model that can be used for predicting
RUL of the aircraft engines.

Keywords - Prognostics, Exploratory Data Analysis, N-
CMAPSS dataset

I. INTRODUCTION

Optimal inspection planning and maintenance of
engineering assets in various industries is quintessential for
maximizing safety and minimizing cost. Over the past 7
decades, the maintenance strategies have evolved from
corrective maintenance to preventive maintenance and finally
to condition based maintenance (CBM) as shown in Fig. 1 [1].
Advances in the field of sensor technology, data acquisitioning,
data storage, and machine learning has made CBM more
realistic. The greatest enabler of CBM is prognostics which as
per ISO13381-1 [2], is defined as ‘an estimation of time to
failure and risk for one or more existing and future failure
modes’. In real life applications deployment of the prognostics
models would provide early failure warnings of engineering
systems, thus giving sufficient time to maintenance engineers
to intervene the system before actual failure happens.
Consequently, this would lead to reduction in machine
downtime, enhanced system safety and considerable cost
savings for the asset owners.

A number of approaches have been used by the researchers
to perform prognostics in engineering domain as discussed by
the authors in [3]. However, the two commonly used methods
for building a prognostics model are physics-based approach
and data driven approach. The former approach relies on
employing closed form equations derived from the first
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principles (or fitted to experimental data) to estimate the
Remaining Useful Life (RUL). Fatigue crack growth is one
such degradation mechanism where physics-based model (such
as Paris Law) is used for predicting the RUL. Authors have
employed the aforementioned method to predict RUL of
topside piping in the previous works [4,5,6]. However, physics-
based models may not be available for all the physical
phenomenon, hence under such circumstances researchers
resort to data driven methods for performing prognostics.
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Fig. 1 - Evolving maintenance strategies [1].

Data-driven (DD) approaches utilize information from
training dataset to recognize the characteristics of training data
and finally make predictions about the future state. However,
the success of DD approaches relies on collecting statistics of
failures as a function of current state, which requires volumes
of data [1]. Nevertheless, it is impractical to collect huge
amount of failure data from safety critical equipment’s,
therefore researchers rely on simulations to generate synthetic
data which can then be used to develop prognostic model. One
such synthetic dataset of run-to-failure trajectories for a small
fleet of aircraft engines under realistic flight conditions has
been released by the NASA Ames Prognostics Center of
Excellence (PCoE), in collaboration with ETH Zurich and Palo
Alto Research Center (PARC). The dataset was generated with
the Commercial Modular Aero-Propulsion System Simulation
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(C-MAPSS) dynamical model and is referred as N-CMAPSS
[7]. Although 8 datasets are publicly available, authors have
chosen dataset 3 (DS03) for the exploratory data analysis
(EDA) in this paper. EDA is performed in order to gain to the
visual insights, within the DS03, by using various visualizations
such as correlation matrix heatmap, box plot, KDE plot. The
next obvious step is to build prediction models, especially non-
linear deep learning models, which can then be used for
predicting RUL of the aircraft engines.

The remaining of the manuscript is structured as follows.
In Section II, a brief summary of N-CMAPSS dataset is
presented, followed by the exploratory data analysis of the
dataset in Section III, and a conclusion in Section I'V.

II. N-CMAPSS DATASET

The N-CMAPSS dataset provides simulated run-to-failure
trajectories of a small fleet of large turbofan engines the
schematic of which is shown in Fig. 2. The data was
synthetically generated using CMAPSS Engine simulator built
in Simulink [8]. The schematic of the simulator is shown in Fig.
3 while the details of data generation methodology is discussed
in [10]. On comparing Fig.3 and Fig.2, it can be seen that
CMAPSS is a high-fidelity model of the turbofan engine.
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In total 8 datasets are simulated using CMAPSS simulator,
the overview of dataset is given in Table I. In this paper authors
have considered DS03 for EDA. As depicted in Table I, DS03
has 9.8 million rows, 15 Units (i.e. data for 15 different turbofan
engines), 3 flight classes and 1 failure modes. The data is in the
form of .h5 files and the variables in the dataset are divided into
6 categories shown in TABLE Il. For this paper authors have
not considered X _v_* and T_* as these are not important for

prognostics model building as discussed in [10]. The W_*
consist of 4 parameters related to flight data (i.e., altitude, flight
Mach number, throttle-resolve angle, and total temperature at
fan inlet), while, X_s_* consists of 14 parameters as shown in
TABLE Ill. The auxiliary variable (A_*) consists of 4
parameters namely unit number (categorical variable), flight
class (categorical variable), health state and flight cycle
number. Finally, Y_* consists of RUL cycles which is response
in our prognostics problem, while remaining variables are the
input variables. Furthermore, unobservable model health

parameters (6) as described in [10], have not been considered

as part of this exploration, as prognostic problems can be solved
without these parameters.

