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Abstract – In the recent years, industries such as aeronautical, 
railway, and petroleum has transitioned from 
corrective/preventive maintenance to condition based 
maintenance (CBM).  One of the enablers of CBM is Prognostics 
which primarily deals with prediction of remaining useful life of 
an engineering asset. Besides physics-based approaches, data 
driven methods are widely used for prognostics purposes, however 
the latter technique requires availability of run to failure datasets. 
In this manuscript authors have aimed at performing exploratory 
data analysis (EDA) on the New Commercial Modular Aero-
Propulsion System Simulation (N-CMAPSS) dataset published by 
NASA. Although 8 datasets are publicly available, authors have 
chosen dataset 3 (DS03) for EDA in this paper which consists of 
9.8 million instances and 47 features. The main aim of doing EDA 
is to gain better understanding of the dataset as it would facilitate 
in building a deep learning model that can be used for predicting 
RUL of the aircraft engines. 

Keywords - Prognostics, Exploratory Data Analysis, N-

CMAPSS dataset 

I. INTRODUCTION

       Optimal inspection planning and maintenance of 

engineering assets in various industries is quintessential for 

maximizing safety and minimizing cost. Over the past 7 

decades, the maintenance strategies have evolved from 

corrective maintenance to preventive maintenance and finally 

to condition based maintenance (CBM) as shown in Fig. 1 [1]. 

Advances in the field of sensor technology, data acquisitioning, 

data storage, and machine learning has made CBM more 

realistic. The greatest enabler of CBM is prognostics which as 

per ISO13381-1 [2], is defined as ‘an estimation of time to 

failure and risk for one or more existing and future failure 

modes’. In real life applications deployment of the prognostics 

models would provide early failure warnings of engineering 

systems, thus giving sufficient time to maintenance engineers 

to intervene the system before actual failure happens. 

Consequently, this would lead to reduction in machine 

downtime, enhanced system safety and considerable cost 

savings for the asset owners. 

       A number of approaches have been used by the researchers 

to perform prognostics in engineering domain as discussed by 

the authors in [3]. However, the two commonly used methods 

for building a prognostics model are physics-based approach 

and data driven approach. The former approach relies on 

employing closed form equations derived from the first 

principles (or fitted to experimental data) to estimate the 

Remaining Useful Life (RUL). Fatigue crack growth is one 

such degradation mechanism where physics-based model (such 

as Paris Law) is used for predicting the RUL. Authors have 

employed the aforementioned method to predict RUL of 

topside piping in the previous works [4,5,6]. However, physics-

based models may not be available for all the physical 

phenomenon, hence under such circumstances researchers 

resort to data driven methods for performing prognostics.  

Fig. 1 - Evolving maintenance strategies [1]. 

       Data-driven (DD) approaches utilize information from 

training dataset to recognize the characteristics of training data 

and finally make predictions about the future state. However, 

the success of DD approaches relies on collecting statistics of 

failures as a function of current state, which requires volumes 

of data [1]. Nevertheless, it is impractical to collect huge 

amount of failure data from safety critical equipment’s, 

therefore researchers rely on simulations to generate synthetic 

data which can then be used to develop prognostic model. One 

such synthetic dataset of run-to-failure trajectories for a small 

fleet of aircraft engines under realistic flight conditions has 

been released by the NASA Ames Prognostics Center of 

Excellence (PCoE), in collaboration with ETH Zurich and Palo 

Alto Research Center (PARC). The dataset was generated with 

the Commercial Modular Aero-Propulsion System Simulation 
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(C-MAPSS) dynamical model and is referred as N-CMAPSS 

[7]. Although 8 datasets are publicly available, authors have 

chosen dataset 3 (DS03) for the exploratory data analysis 

(EDA) in this paper. EDA is performed in order to gain to the 

visual insights, within the DS03, by using various visualizations 

such as correlation matrix heatmap, box plot, KDE plot. The 

next obvious step is to build prediction models, especially non-

linear deep learning models, which can then be used for 

predicting RUL of the aircraft engines. 

The remaining of the manuscript is structured as follows. 

In Section II, a brief summary of N-CMAPSS dataset is 

presented, followed by the exploratory data analysis of the 

dataset in Section III, and a conclusion in Section IV. 

 

II.    N-CMAPSS DATASET  

       The N-CMAPSS dataset provides simulated run-to-failure 

trajectories of a small fleet of large turbofan engines the 

schematic of which is shown in Fig. 2. The data was 

synthetically generated using CMAPSS Engine simulator built 

in Simulink [8]. The schematic of the simulator is shown in Fig. 

3 while the details of data generation methodology is discussed 

in [10]. On comparing Fig.3 and Fig.2, it can be seen that 

CMAPSS is a high-fidelity model of the turbofan engine. 

 

 
Fig. 2 - Schematic of Turbofan Engine [9]. 

