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Overlapping Probabilities of Top Ranking Gene Lists, Hypeilgeometric
Distribution, and Stringency of Gene Selection Criterion
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Abstract—When the same set of genes appear in two top Selection process is involved. The second list is nevertisel
ranking gene lists in two different studies, it is often of given: n, genes are known to be in a pathway, a member
interest to estimate the probability for this being a chance of a protein family, described by a gene ontology term, etc.

event. This overlapping probability is well known to follow the . ..
hypergeometric distribution. Usually, the lengths of topfanking One asks the question on chance probability foout of

gene lists are assumed to be fixed, by using a pre-set criterio 71 S€lected genes to be in a given pathway, a protein family,
on, e.g.,p-value for the t-test. We investigate how overlapping and describable by a gene ontology term. Fixingor not

probability changes with the gene selection criterion, orsnply, s the main difference between their application and ours.
with the length of the top-ranking gene lists. It is conclude When a different gene selection criterion is used, the

that overlapping probability is indeed a function of the gere . . . .
list length, and its statistical significance should be qued in  Number of genes in the two top-ranking lists of two studies

the context of gene selection criterion. (n1 andns) will also change. Because the stringency of a
gene selection criterion is always adjustable and to some
[. INTRODUCTION extent arbitrary, we would like to examine whether these

One of the most common tasks in microarray analysis ghanges will affect the overlapping probability. At two ex-
to identify a list of genes that are differentially expregse réme situations, very smail, = n; ~ 1 and very large
under two conditions, such as being affected by a diseade = "2 = 7, it is clear that the number of overlapping
vs. normal, before vs. after a medical treatment, and one \@€nes ism = 0 andm = n. Thesem values appear 100%
another disease subtype. The number of genes on the t&b-he times, so the correspondipg/alue is equal to 1, i.e.,
ranking list is usually much smaller than the total number ofOt Significant. For intermediate, ~ n, values, it is not
genes on the chipy. If the same type of microarray chip is clear whgt_ the overl.applng_ probability and significancd wil
used for two different studies (e.g. disease-A vs. conta; P€: and it is the topic of this abstract.
disease-B vs. control), two differentially expressed gésts
can be obtained, witlh; andn, genes. Researchers often Il. HYPERGEOMETRIC DISTRIBUTION AND
find the same genes appear in both lists and hypothesize OVERLAPPING P-VALUES
that these common genes are involved the etiology of both Given integers:, ny, na, m (max(ni,ne) < n andm <

diseases. min(ny,n2) ), the hypergeometric distribution is defined as
However, for such a hypothesis to be convincing, one

has to first estimate the probability for overlapping genes < i > < n—n )

by chance alone. In other words, if two lists of genes arg,,,\ _ Clni,m)C(n—ni,npg —m) _ \ m ng —m

selected out ofi genes randomly, we would like to calculate C(n,n2) < n >

the probability form genes in common in the two lists, with N2

the lengths of the two lists being andn,. This overlapping
probability is known to follow the hypergeometric distribu ™" . i
tion . The name hypergeometric distribution was first usegPiects out ofn objects:C(n,m) = nl/[ml(n —m)!].

in [1], and was popularized by its role in Fisher's exact test YWNenn: genes are randomly chosen from the totakof
2], genes, and another random sampling leads.t@enes, the

In microarray analysis, overlapping probability and hyper,pmb"’IbiIity that the two Iistg of genes have in common
geometric distribution mainly appear in testing the enrich'S exactly the hypergeometrlc probabiliB(m). This can be .
ment of genes in certain functional category [3], [4], [5]’proven _by the following §teps: 1) The total number of possi-
[61, [7], [8], [9], [10]. In this application, the first lists PI€ choices for the two lists of genes@¥n, ni)- C'(n, na).
the top-ranking differentially expressed genes, and a geg%There are’(n,ny) possibilities for choosing the first list.