TABLE I
OVERVIEW OF DATASET
Name #Units Flight Failure Size
Classes  Modes
DS01 10 1,2,3 1 7.6 M
DS02 9 1,2,3 2 6.5M
DS03 15 1,2,3 1 9.8 M
DS04 10 2,3 1 10.0 M
DS05 10 1,2,3 1 6.9 M
DS06 10 1,23 1 6.8 M
DS07 10 1,2,3 1 72M
DS08 54 1,2,3 1 35.6M
TABLE II
DATASET VARIABLES CATEGORIES
Name [*= {“dev”, “test”}] Description
w_* Scenario descriptors—w
X_s_* Measurements—X;
X_v_* Virtual sensor—x,,
T* Health Parameters—6
Y_* RUL [in cycles)
A_* Auxiliary data
TABLE III
PARAMETERS IN X_s
Symbol Description Units
Wt Fuel flow pps
Nf Physical fan speed rpm
Nc Physical core speed rpm

T24 Total temperature at LPC outlet "R
T30 Total temperature at HPC outlet °R
T48 Total temperature at HPT outlet R

T50 Total temperature at LPT outlet R
P15 Total pressure in bypass-duct psia

P2 Total pressure at fan inlet psia
P21 Total pressure at fan outlet psia
P24 Total pressure at LPC outlet psia
Ps30 Static pressure at HPC outlet psia
P40 Total pressure at burner outlet psia
P50 Total pressure at LPT outlet psia

III. ILLUSTRATIVE CASE STUDY

A. Data Generation.
The data used in the case study is extracted and oriented

using a custom build functions based on N-CMAPSS example
data loading and exploration notebook. The details of which can



be found in [10]. The dataset itself is divided into two parts by
default, namely development data (D) and test data (D), or

train and test data respectively. Authors have decided to explore
both combined and given split dataset to gain maximum insight.
The two sets of data, one by keeping “dev” and “test” sets
separate (Dgev, Diest) and another one by combining “dev” and
“test” (Dcom) Were explored.

All sets of data contain extracted values from individual
feature datasets: W_*, X_s_* and A_*, along with target dataset
Y_* where * = {“dev”, “test”} accordingly. For ease of
identification, before combining these datasets, each column of
feature datasets, excluding target Y_* have been renamed by
post-fixing words with the existing names according to it’s
intended original names as described in Table II. Y_* have been
renamed to “RUL” (Remaining Useful Life) for all sets of data.
A snippet of the concatenated data from one of the tables (Dgev)
can be observed in Table. IV. The preliminary purpose of
including A_* is to group data according to the unit number and
flight classes when seems necessary.

TABLE IV
SNIPPET OF Ddev DATASET
alt W Mach_W TRAW .. Ps30_Xs unit A cycle A Fc A RUL
30100 0342000 77732646 .. 417.04001 10,0 10 30 63
30200 0342846 77782646 .. 41697787 10.0 10 30 65
30300 0343167 T7782646 .. 41687702 10.0 10 30 65
3033.0 0343413 77782646 .. 41683654 10.0 10 30 65
3420 0344232 77782646 .. 41683508 100 10 30 65

B. Exploratory Data Analysis.

As per CRISP-DM (Cross Industry Standard Process Data
Mining) methodology, data understanding is one of the vital
steps that must be performed before building a machine/deep
learning model. EDA, utilizes various techniques in order to
gain insights in the dataset and to find hidden patterns. The
current datasets consist of 21 independent variables (excluding
health status) and one dependent variable (RUL). Dimensions
(row, column) of D¢om, Ddev, Diest are (9822837, 22), (5571277,
22) and (4251560, 22) respectively. No cell has missing or
corrupt information across all datasets, D= {Dcom, Ddev, Drest} -
There are three categorical variables (excluding health status)
coming from A_*, named flight class; Fc A = {1, 2, 3}, health
status; hs A = {1, 0} and unit A = {x: X€ N1 and 1=x<15}.
Remaining independent variables are numerical in nature.