 
 

 
Fig. 3 - Schematic of CMAPSS Model [10]. 

 

       In total 8 datasets are simulated using CMAPSS simulator, 

the overview of dataset is given in Table I. In this paper authors 

have considered DS03 for EDA. As depicted in Table I, DS03 

has 9.8 million rows, 15 Units (i.e. data for 15 different turbofan 

engines), 3 flight classes and 1 failure modes. The data is in the 

form of .h5 files and the variables in the dataset are divided into 

6 categories shown in TABLE II. For this paper authors have 

not considered X_v_* and T_* as these are not important for 

prognostics model building as discussed in [10]. The W_* 

consist of 4 parameters related to flight data (i.e., altitude, flight 

Mach number, throttle-resolve angle, and total temperature at 

fan inlet), while, X_s_* consists of 14 parameters as shown in 

TABLE III. The auxiliary variable (A_*) consists of 4 

parameters namely unit number (categorical variable), flight 

class (categorical variable), health state and flight cycle 

number. Finally, Y_* consists of RUL cycles which is response 

in our prognostics problem, while remaining variables are the 

input variables. Furthermore, unobservable model health 

parameters (θ) as described in [10], have not been considered 

as part of this exploration, as prognostic problems can be solved 

without these parameters. 

 
TABLE I 

OVERVIEW OF DATASET  

 
 

TABLE II 

DATASET VARIABLES CATEGORIES  

 

TABLE III 

PARAMETERS IN X_s 

.  

 

III.    ILLUSTRATIVE CASE STUDY 

A. Data Generation. 

The data used in the case study is extracted and oriented 
using a custom build functions based on N-CMAPSS example 
data loading and exploration notebook. The details of which can 

Name [*= {“dev”, “test”}] Description 

W_* Scenario descriptors—w 

X_s_* Measurements—xs 

X_v_* Virtual sensor—xv 

T_* Health Parameters—θ 

Y_* RUL [in cycles] 

A_* Auxiliary data 



 

 

be found in [10]. The dataset itself is divided into two parts by 

default, namely development data (D) and test data (DT*), or 

train and test data respectively. Authors have decided to explore 
both combined and given split dataset to gain maximum insight. 
The two sets of data, one by keeping “dev” and “test” sets 
separate (Ddev, Dtest) and another one by combining “dev” and 
“test” (Dcom) were explored.  

All sets of data contain extracted values from individual 
feature datasets: W_*, X_s_* and A_*, along with target dataset 
Y_*, where * = {“dev”, “test”} accordingly. For ease of 
identification, before combining these datasets, each column of 
feature datasets, excluding target Y_* have been renamed by 
post-fixing words with the existing names according to it’s 
intended original names as described in Table II. Y_* have been 
renamed to “RUL” (Remaining Useful Life) for all sets of data. 
A snippet of the concatenated data from one of the tables (Ddev) 
can be observed in Table. IV. The preliminary purpose of 
including A_* is to group data according to the unit number and 
flight classes when seems necessary. 

 
TABLE IV 

SNIPPET OF Ddev DATASET 

 
 

B. Exploratory Data Analysis. 

       As per CRISP-DM (Cross Industry Standard Process Data 

Mining) methodology, data understanding is one of the vital 

steps that must be performed before building a machine/deep 

learning model. EDA, utilizes various techniques in order to 

gain insights in the dataset and to find hidden patterns. The 

current datasets consist of 21 independent variables (excluding 

health status) and one dependent variable (RUL). Dimensions 

(row, column) of Dcom,, Ddev, Dtest are (9822837, 22), (5571277, 

22) and (4251560, 22) respectively. No cell has missing or 

corrupt information across all datasets, D* = {Dcom,, Ddev, Dtest}. 

There are three categorical variables (excluding health status) 

coming from A_*, named flight class; Fc_A = {1, 2, 3}, health 

status; hs_A = {1, 0} and unit_A = {x: x∈ ℕ1 and 1≤x≤15}. 

Remaining independent variables are numerical in nature.  

Due to enormous size of the dataset, it was necessary to 
subsample data when plotting individual points else the plots 
would be incomprehensible (for e.g., scatter plotting individual 
points of each pair of rows will make the plot not 
understandable and may take a prolonged time). In contrast, 
plotting distribution of features with whole dataset is possible 
with reasonable time and resource usage. Aim of this activity is 
to get a general overview understanding of the data, so that 
necessary and appropriate steps could be understood to solve 
prognostic problem(s) in future. The authors created two 
combined sets of figures, one for a general overview of the data 
and another one for detailed information.  

