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Abstract— Continuous multiday broadband neural data pro-
vide a means for observing effects at fine timescales over long
periods. In this paper we present analyses on such data sets to
demonstrate neural correlates for physically active and inactive
time periods, as defined by the response of a head-mounted
accelerometer. During active periods, we found that 5-25 Hz
local field potential (LFP) power was significantly reduced, firing
rate variability increased, and firing rates have greater temporal
correlation. Using a single threshold fit to LFP power, 93% of
the 403 5 minute blocks tested were correctly classified as active
or inactive (as labeled by thresholding each block’s maximal
accelerometer magnitude). These initial results motivate the use
of such data sets for testing neural prosthetics systems and for
finding the neural correlates of natural behaviors.

I. INTRODUCTION

Current experimental protocols limit awake and behaving
primate electrophysiological studies to timescales of a few
hours. Tracking neural signals over days involves patching to-
gether data sets separated by many hours, leaving large periods
over which signals are unobserved. In order to comply with
the limitations of recording equipment, behavior is generally
constrained by chairing and head posting.

Recent advances in neural recording systems [2], [3] have
enabled recording during primate free behavior. However,
these systems can not produce multiday broadband neural data
sets. In order to analyze the neural correlates of behavior over
long time periods, spike sorts must be accurate. Broadband
data sets are necessary to produce reliable spike sorts, as spike
waveform shape can vary over time [4]. The HermesB system,
introduced in [1], provides this capability.

These data sets can aid in the development of practical
neural prosthetics systems. In order to maximize the benefit of
such systems, prosthetics must be sensitive to neural changes
across the day and must react robustly in the face of variable
background conditions. For example, such systems should
reliably detect whether the user is awake or asleep. If a neural
prosthetic attempts to decode the users intentions during sleep,
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it may waste battery power or cause undesired behaviors. If
such a system does not reliably detect waking periods, the user
may lose the ability to interact with the world.

Thus, in this paper we present preliminary multiday broad-
band neural data recorded from a freely behaving macaque
monkey. Specific attention is paid towards understanding sys-
tematic differences in firing rate and local field potential (LFP)
during active and inactive periods.

II. METHODS

Using the HermesB system [1], single and multi-unit signals
were recorded from a 96 channel electrode array (Cyberki-
netics Neurotechnology Systems Inc.) chronically implanted
in the dorsal premotor cortex (PMd) of an adult macaque
monkey (August 2005). Surgical methods are described in
[5], [6]. All experiments and procedures were approved by
the Stanford University Institutional Animal Care and Use
Committee (IACUC). The HermesB system is a portable
neural recording system in a shielded chassis on the monkey’s
head, allowing free behavior in the home cage [1]. Data were
recorded at a 67% duty cycle (5 minutes of recording, followed
by 2.5 minutes of system sleep). Two neural channels were
recorded per data set in full broadband (0.5-7.5 kHz with 12
bits of precision at 30 kSamples/s) and a head-mounted 3-
axis accelerometer was recorded with 12 bits of precision at
1 kSamples/s. With these recording parameters, the battery
life of the HermesB system is approximately 18 hours. A
54 hour data set was assembled by head posting the monkey
and swapping the batteries every 18 hours. These pit stops
required approximately 45 minutes of interaction with the
monkey, with under 20 minutes of head posting. The lights
were on in the housing room from approximately 07:00 to
19:00 and were off for the remainder of the day.

The recorded neural signals from each 5 minute block were
post-processed with the Sahani spike sorting algorithm [7],
[8]. Spike times were identified using a threshold determined
from data across the block (30 with respect to the RMS noise
estimate from filtered data). A spike waveform, or snippet
comprised of a 32 sample window around the threshold event,
was extracted and aligned to its center of mass (COM).
Snippets were projected into a 4-dimensional robust, noise-
whitened principle components space (NWrPCA) and clus-
tered using a maximum a posteriori (MAP) clustering tech-
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Fig. 1. Neural and accelerometer data recorded from a freely behaving monkey. (a,b) Histogram of spike waveform projections into NWrPCA space from

two different electrodes recorded for different 54 hour data sets, selected neurons are indicated by arrows. (c) Firing rate of neuron 1 recorded over 54 hours.
(d) Accelerometer magnitude over the recording period. (e) 5-25 Hz LFP power recorded from the same electrode. (f~h) Same plots for neuron 2. In all plots
red and blue data points were recorded in time periods labeled as “active” and “inactive,” respectively. Green data points were recorded during unlabeled
periods. The wide light gray regions indicate night, and the thin pink regions indicate “pit stops,” when the monkey was taken from the home cage and placed
in a primate chair to service the recording equipment. (D20060302.ch2ul & D20060225.chlul)

nique. Well-isolated units were identified and cross-referenced
across blocks by hand.