Due to enormous size of the dataset, it was necessary to
subsample data when plotting individual points else the plots
would be incomprehensible (for e.g., scatter plotting individual
points of each pair of rows will make the plot not
understandable and may take a prolonged time). In contrast,
plotting distribution of features with whole dataset is possible
with reasonable time and resource usage. Aim of this activity is
to get a general overview understanding of the data, so that
necessary and appropriate steps could be understood to solve
prognostic problem(s) in future. The authors created two
combined sets of figures, one for a general overview of the data
and another one for detailed information.

Fig. 4 (in Appendix) is a combined representation of
dependent & independent variable’s scatter plots grouped by
three class values and association matrix using seaborn [16] and
sweetviz [15]. Scatter plots are being represented in the bottom
triangle of the rectangle, separated from the upper triangle by
diagonal approximate kernel density estimation. The upper

triangle represents Pearson correlation among two numerical
variables and correlation ratio among categorical variables &
numerical variables [15]. In the case of scatter plots of Fig. 4, a
random sub-sample of fraction 0.0001 or 982 instances of each
variable from D¢om, have been used. The reason for using sub-
sampled data is explained earlier. In the case of correlation
upper triangle, circles represent Pearson correlation coefficient
and squares represent correlation ratio. The size and colour of
the shapes inside the upper triangle are directly proportional to
the value shown in the right-side legend of the figure. This
reveals there are many features that are highly correlated with
each other and not with the actual target. Table V shows
association among features and target. The categorical
association of unit A and Fc A with RUL are 0.21 and 0.14
respectively which are much higher than correlation values of
scenario descriptors (alt W and Mach_W). Furthermore, the
uncertainty coefficient and correlation ratio of the two
categorical variables have been shown in Table VI.

TABLE V
TARGET(RUL) ASSOCIATION VALUES
NUMERICAL ASSOCIATIONS CATEGORICAL ASSOCIATIONS

PEARSON,-1t01) CORRELATION RATIO, 010 1)

cycle_A 0.91 unit A 0.21
Mach_w -0.07 FC_A 0.14
alt_w -0.07
P2Xs 0.07
T2 W 0.07
T48_X_S -0.07
PS0_X_s 0.07
TSO_X_S -0.07
P15_X_s 0.07
P21_X_s 0.07
P24_X_s 0.06
TRA_W -0.05
P40_X_s 0.02
PS30_X_s 0.04
TABLE VI

CATEGORICAL VARIABLE ASSOCIATION VALUES

unit_A Fc_A CATEGORICAL ASSOCIATIONS

(UNCERATRTY COSFREIIT D 1) (UNCERTAINTY COEFFICIENT. D ta 1)
FC_A 039 unit_aA 039

HUMERICAL ASSOCIATIONS HUMERICAL ASSOCIATIONS

(CORRELATION RATIO, 00 1) (CORRELATION RATID, 00 1)
W 0.48 W 0.48
P2Xs 0.47 P2Xs 0.47
al_w 0.47 alt_w 0.46
P21 XS 0.45 P21 XS 0.45
P15 X s 045 P15 X s 045
P50_X_=s 045 P50_X_s 045
P24 X = 043 P24 X = 042
Mach_W 039 Mach_W 039
T24 X s 033 T24 X s 033
PAD_X_S 030 PAD_X S 030
PS30_X_s 030 PS30_X_s 030
TRA_W 026 TRA_W 026
TS0 X s 024 TS0 X s 023
Wi _s 023 WX s 023

The pie chart of Fig. 5. shows that nearly half of the class
type of Deom is of flight class 3 and classes count are not equally
distributed (flight class 1 = 1824707, flight class 2 =
3094122, flight class 3 =4904008). Assigning a proportionate
weight of target based on these count value ratios might help in
creating a more accurate prognostic model in future.
Furthermore, the bar chart of Fig.5 shows a good proportion of
instances are present for each unit type. However, in Fig. 6 the
bar plot unveils instances of each three flight class types are not
present in every unit. Which makes unit-wise prognostic
modelling of each class impossible.