     Fig. 4 (in Appendix) is a combined representation of 
dependent & independent variable’s scatter plots grouped by 
three class values and association matrix using seaborn [16] and 
sweetviz [15]. Scatter plots are being represented in the bottom 
triangle of the rectangle, separated from the upper triangle by 
diagonal approximate kernel density estimation. The upper 

triangle represents Pearson correlation among two numerical 
variables and correlation ratio among categorical variables & 
numerical variables [15]. In the case of scatter plots of Fig. 4, a 
random sub-sample of fraction 0.0001 or 982 instances of each 
variable from Dcom, have been used. The reason for using sub-
sampled data is explained earlier. In the case of correlation 
upper triangle, circles represent Pearson correlation coefficient 
and squares represent correlation ratio. The size and colour of 
the shapes inside the upper triangle are directly proportional to 
the value shown in the right-side legend of the figure. This 
reveals there are many features that are highly correlated with 
each other and not with the actual target. Table V shows 
association among features and target. The categorical 
association of unit_A and Fc_A with RUL are 0.21 and 0.14 
respectively which are much higher than correlation values of 
scenario descriptors (alt_W and Mach_W). Furthermore, the 
uncertainty coefficient and correlation ratio of the two 
categorical variables have been shown in Table VI.  

TABLE V 

TARGET(RUL) ASSOCIATION VALUES 

 

TABLE VI 

CATEGORICAL VARIABLE ASSOCIATION VALUES 

 

       The pie chart of Fig. 5. shows that nearly half of the class 
type of Dcom is of flight class 3 and classes count are not equally 
distributed (flight_class_1 = 1824707, flight_class_2 = 
3094122, flight_class_3 = 4904008). Assigning a proportionate 
weight of target based on these count value ratios might help in 
creating a more accurate prognostic model in future.  
Furthermore, the bar chart of Fig.5 shows a good proportion of 
instances are present for each unit type.  However, in Fig. 6 the 
bar plot unveils instances of each three flight class types are not 
present in every unit. Which makes unit-wise prognostic 
modelling of each class impossible.  

Fig. 7 (in Appendix) shows top numerical features which 
are mostly not correlated with each other but having the most 
correlation score with the target (RUL in this case). Any feature 
having an absolute correlation value of more than or equal to 
2nd quartile value of absolute correlations with the target 
(~0.02520) has been considered. Similarly, any feature having 
an absolute correlation value of less than or equal to 2nd quartile 
value of absolute correlations with each other (~0.65912) has 



 

 

been considered. A consolidated description of Dcom numerical 
variables is shown in TABLE VI. 

TABLE VII 

CONSOLIDATED TABLE DESCRIPTION OF NUMERICAL VARIABLES 

 

      The Statistical descriptions of Table VII shows that the 
features are in different ranges. A scaling methodology such as 
min-max scaling could be used to bring variables in the same 
scale, which in turn could be useful to achieve a more accurate 
prognostics model.  Furthermore, the unit-wise Box plot 
grouped by flight class in Fig. 8, depicts that features are highly 
spread and consist of a fairly large number of outliers. 
Therefore, applying a robust data scaling and transformation 
scheme could be helpful in creating an accurate prediction 
model as we did in our previous work [11].  

       Instead of plotting consolidated features of Dcom, 

authors focused on a comparative analysis between selected 
Ddev and Dtest. The data plot of Fig. 9 using sweetviz[15] shows 
that each colored and grouped feature bin pair highly matches 
with each other. However, line plot from each RUL against 
selected features shows RUL lines are mostly but not always in 
synchronization with each other. Still, this is a good split and 
can directly be used as training and testing data, without 
consolidating and recreating from the beginning. 

While performing EDA authors spotted a non-intuitive 
relationship between cycle and RUL. Usually, the cycle should 
increase, and the target (RUL) should decrease till the target is 
0 for a single unit. However, this is not the case. Upon closer 
inspection of Ddev and Dtest, the authors found this is not how the 
data is, including where the target is 0. There is presence of 
multiple consecutive repeating RUL value instances from all 
units (unit_A) and class types (Fc_A), including when RUL is 
0. Presumably, dataset creator(s) wanted to capture more 
instances of each RUL, including more data for the end of life 
reached engine's status. If unique RUL for each unit is required, 
then future researchers may drop duplicate instances of 
repeating RUL by appropriately grouped data.  

       Further, it is observed that despite RUL being 0, hs_A may 
or may not be 0 (False) in both Ddev and Dtest. In total about 3.6 
million and about 2.89 million instances from respective Ddev 

and Dtest are discovered where RUL is not 0, i.e., some value 
more than 0 and health status (hs_A) is 0 (False), i.e., not 1 
(True). In comparison, 84880 and 61628 values from respective 
Ddev and Dtest have been observed where both values are 0 (could 
be perceived as False in case of hs_A). Authors relied on given 
RUL values for further analysis, rather than generating RUL 
from available features- cycle (cycle_A) and health status 
(hs_A), by finding maximum cycle per unit (unit_A) group till 

hs_A is 0 and consider that value as first (maximum) RUL for 
that unit group. Extracted feature, health status (hs_A) has been 
refrained from further exploration as this binary variable 
seemingly not correlated with target Fig. 10 shows behaviour of 
health status, hs_A. 
 