LFPs were isolated from broadband data by applying
Chebyshev Type I lowpass and bandpass filters with a pass-
band ripple of 1 dB. Power spectral density estimates were
calculated using the Welch periodgram method.

III. RESULTS

Each five minute data block was either labeled as “active”
or “inactive” or was unlabeled based upon accelerometer data.
Data from “active” blocks are plotted in red and “inactive”
blocks are plotted in blue. For the neuron 1 data set (presented
in Fig. la,c—e) there are 438 data blocks. Blocks in which the
maximum accelerometer magnitude (MAM) was greater than
1.25 g were labeled “active” (40% of 438 blocks) and blocks in
which the MAM was less than 1.15 g were labeled “inactive”
(52% of 438 blocks). These thresholds were selected to
roughly balance the number of “active” and “inactive” blocks
with the ratio of day (lights on) versus night (lights off) blocks
(as we expect low activity when the lights are off), while
retaining a 0.1 g margin between classifications.

Figure 1d,g was generated by down sampling the accelerom-
eter data to 100 Samples/s. Firing rates in Fig. lc,f were
calculated with a 1 second interval (a hamming window was
used as a lowpass filter). LFP power in Fig. le,h was estimated
across the 5 minute blocks by integrating power over the 5—
25 Hz frequency band. As described in Section III-A, this
band was well differentiated between “active” and “inactive”
periods.

From the accelerometer data (Fig. 1d,g), it is clear that the
monkey was more physically active during the day, and as
expected, firing rates tend to be higher during these periods.
Notice that LFP power was generally lower during these
periods. During the battery swap periods (pink bands) the
monkey was head posted and so the accelerometer magnitude
remained flat at 1 g. During these periods, few movements
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Fig. 2. Power spectral density (PSD) recorded during “active” (red) and

“inactive” (blue) periods. The thin lines are the mean PSDs and the standard
error of the mean is represented by their thickness. The thickness of the wider
translucent lines are the standard deviations. Each PSD is calculated over 5
minutes of data and their distributions were taken from data across the 54
hour data set for neuron 1. (D20060302.ch2ul)

are made and consequently firing rates are reduced. These
trends were consistent across two data sets collected from
different electrodes and at different times. LFPs recorded
simultaneously from a second channel show similar patterns.

A. Local Field Potential

As shown in figure 2, the mean LFP power differed between
“active” and “inactive” periods in the 2-30 Hz and 50-100 Hz
frequency bands. For the majority of this range the standard
deviations are large relative to the difference in the mean;
this relationship makes power changes in these bands an
unreliable classifier for activity level. The 5-25 Hz band was
well separated, so the power in this range should be used to
develop a reliable classifier. This differentiation in LFP power
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Fig. 3. 5-25 Hz LFP power versus maximum accelerometer event in a 5
minute block. Data points are from “active” (red) and “inactive” (blue) blocks
across the 54 hours data set for neuron 1’s channel. (D20060302.ch2)

is consistent with results in [9] showing that 10-100 Hz LFP
activity diminished during movement.

Figure 3 plots 5-25 Hz LFP power versus MAM for each 5
minute block. In general, “active” (red) and “inactive” (blue)
blocks are well separated by thresholding LFP power (as
shown by the vertical dashed line). When we classified the
activity level of blocks by thresholding LFP power at -57.25
dB, 91% of “active” blocks and 94% of “inactive” blocks were
correctly classified. Results were similar for a second channel:
90% of “active” blocks and 89% of “inactive” blocks correctly
classified with a threshold of -132.5 dB. Note that these
results were obtained by manually setting a threshold upon
visual examination of Fig. 3 and the corresponding plot for
neuron 2; further work is necessary to assess the effectiveness
of automated learning techniques. Head posting during “pit
stops” may have resulted in lower estimates of performance,
as the accelerometer was held in a fixed position even if the
monkey was active during these periods.

B. Firing Rate

Figure 4 shows the probability distribution of the MAM
for a 5 minute block as a function of firing rate over this
period. The mean and variance of the MAM increased as the
firing rate increased; notice that the probability of small MAM
remained high. The electrode was implanted in a region of
PMd believed to be involved in motor planning and execution
of arm movements [5]. If arm movement are made while the
head position remains fixed, firing rates could increase without
large acceleration events. Also, motor plans can be generated
and subsequently canceled. Thus, absolute firing rate may not
be the best proxy for activity level.

Figure 5 shows the autocorrelation of firing rate for neuron 1
during “active” and “inactive” blocks. The firing rate was
integrated over 100 ms windows and autocorrelations were
calculated for each 5 minute block; the resulting distributions
were plotted. The decay rate of the autocorrelation function is
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Fig. 4. Probability of maximum accelerometer event for a given firing rate.
Note that firing rate is plotted on the log scale. Firing rate was calculated
over a 5 minute window for data across the 54 hour data set of neuron 1.
(D20060302.ch2ul)

slower for “active” periods than “inactive” periods.