Fig. 7 (in Appendix) shows top numerical features which
are mostly not correlated with each other but having the most
correlation score with the target (RUL in this case). Any feature
having an absolute correlation value of more than or equal to
2" quartile value of absolute correlations with the target
(~0.02520) has been considered. Similarly, any feature having
an absolute correlation value of less than or equal to 2™ quartile
value of absolute correlations with each other (~0.65912) has



been considered. A consolidated description of D¢om numerical
variables is shown in TABLE VI.

TABLE VII
CONSOLIDATED TABLE DESCRIPTION OF NUMERICAL VARIABLES
mean std min 25% 50% T5% max

alt W 15639.57 8083.52 3001.00 9086.00 14408.00 22622.00 35033.00
Mach_WW 0.54 012 0.00 .44 0.04 0.8 0.75
TRA_W 60.46 18.37 23.55 45.58 54.51 77T 87.63
T2_W 490.20 19.88 421.38

4737V 494,25 508.58 534.38

T24 X s 569.50 21.14 484,20 554,49 567.37 583.46 634.35
T30 X = 1330.58 68.35 1088.82 128440 1328.38 1370.25 1534.37
T48 X s 1641.08 124.04 944.50 1556.79 1650.40 1716.62 2006.07
T50_X s 1130.93 62.73 690.19 1087.31 1121.36 1166.53 1372.75
P15 X s 12.94 2.88 5.92 10.432 13.16 15.21 20.45
P2_X = 10,10 2.42 4.37 791 10.38 12.02 15.68
P21 X s 13.14 2.93 8.01 10.59 13.36 15.44 20.76
P24 X s 15.95 3.45 6.91 13.10 15.99 18.38 26.45
Ps30_X = 238.76 58.98 20.33 192.75 224.5% 271.21 457.37
P40 X s 240.96 59.80 82.09 196.33 228.85 275.98 463.83
P30 _X s 1010 276 413 7.8l 10.22 12.20 18.28
Nf X s 1957.05 187.06 1469.74 1838.71 2003.43 211477 2290.65
MNc X s 8237.51 228.85 73856.11 B0E84.66 28229.87 8372.57 28885.41
W X s 2.54 079 0.23 1.98 2.24 2.94 5.82
cycle_A 38.27 21.48 1.00 18.00 36.00 53.00 93.00
RUL 35.32 21.43 0.00 17.00 35.00 53.00 92.00

The Statistical descriptions of Table VII shows that the
features are in different ranges. A scaling methodology such as
min-max scaling could be used to bring variables in the same
scale, which in turn could be useful to achieve a more accurate
prognostics model.  Furthermore, the unit-wise Box plot
grouped by flight class in Fig. 8, depicts that features are highly
spread and consist of a fairly large number of outliers.
Therefore, applying a robust data scaling and transformation
scheme could be helpful in creating an accurate prediction
model as we did in our previous work [11].

Instead of plotting consolidated features of Deom,
authors focused on a comparative analysis between selected
Dgev and Dyes. The data plot of Fig. 9 using sweetviz[15] shows
that each colored and grouped feature bin pair highly matches
with each other. However, line plot from each RUL against
selected features shows RUL lines are mostly but not always in
synchronization with each other. Still, this is a good split and
can directly be used as training and testing data, without
consolidating and recreating from the beginning.

While performing EDA authors spotted a non-intuitive
relationship between cycle and RUL. Usually, the cycle should
increase, and the target (RUL) should decrease till the target is
0 for a single unit. However, this is not the case. Upon closer
inspection of Dyev and Diegi, the authors found this is not how the
data is, including where the target is 0. There is presence of
multiple consecutive repeating RUL value instances from all
units (unit_A) and class types (Fc_A), including when RUL is
0. Presumably, dataset creator(s) wanted to capture more
instances of each RUL, including more data for the end of life
reached engine's status. If unique RUL for each unit is required,
then future researchers may drop duplicate instances of
repeating RUL by appropriately grouped data.

