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Abstract
In this paper we propose a formal formulation for the estimation of Diffusion Tensors in the space
of symmetric positive semidefinite (PSD) tensors. Traditionally, diffusion tensor model estimation
has been carried out imposing tensor symmetry without constraints for negative eigenvalues. When
diffusion weighted data does not follow the diffusion model, due to noise or signal drop, negative
eigenvalues may arise. An estimation method that accounts for the positive definiteness is desirable
to respect the underlying principle of diffusion. This paper proposes such an estimation method and
provides a theoretical interpretation of the result. A closed-form solution is derived that is the optimal
data-fit in the matrix 2-norm sense, removing the need for optimization-based tensor estimation.

I. INTRODUCTION
Diffusion tensors allow for the modeling and measurement of water diffusion inside the brain.
They are used as indirect measures of brain connectivity, aligning with white matter fiber
directions. A diffusion tensor is usually fitted to the diffusion weighted images (DWI) by
solving the Stejskal-Tanner equation:

(1)

where Sk are the measured diffusion weighted images in the gradient directions, gk, S0 is the
baseline image and D is the diffusion tensor. D is a symmetric positive definite matrix.

The classic method for fitting the tensor to the diffusion data is by means of linear regression,
such that the following sum of squared differences error is minimized:
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(2)

where S is the space of symmetric tensors. The minimization in the space of symmetric tensors
is imposed by solving only for the 6 degrees of freedom of the symmetric D. However, there
is no constraint that guarantees the resulting diffusion tensor to be PSD, i.e, the regression
fitting is not computed in the manifold of PSD tensors.

Although indefinite diffusion tensors are non-physical, they commonly arise from diffusion
tensor estimation in locations where the DWI signal is corrupted by noise and the degree of
anisotropy is high [1], [2]. Indefiniteness is equivalent to σ(D) (the spectrum of D) possessing
eigen-values of different signs (For D to be positive semidefinite σ(D) ≥ 0). Several authors
have proposed methods to restrict the estimated tensor to the PSD manifold. To estimate a
positive semidefinite diffusion tensor one can

• project the tensor back onto the face of the cone of positive semidefinite tensors (at
every iteration step in an iterative scheme),

• assure positive semidefiniteness during estimation by enforcing the tensor flow to
stay within the manifold of positive semidefinite tensors, or

• assure by construction that the estimation can never leave the manifold of positive
semidefinite tensors.

Projecting back onto the face of the cone can for example be accomplished by setting negative
eigenvalues to zero (optimal in the Frobenius norm sense) or to their absolute values, which
may not be the best choices [3]. The second approach has been investigated by Tschumperle
and Deriche [4], who proposed a method for tensor estimation and regularization that ensures
the positive-definiteness of the estimated diffusion tensor by forcing it to stay on the manifold
of PSD tensors. (This is accomplished by a Riccati type equation and appropriate numerics
that guarantee to preserve the positive-definiteness property.) Wang et al. [5] and Koay et al.
[2] use Cholesky factorizations to ensure the positive-definiteness of the estimated tensor by
construction. The methodology proposed in this paper relies on a symmetric square-root
factorization of the diffusion tensor. In particular,

• a gradient descent scheme is proposed that by construction estimates the diffusion
tensor in the manifold of PSD tensors,

• a formal interpretation of the least squares PSD tensor fitting in the 2-norm sense is
presented,

• and a closed-form solution for the 2-norm optimal data-fit is derived, allowing for a
simple and computationally efficient estimation of positive definite tensors best
matching the measured data.