Higher firing during “active” periods (as shown in figures 1
and 4) does not explain this change in decay rate. If the firing
rate was well modeled by a homogeneous Poisson distribution
for each block, then firing rates between neighboring counts in
a block would be independent and the autocorrelation function
would be a delta function. This feature of the firing rate
distributions was confirmed by randomly permuting the count
for each 100 ms time bin to retain the firing rate distribu-
tion while eliminating temporal patterning; as expected, the
resulting autocorrelations for both activity levels approach the
delta function. Also, If firing rate encodes arm movements in
a smooth and continuous manner, we expect real movements
to result in smoother transitions in firing rate (and a slower
decay rate in the autocorrelation function).

Also note the slight peaks around 1.5 and 3 seconds in the
autocorrelation for “active” blocks. Through visual observation
of behavior and accelerometer channel analysis, these peaks
are consistent with an occasional, natural, and repetitive full
body motion that occurred at a frequency of ~0.75 Hz. During
this activity both arms moved in synchrony from side to
side. Since the behavior is well stereotyped, it may induce
oscillatory firing at the movement frequency.

C. Circadian Rhythms

Given that “active” and “inactive” periods tended to occur
during day and night, respectively, the variations in firing rate
and LFP might be explained, in part, by circadian rhythms (or
direct modulation by light level). Perhaps 5-25 Hz LFP power
are increased and firing rates are depressed by an internal
clock. However, for blocks with a single activity condition
(either “active” or “inactive”), the differences between day and
night for both LFP and firing rate were at least an order of
magnitude smaller than the difference between ‘“active” and
“inactive” blocks during either time period. This suggests that
circadian rhythms do not heavily influence these effects.



Correlation

02 I I L 1 I
0 0.5 1 15 2 25 3 35 4

Time Lag (Seconds)

Fig. 5.  Autocorrelation of neuron 1 firing rates for “active” (red) and
“inactive” (blue) blocks. Firing rate integration time was 100 ms. The thin
lines are the mean correlations and their thickness represents the standard
error of the mean. The thickness of the wider translucent lines is the standard
deviation. (D20060302.ch2ul)

IV. DISCUSSION

Practical neural prosthetic systems should work well under
varied conditions. We can begin to understand these conditions
as contexts, defined here as a set of behavioral states and/or
goals (such as active vs. inactive or discrete target selection
vs. continuous pursuit). A switch in context may change the
dynamics of observed neural signals; a neural prosthetic must
be sensitive to these changes. In this paper, we examine a very
simple pair of contexts — physically active and inactive. The
monkey moved freely, so we could register these periods with
an accelerometer. For an immobile patient, however, we must
determine the intent to be physically active or inactive.

As shown in Figs. 2 and 3, LFP is a promising proxy for
activity level. Firing rate can also be used for this purpose,
as its autocorrelation is dependent on activity level (Fig. 5).
However, LFP power measurement consumes less battery
power than firing rate measurement (a low-power LFP power
measurement circuit is described in [10]), potentially enabling
a power efficient implant “sleep” mode when the user is
inactive. When LFP power falls below a defined threshold,
indicating that the user is active, the prosthetic can switch out
of this “sleep” mode.

In future studies we plan to examine subtler context
changes. Some contexts may require less data for acceptable
performance; under these conditions we can conserve power
by disabling a subset of the neural channels. Under differ-
ent contexts, users may require different sets of behavioral
responses (such as discrete target selection vs. continuous
motion) or the underlying dynamics of the observed cortical
area may change drastically; we would like to respond to
these concerns by switching the decoding model according to
context. By identifying contexts and adjusting hardware con-
figuration accordingly, it may be possible to boost performance
in terms of power consumption and decoding accuracy.
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The presence of an identifiable repetitive natural behavior
(as discussed in Section III-B), demonstrates the ability to
identify behavior from primate neural recordings across mul-
tiple days. Such an ability coupled with advanced behavioral
monitoring (such as chronically implanted EMG electrodes or
motion tracking), can enable the exploration of questions that
have been unapproachable until now. Mining large data sets of
free behavior to find neural correlates may help us to develop
new controlled experiments; such data sets are also necessary
for testing and developing neural prosthetics systems with the
ability to operate autonomously over extended periods of time.

V. CONCLUSION

In this paper we begin to analyze the first set of multiday
neural and accelerometer data from area PMd in a freely
behaving primate using the HermesB system. These data show
that for time lags on the order of seconds the autocorrelation
of firing rate is higher during physically active periods than
during inactive periods; this suggests greater temporal corre-
lation in firing rate during physical activity. An analysis of
the power spectrum of broadband neural data demonstrates
that 5-25Hz LFP power decreases during periods of physical
activity, which can be used to turn implant processing on and
off with little power consumption.
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