C. Unsupervised clustering 

       Another interesting aspect of data could be seeing how 
numerical features might form clusters, as most of the features 
seem to have a mutual high correlation. This still can be part of 
data exploration as authors used sub-sampled 1% instances or 
55713 instances of Ddev, to get an overview of labels (i.e. groups 
of instances) and outliers count. Appropriate stratification based 
on all categorical values has been applied while sub-sampling 
the data. As default train and test split is mostly related as 
observed and stated before, sub-sampling from any part will 
show the true nature of data clusters. Authors trained a density-
based unsupervised model, OPTICS with cluster method as “xi” 
from famous scikit-learn machine learning package [12]. 
Maximum epsilon value, max(ε) or max_eps for considering 
the maximum distance between two samples as mutual 
neighbour have been set based on finding ascending sorted 
nearest neighbour distances of type “minkowski” with p-value 
2, aka, Euclidean distance and thereafter finding “knee point ” 
or “elbow point”, based on [13]. max_eps was found as 
approximately 32.676. Fig. 11 shows the graph of found 
knee/elbow point.  

 

Fig. 11 - Knee point or max ε for OPTICS. 

       Minimum number of points required to form a dense region 
(minPts) has been set as select feature dimension of Ddev 

multiplied by 2, i.e., 6 in this case, based on [14]. Distance 
computation metric was “minkowski” with p-value 2. Other 
parameters were unaltered. Authors found 10 different clusters 
and a large number of outliers, i.e., 11 types of labels for these 
features. 55649 out of 55713 sub-samples or about 99.88% 
were not part of any clusters. Fig. 12 and Fig. 13 shows major 
cluster groups where group value count is more than 500 for 
outliers and all other groups respectively. It can be apprehended 
from these cluster labels that selection criteria for numerical 
features which are mostly not correlated with each other but 
having most correlation score with the target, can be relaxed 
further to get more such features, as commonality among 
features are being shown as extremely low. 

 
Fig.12 - Major outlier groups of (unit, flight class) pair. 



 

 

 

Fig. 13 - Major cluster groups of (unit, flight class) pair. 

 

IV.    CONCLUSION 

       Maintaining a good health of safety-critical equipment is 

vital for the success of the mission and for enhancing safety. 

Condition Based Maintenance (CBM) comes in handy under 

such situations as it prevents unwanted equipment downtime 

and is less costly than preventive maintenance. Prognostics is 

one of the enablers of CBM and is widely used in industries to 

predict the remaining useful life of machinery equipment. Data-

driven prognostics rely on a spate amount of data which for 

safety-critical equipment is mainly generated synthetically. 

Authors performed exploratory data analysis (EDA) on one 

such run-to-failure data (termed as N-CMAPSS dataset) for a 

small fleet of aircraft engines under realistic conditions.  
       While performing EDA authors found out that most of the 
input features were not correlated to the target variable (RUL), 
nevertheless, some numerical variables showed a high degree 
of correlation among themselves. This information can be used 
for dimensionality reduction as parameters having high 
correlation can be represented by one parameter only while 
building a prognostics model. The input parameter having the 
highest correlation to RUL was cycle_A. However, authors 
spotted a non-intuitive relationship between the input parameter 
cycle and RUL as discussed in the paper. It was also discovered 
that for categorical variable (flight class), Fc_A_3 was most 
dominant among the three classes.  Assigning a proportionate 
weight of target based on these count value ratios might help in 
creation of more accurate prognostic models in the future.  

       Likewise, the bar plot (Fig. 6) unveiled instances of each 
three flight class types are not present in every unit. Which 
makes unit wise prognostic modelling of each class impossible.  

Moreover, the unit-wise box plot (Fig.8) grouped by flight 

class, depicts that features are highly spread and consist of a 

fairly large number of outliers. Therefore, applying a robust 

data scaling and transformation scheme could be helpful in 

creating an accurate prediction model. 
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APPENDIX 

 

 
Fig. 4 - Combined association plot and coarse class-grouped scatter plot. 

 

 
Fig. 5 - Pie chart on left depicting flight class distribution and bar chart on right depicting count of engine units. 

 

 



 

 

 
Fig. 6 - Bar plot of count distribution of each flight class among different engine units. 

 

 
Fig 7 - Top features. 

 

 
Fig. 8 - Box plot of most correlated features with RUL grouped by unit and flight class. 



 

 

 

 

 
Fig. 9 - Detailed analysis of most correlated features of target. 

 

 

 

Fig. 10 - Behaviour of health status with respect to RUL and cycle. 