3) Among then; genes in the first list, there arg(ni, m)
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1Despite certain similarity, this problem is not the birtidaoblem — the 1S §imply (#2 X #3 x #4). / #1. Note that; andn, can be
probability for two people in a room to have the same birthday switched without changing th&(m) value.

whereC(n,m) is the number of possibilities of choosing
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Fig. 2. Overlapping significance as measured-blog, , (p-value) where
p-value is obtained by the hypergeometric distribution, afurection of
ni(= mn2), the number of genes in the top-ranking gene lists. Fhe
program reportgp-value to be zero whenever it is lower than 2~ 16,
and we use a ceiling of 15.65758 — log; (2.2 x 10716) in the plot. Six
lines are shown for three study pairs (RA-SLE, SLE-PsA, R#&Pand two
tests/modelstftest and logistic regression). Similar overlapping digance
for two randomly shuffled lists is also shown (indicated bgsses).
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in [11], [12], [13]. The number of controls (C) and pa-
Fig. 1. First column: proportion of overlapping genes b&mwéwo top tients (P) in these three datasets a_re (C:39' P:46)’ (C:41’
ranking gene lists for a pair of studies:(n1) as a function of the gene list P=81), and (C=19, P=19), respectively. The total number
length (21 (= n2)). Top is for gene ranking bi+test and bottom is for gene of genes/probe-sets is =22283, and the expression levels
ranking by logistic regression. The overlapping propartior two randomly | : d G ked f heir d f
shuffled lists is shown in crosses, and the lingni; = n1/n is marked. a_re 0g Frans Orme. : en?s are ranked for their egre_e 0
Second column: observed number of overlapping genes fubtract the differential expression which can be measured by various
expected number of overlapping geneg (n). tests or models, such agest and logistic regression.
For any pair of studies, with a fixed number of top-
] ] ) ranking gene listsi; (= n2), one can count the number of
It is usually more interesting to calculate the sumAgin) overlapping genesn and the proportionn/ny(= m/ns).

for m’s equal or larger than the observed value (i.e.,ihe Figrg (left column) shows this proportion as a function of

num. genes in the list X

value): n1(= ny) for three study-pairs (RA-SLE, SLE-PsA, RA-
min(n1,n2) min(n1,n2) m—1 PsA) as well as for two ranking methodstést and logistic
p-value= Z p(k) = Z p(k) — Z p(k) regression). Similar overlapping proportion of two random
k=m k=0 k=0 shuffled lists is also indicated in Hifj.1 as crosses.

In statistical packag® (http-//www.r-project.org/ there are  Whenni(= nz) is small,m is more likely to be zero, so

at least two ways to calculate the overlappjrgalue. The the proportion is also zero. When (= n) approaches the
first is to use the accumulative distribution of hypergeototal number of genes;, all genes are overlapping genes,
metric distribution, phyper(m,n:, n — n1, ns): p-value = and the proportion is 1 Fidl 1 indeed shows these_tre_nds
phyper(min(ni, n2), n1, n—n1, ns)—phyper(m—1, n1, n— at the two extreme points. In prdgr to check behavior in-
ni,nz) if m > 0, and p-value=1 if m = 0. The second between, we draw a reference line in Elg.1 (left column) that

method is to use thg-value from the Fisher's exact test on@SSume a linear relationship betweerin, andn,/n. Most
the following 2-by-2 table: of the points on Fill1 are above this line, and the overlappin

proportion of two random lists is exactly on this line.

coly coly total To have an idea of the absolute number of common
rowy m ny—m ni genes more than expected by random chance[JFig.1 (right
TOWy | Mg —M N—N1—Np+m|n—n column) plots the observed subtract the expected.,, =
total | no n—ny n n3/n(= n3/n) as a function ofn; (= ny). The maximum

difference between the observed and expected is reached

betweenn; = 5000 and n; = 10000. The difference of

[1l. PROPORTION OF OVERLAPPING GENES IN A observed and expected's can be as much as 600-800.
COLLECTION OF MICROARRAY DATASET

In hypergeometric distribution, the number of overlapping IV. OVERLAPPING SIGNIFICANCE
elementsm is an independent variable from the the list The overlappingp-value corresponding to thex counts
lengths ni,n2. In order to get a rough idea on how plotted in Figdl was calculated by the hypergeometric idistr
changes with the list lengths, we use three real microarrdution, and is shown in Fig.2/-axis is— log,, (p-value), and
datasets. Theese studies concern three autoimmune diseaseaxis isni(= nz). Six lines are shown for three compar-
rheumatoid arthritis (RA), systemic lupus erythematosuisons (RA-SLE, SLE-PsA, RA-PsA) and two measurements
(SLE), and psoriatic arthritis (PsA), described in detail®f the differential expressiortfest and logistic regression).

The two approaches lead to the identical result.
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Fig. 3. The test significance(log,((p-value)) fromt-test ofn =22283 ER TN 2 / \

genes sorted by the averaged expression level (log-tnanst) across all
245 samples in 3 studies (RA, SLE, PsA). The thrdests are for RA vs.
control, SLE vs. control, and PsA vs. control.

