
 
 

  

Abstract—The goal of this study was to analyze the 
magnetoencephalogram (MEG) background activity in patients 
with Alzheimer’s disease (AD) using the auto mutual 
information (AMI). Applied to time series, AMI provides a 
measure of future points predictability from past points. Five 
minutes of recording were acquired with a 148-channel whole-
head magnetometer (MAGNES 2500 WH, 4D Neuroimaging) 
in 12 patients with probable AD and 12 elderly control subjects. 
Artifact-free epochs of 20 seconds (3392 points, sample 
frequency of 169.6 Hz) were selected for our study. Our results 
showed that the absolute values of the averaged decline rate of 
AMI were lower in AD patients than in control subjects for all 
channels. In addition, there were statistically significant 
differences (p < 0.01, Student’s t-test) in most channels. These 
preliminary results suggest that neuronal dysfunction in AD is 
associated with differences in the dynamical processes 
underlying the MEG recording.  
 

I. INTRODUCTION 
LZHEIMER’S disease (AD) is the most common 

form of dementia [1], a group of conditions that 
gradually destroys brain cells and leads to progressive 
decline in mental function. This irreversible brain disorder is 
characterized by neuronal loss and the appearance of neuritic 
plaques containing amyloid-β-peptide and neurofibrillary 
tangles [2]. As a definite diagnosis of AD is only possible by 
necropsy, a differential diagnosis with other types of 
dementia and with major depression is used. It can include 
Mini-Mental Statues Examination (MMSE) of Folstein [3], 
magnetic resonance imaging, computerized axial 
tomography, positron emission tomography, verbal tests, etc. 

There are several studies of the electroencephalogram 
(EEG) and the magnetoencephalogram (MEG) in AD 
patients with non-linear methods. The most widely used are 
the correlation dimension (D2) and the first Lyapunov 
exponent (L1). D2 is a measure of the system dimensional 
complexity [4, 5] while L1 is a dynamic complexity measure 
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that describes the divergence of trajectories starting at 
nearby initial states [6]. Jeong et al. [7] showed that AD 
patients’ EEGs exhibit significantly lower D2 and L1 than the 
EEGs of control subjects in many channels. Nevertheless, 
there are several drawbacks in using these measures. 
Reliable estimations of D2 and L1 require a large quantity of 
data [8], and stationary and noise free time series [7]. These 
assumptions cannot be achieved for physiological data. 
Moreover, the computational cost is high, especially for 
great amount of data. Therefore, new non-linear methods are 
necessary to study the MEG background activity. 

Lempel-Ziv complexity measures the complexity of finite 
sequences and is related to the number of distinct substrings 
and the rate of their occurrence along the sequence [9]. 
Recent studies have applied this non-linear method to EEG 
[10] and MEG signals [11] of AD patients, finding 
significant differences in certain regions of the brain. Other 
method is the approximate entropy, a family of statistics that 
provides a measure of the complexity and irregularity of a 
signal [12]. Applied to EEG, Abásolo et al. [13] suggested 
that the AD patients’ recordings are more regular than the 
control subjects’ ones. 

In this study, other non-linear method, the auto mutual 
information (AMI), has been used to analyze the MEG 
signals. Mutual information (MI) has been used to study 
different types of diseases and brain states. Xu et al. [14] 
computed the complexity of cross mutual information (CMI) 
functions among 8 EEG channels for four different 
functional states: awake with opened and closed eyes, light 
sleep and deep sleep. Na et al. [15] estimated the decreased 
rate of AMI and the CMI values from the EEG of ten 
schizophrenic patients and ten normal controls.  

Both non-linear methods were also applied to study the 
EEG activity in AD [16]. Jeong et al. found that AMI 
profiles decreased more slowly with time delay throughout 
the brain in AD patients than in control subjects. The CMI 
analyses showed a significantly decreased transmission of 
information between pairs of AD patients’ electrodes. 
Moreover, it has been shown that MI might be useful to 
predict the response to anesthesia [17]. 