Further, it is observed that despite RUL being 0, hs A may
or may not be 0 (False) in both Dgey and Dyes:. In total about 3.6
million and about 2.89 million instances from respective Dgev
and Dy are discovered where RUL is not 0, i.e., some value
more than 0 and health status (hs A) is 0 (False), i.e., not 1
(True). In comparison, 84880 and 61628 values from respective
Dyevand Diest have been observed where both values are 0 (could
be perceived as False in case of hs_A). Authors relied on given
RUL values for further analysis, rather than generating RUL
from available features- cycle (cycle A) and health status
(hs_A), by finding maximum cycle per unit (unit_A) group till

hs A is 0 and consider that value as first (maximum) RUL for
that unit group. Extracted feature, health status (hs_A) has been
refrained from further exploration as this binary variable
seemingly not correlated with target Fig. 10 shows behaviour of
health status, hs A.

C. Unsupervised clustering

Another interesting aspect of data could be seeing how
numerical features might form clusters, as most of the features
seem to have a mutual high correlation. This still can be part of
data exploration as authors used sub-sampled 1% instances or
55713 instances of Dgev, to get an overview of labels (i.e. groups
of instances) and outliers count. Appropriate stratification based
on all categorical values has been applied while sub-sampling
the data. As default train and test split is mostly related as
observed and stated before, sub-sampling from any part will
show the true nature of data clusters. Authors trained a density-
based unsupervised model, OPTICS with cluster method as “xi”
from famous scikit-learn machine learning package [12].
Maximum epsilon value, max(g) or max_eps for considering
the maximum distance between two samples as mutual
neighbour have been set based on finding ascending sorted
nearest neighbour distances of type “minkowski” with p-value
2, aka, Euclidean distance and thereafter finding “knee point ”
or “elbow point”, based on [13]. max eps was found as
approximately 32.676. Fig. 11 shows the graph of found
knee/elbow point.
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Minimum number of points required to form a dense region
(minPts) has been set as select feature dimension of Dgey
multiplied by 2, i.e., 6 in this case, based on [14]. Distance
computation metric was “minkowski” with p-value 2. Other
parameters were unaltered. Authors found 10 different clusters
and a large number of outliers, i.e., 11 types of labels for these
features. 55649 out of 55713 sub-samples or about 99.88%
were not part of any clusters. Fig. 12 and Fig. 13 shows major
cluster groups where group value count is more than 500 for
outliers and all other groups respectively. It can be apprehended
from these cluster labels that selection criteria for numerical
features which are mostly not correlated with each other but
having most correlation score with the target, can be relaxed
further to get more such features, as commonality among
features are being shown as extremely low.
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IV. CONCLUSION

Maintaining a good health of safety-critical equipment is
vital for the success of the mission and for enhancing safety.
Condition Based Maintenance (CBM) comes in handy under
such situations as it prevents unwanted equipment downtime
and is less costly than preventive maintenance. Prognostics is
one of the enablers of CBM and is widely used in industries to
predict the remaining useful life of machinery equipment. Data-
driven prognostics rely on a spate amount of data which for
safety-critical equipment is mainly generated synthetically.
Authors performed exploratory data analysis (EDA) on one
such run-to-failure data (termed as N-CMAPSS dataset) for a
small fleet of aircraft engines under realistic conditions.

While performing EDA authors found out that most of the
input features were not correlated to the target variable (RUL),
nevertheless, some numerical variables showed a high degree
of correlation among themselves. This information can be used
for dimensionality reduction as parameters having high
correlation can be represented by one parameter only while
building a prognostics model. The input parameter having the
highest correlation to RUL was cycle A. However, authors
spotted a non-intuitive relationship between the input parameter
cycle and RUL as discussed in the paper. It was also discovered
that for categorical variable (flight class), Fc A 3 was most
dominant among the three classes. Assigning a proportionate
weight of target based on these count value ratios might help in
creation of more accurate prognostic models in the future.

Likewise, the bar plot (Fig. 6) unveiled instances of each
three flight class types are not present in every unit. Which
makes unit wise prognostic modelling of each class impossible.

Moreover, the unit-wise box plot (Fig.8) grouped by flight
class, depicts that features are highly spread and consist of a
fairly large number of outliers. Therefore, applying a robust
data scaling and transformation scheme could be helpful in
creating an accurate prediction model.
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Fig. 5 - Pie chart on left depicting flight class distribution and bar chart on right depicting cou
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Fig. 8 - Box plot of most correlated features with RUL grouped by unit and flight class.
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Fig. 9 - Detailed analysis of most correlated features of target.
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Fig. 10 - Behaviour of health status with respect to RUL and cycle.
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