Zero p-values are converted to 2.2107'6 which is the
minimum value reported by? program. FigR shows that
besides the two endsn(=n; = ny = 0 andm = ny =
ne = n) where thep-value is 1, the overlapping significance oo
quickly increases with the length O_f t?_p'ra”k'”g gene IISF:ig. 4. Several measures of overlapping genes between afpstindies as
n1(= ng2), and can be extremely significant when a larga function of the number of genes included in the top-rankisig for the

number of genes are kept in the two lists for comparison. reduced dataset with 15283 genes. First column: propodfasverlapping
This result confirm our previous suspicion that overla inaenes fn/n1); second column: number of observed overlapping genes sub-
p p pp acting the number of expecteth(—n2 /15283); third column:— log; ¢ (p-

significance is a function of the gene list lengths. If thealue) by the hypergeometric distribution. First row is fists ranked by
selection ofnqy,ng is arbitrary, the overlapping significance t-test result, and second row is for lists ranked by logistigression.
thus calculated is also arbitrary. It is not surprising that

overlapping significance may keep increasing {exalue each gene of 3-tests sorted by average expression (log-

decreasing) with the increase of (= n»), becauseg-value tralnsformed) across all 245 samples in 3 datasets (for both

n genergl_depends on t.he sample Slze. When a 5'9'?"’" IS '&8ses and controls). Although we cannot use the average ex-
(true positive)p-value will monotonically decrease with the ression level to predict the degree of differential exgies,

sample siz€. On the contrast, if a true s_|gnal Is absent, t ere is a general trend for low-expressed genes to rank lowe
sample size does not affect the conclusion. As can be segl

in FigM. th laoDi anifi for tw d list Mthe differentially expressed list as seen from [Hig.3.
N Fgid, the overlapping sighificance 1or two rahdom AIStS - ye removed 7000 genes with lower overall expression
does not really change with; (= ns).

L , . across all samples, leaving = 15283 genes. FigEl1 and
One may argue that it is unlikely to consider top 500% are reproduced in F[d.4 for the dataset with a reduced

genes as being differentially expressed, because by aaiypi%ene pool. As in Figill anfll 2, the observed number of
selection criterion (e.gp-value of t-test smaller than 0.01, overlapping genesn is much larger than the expected

with or without multiple testing correction), the number Ofthough the difference peaks at 400-600, as versus 600-800 in
genes selected is less than a few hundreds. However, as 1. The overlapping significance as measured-Hyg (p-

be seenin Fifl2, even in the range of 10-500, the overlappi(}glue) again quickly moves up with; (= n,) as shown in
p-value changes dramatically. the last column of Fil4

This pitfall of gene-list-length dependence of overlagpin = 11,0 qualitative similarity between Fifs.[ 2 and Hig.4

p-values has not been noticed before perhaps because in offggfiates that the presence of low-expressed genes does not
application of hypergeometric distribution for calcutegi affect our conclusion.

overlapping probability, the length of the second list
is fixed, for example, in the study of overrepresentation VI. CONCLUSIONS AND FUTURE WORKS

of genes in certain pathway. The number of overlapping. Conclusions

T T T T
5000 510 5 500 5000

gene lstlength

genesm is then constrained from above hyin(ni,n2) Using the hypergeometric distribution to calculate the
even though the length of the first list;, might increase by oyerlapping probability between two top-ranking differen
relaxing the gene selection criterion. tially expressed genes in two studies, we have shown that the

overlapping significance depends on the stringency of gene
V. THE EFFECTS OF UNEXPRESSED GENES selection criterion, or equivalently, the length of the gen
There are many genes/probe-sets on the microarray cHigts. This observation presents a problem when an overlap-
that do not register much signal. Since these low-expresspihg p-value is reported but the gene selection criterion is not
genes are lowly expressed in both control and patient sarspecified. On the other hand, the increase of the overlapping
ples, they usually do not appear in the top-ranking differersignificance with the gene list length can be an indication
tially expressed gene list. Hifl.3 showslog,,(p-value) of that the significant overlapping of genes is a true signal.



B. Future Works

The overlapping probability calculated here assumes the
two top-ranking gene lists are selected from the same poap]
of n genes. If the two studies are based on different chip
platforms, the two initial gene pools are not identical,ugb
there are perhaps certain common genes. We plan to derive
the overlapping distribution for this situation.

We also plan to study the probability for genes appearing

in three top-ranking gene lists. Although a permutatioreldas [10]

(6]

(8]

El

approach comparing multiple studies was proposed in [14],
there is no analytic formula available.
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