In this preliminary study, we have examined the MEG 
background activity in patients with probable AD and in 
age-matched control subjects using auto mutual information 
(AMI). Our purpose is to test the hypothesis that an 
abnormal type of non-linear dynamics is associated with 
AD. 
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II. MATERIALS AND METHODS 

A. Subjects  
The MEG data were acquired from 24 subjects. Twelve 

patients (3 men and 9 women) fulfilling the criteria of 
probable AD (age = 70.42 ± 9.04 years, mean ± standard 
deviation SD) have participated in the present study. All of 
them were recruited from the Asociación de Familiares de 
Enfermos de Alzheimer (AFAL). The patients were 
diagnosed according to the criteria of the National Institute 
of Communicative Disorders and Stroke and the AD and 
Related Disorders Association (NINCDS-ADRDA) [18]. 
The MMSE score was 17.00 ± 3.98 (Mean ± SD). None of 
the patients used any kind of medication that could have an 
influence on the MEG.  

MEGs were also obtained from 12 age-matched control 
subjects (5 men and 7 women, age = 69.42 ± 8.80 years, 
MMSE = 29.25 ± 0.87, mean ± SD). Sex, age and MMSE 
score of all subjects are shown in table 1. The local ethics 
committee approved the study. All control subjects and all 
caregivers of the demented patients gave their informed 
consent for the participation in the current research. 

B. MEG recording 
MEG signals were recorded with a 148-channel whole 

head magnetometer (MAGNES 2500 WH, 4D 
Neuroimaging) in a magnetically shielded room. The 
subjects lay on a patient bed, in a relaxed state and with their 
eyes closed. Five minutes of recording were acquired at a 
sampling frequency of 678.17 Hz. Then, these recordings 
were down-sampled to 169.549 Hz. Artifact-free epochs of 
20 seconds (3292 data points) were selected and filtered with 
a band-pass filter (0.5-40 Hz). 

C. Auto mutual information 
Mutual information (MI) provides a measure of both the 

linear and non-linear statistical dependencies between two 
time series [16]. It can be defined as the amount of 

information gained about one signal from the measurement 
of another [14]. Furthermore, MI between two time series is 
zero when those series are completely independent, while 
MI has a maximum value if both series are equal.   

We can compute the time-delayed mutual information 
between X and Y as follows [16]: 
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where [ ])(txPX  and [ ])( τ
τ

+tyPY  are the normalized 

histograms of the distribution of values observed for x(t) and 
y(t+τ), while [ ])(),( τ

τ
+tytxPXY  is the joint probability 

density for the measurements of x(t) and y(t+τ). The CMI 
quantifies the information transmitted from one signal to 
another [16]. Applied to MEG signals, the CMI measures the 
quantity of information transmitted between certain areas of 
the brain. 
 The previous equation can be rewritten as: 
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to calculate the AMI, the MI between x(t) and x(t+τ). The 
AMI quantifies the mean predictability of x(t+τ) from x(t) 
[16]. To calculate AMI from experimental data is necessary 
to estimate the joint probability density 

τXXP  from 

histograms. In our study, we have used 8, 16, 32 and 64 bins 
to construct these histograms. 

We evaluated the AMI of all channels over a time delay 
from 0 to 0.5 seconds. In order to normalize the AMI 
profiles, they have been divided by the AMI value at τ = 0. 
Hence, AMI values at a zero time delay are always one. The 

TABLE I 
SOCIODEMOGRAPHIC DATA OF AD PATIENTS AND CONTROL SUBJECTS 

 

Identification Age Sex MMSE Identification Age Sex MMSE 

Alz-1 71 Female 15 Con-1 84 Male 29 
Alz-2 83 Male 10 Con-2 61 Female 29 
Alz-3 56 Female 14 Con-3 70 Female 30 
Alz-4 64 Female 15 Con-4 64 Female 30 
Alz-5 59 Female 20 Con-5 60 Male 30 
Alz-6 60 Male 16 Con-6 63 Female 30 
Alz-7 72 Female 15 Con-7 73 Male 29 
Alz-8 71 Female 15 Con-8 69 Female 29 
Alz-9 75 Female 22 Con-9 56 Female 27 

Alz-10 82 Female 21 Con-10 79 Male 29 
Alz-11 72 Female 17 Con-11 79 Male 30 
Alz-12 80 Male 24 Con-12 75 Female 29 

Mean ± SD 70.42 ± 9.04 – 17.00 ± 3.98 Mean ± SD 69.42 ± 8.80 – 29.25 ± 0.87 

 
 



 
 

slope of the AMI profile was estimated by a line that fits the 
data in a least-squares sense. This slope was calculated from 
τ = 0 to the first minimum value of the profile. As the 
decline rate of the AMI is positively correlated with the 
entropy [19], Jeong et al. [16] suggested that this decrease 
rate might be used to evaluate the complexity and/or 
irregularity of a signal.  

Finally, a statistical analysis was carried out separately for 
each channel. Student’s t-test was used to evaluate the 
statistical differences between the slopes of the AMI for AD 
patients and control subjects.  

III. RESULTS 
AMI was estimated for the 148 MEG channels, with a 

maximum time delay of 0.5 seconds and 8, 16, 32 and 64 
bins for the construction of the histograms. 

Fig. 1 illustrates the normalized AMI profiles of a control 
subject and an AD patient at squid A1. This figure shows 
that the AMI values decrease quickly for low τ values and 
then become stable when the values of the time delay τ 
increase. As can be noticed, the AMI profile of AD patient 
declines more slowly than the profile of the control subject. 
This behavior is the same for all channels. In Fig. 2, absolute 
values of the decline rate are represented, showing that the 
AMI profiles decrease more slowly in the AD patients group 
than in the control group, for all channels. Our results 
suggest that there are differences between the non-linear 

 
Fig. 2.  Absolute values of the averaged AMI decrease rate (8 bins for the construction of histograms) for the AD patients and the control subjects in 
all channels (from A1 to A148). 

 

 
TABLE II 

NUMBER OF CHANNELS WITH SIGNIFICANT DIFFERENCES IN THE 
STUDENT’S TEST 

 

Histograms p < 0.01 

8 bins 107 channels 
16 bins 107 channels 
32 bins 98 channels 
64 bins 92 channels 

 

 
 
Fig. 1.  Normalized AMI curves of the 12 control subjects and the 12 
patients with probable AD. 
 



 
 

dynamics of AD patients and control subjects’ MEGs. These 
differences are statistically significant (p < 0.01, Student’s t-
test) in 107 channels for histograms of 8 and 16 bins, in 98 
channels for 32 bins and in 92 channels if the histograms are 
constructed with 64 bins. These results are summarized in 
Table II. 

IV. DISCUSSION AND CONCLUSIONS 
This study presents the AMI as a method to analyze the 

MEG background activity in 12 patients with probable AD 
and in 12 control subjects. AMI estimates the degree to 
which x(t+τ) can be predicted from x(t). Moreover, the rate 
of decrease of the AMI with increasing τ is a normalized 
complexity measure of the time series [16]. For our pilot 
study, we have used values of τmax = 0.5 seconds, and 8, 16, 
32 and 64 bins to construct the histograms. Furthermore, 
AMI does not require a large number of data points to be 
reliably estimated and can be applied to non-stationary time 
series [16]. Thus, this measure is much better suited for 
MEG complexity analysis than traditional non-linear 
techniques as L1 or D2. 

We have found that the absolute values of the average 
AMI decrease rate are lower in AD patients in all channels. 
The differences were statistically significant (p < 0.01) in 
107, 98, 98 and 92 channels for histograms of 8, 16, 32 and 
64 bins, respectively. Because AD patients’ group and 
control subjects’ group were carefully matched for age, the 
significantly reduced AMI decline rate may well represent 
the cognitive dysfunction in AD. However, changes in 
EEG/MEG activity also appear in other pathological states 
as schizophrenia [15], vascular dementia [20] and epilepsy 
[21]. 

Our results agree with previous studies of the EEG/MEG 
background activity in AD patients [7], [10], [11], [13]. 
These studies suggested a loss of complexity and/or 
irregularity in the brain electrical and magnetic activity in 
the patients with probable AD. This reduction of complexity 
on the EEG/MEG background activity in AD might arise 
from neuronal death, deficiency of neurotransmitters like 
acetylcholine, and/or loss of connectivity of local neuronal 
networks [6]. 

In summary, we have shown that the AMI decrease rate 
could be a good method to differentiate between AD patients 
and elderly control subjects. Nevertheless, this is a 
preliminary study and a larger database is needed to confirm 
our results. 
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