Section II reviews and interprets projection based approaches for suppression of negative
eigenvalues that are of relevance to the method proposed in this paper. Section III describes
the gradient descent scheme based on the matrix square root decomposition, allowing for the
estimation of guaranteed symmetric positive semidefinite tensors best fitting the measured
data. Section IV presents analytic solutions to the symmetric PSD data-fitting problem in the
case of six rotationally invariant gradients and theoretically analyzes the method. Results on
real and synthetic datasets to illustrate our findings are given in Section V.
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II. PSD TENSOR ESTIMATION BY PROJECTION
Finding the symmetric PSD tensor best fitting the measured data is a constrained optimization
problem. The space of symmetric PSD tensors is non-linear; its faces (i.e., the boundary
between the space of PSD and indefinite tensors), are given by the degenerate tensors, whose
spectra contain at least one zero eigenvalue [6]. Those faces are known as the PSD cone faces.
Unconstrained tensor estimation may yield tensors outside the PSD cone for noisy or very
anisotropic data. To make these indefinite tensors positive semidefinite a (in some sense/norm
optimal) tensor inside the PSD cone needs to be found. The optimal PSD tensor to an indefinite
tensor will lie on the cone face, thus negative eigenvalues are set to zero.

A. Frobenius norm solution
Setting the negative eigenvalues of D to zero while keeping the remaining eigenvalues fixed,
yields the Frobenius norm optimal solution [7], i.e.,

where .

B. Two-norm solution
The closest PSD tensor in the matrix 2-norm sense does not need to be unique [7]. Interestingly,
the Frobenius norm solution is also one of the minimizers of the 2-norm, since D is symmetric
by definition [7], i.e.,

where . To obtain a unique 2-norm optimal solution the optimization problem
needs to be further constrained. One possibility is to search for a solution that best fits the
measured data. This is the focus of Section III.

III. LEAST-SQUARES PSD CONSTRAINED TENSOR ESTIMATION
Solving Eq. (2) without restricting the space of admissible tensors S does not guarantee D to
be positive semidefinite. A proper solution implies a problem formulation that assures a tensor
remaining in the PSD space. For a given PSD matrix, A, there always exists a unique symmetric
positive semidefinite matrix X such that A = XX, where X is called the principal square root
of A [8]. In particular, this implies that A can always be decomposed into the square of a
symmetric matrix (not necessarily positive semidefinite) X. Thus, by estimating the symmetric
matrix X, A is assured to be symmetric positive semidefinite.

The symmetric PSD tensor Dpsd that optimally fits the measured data (in the sum of squared
error sense) is given by

(3)
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where Dpsd = XX. Estimating X instead of Dpsd directly renders the estimation problem
quadratic (from linear) and does not generally allow for an analytic solution, but requires
numerical optimization (for example by gradient descent or one of its flavors).

The gradient of the error E with respect to X is

(4)

where

where Xi is the i-th column vector of X and superscripts denote coordinates, i.e., . The
gradient descent is then

(5)

Note, that the gradient (4) is symmetric. Thus Dpsd = XX will always be symmetric PSD. The
induced gradient descent on Dpsd “lives” in PSD space.

The following Section shows that there is an analytic solution to the least-square problem given
by Eq. (3) in the case where the number of gradients is equal to the number of unknowns (6 in
the 3D case). The analytic solution consists of a linear fitting in the space of symmetric tensors
followed by an eigenvalue correction.

IV. ANALYTIC SOLUTION
This Section presents analytic formulas to compute the 2-norm optimal symmetric PSD tensor
best matching the measurement data when the number of unknowns is equal to the number of
gradients or the symmetric tensor estimation matches the measurement data perfectly.

Minimizing Eq. (3), yields the 2-norm optimal solution that best matches the data1:

Theorem 4.1
Let

(6)

and

(7)

1In what follows matrices are of dimension 3 × 3 unless noted otherwise.
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where the gradients gk are rotationally invariant. Then

Theorem 4.1 is proved in the appendix and leads to the following constructive result for the
analytic computation of the optimal solution:

Corollary 4.2
Decompose, D = QAQT and Dpsd = QBQT, with Q an orthogonal matrix and A and B diagonal

matrices. The spectra given by A and B are , . Then,
based on the cardinality of the negative eigenvalues of D, |σ(D) < 0|,it follows that

where

With

the matrix entries are

and

Furthermore,
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with

Similar expression may be obtained for the 2D case.

V. RESULTS
A. 2D Example

To assess the behavior of the different estimation strategies, it is instructive to look at the 2 ×
2 tensor case, since it allows for visualization in three dimensions. Given a tensor

the faces of the cone are given by ac - b2 = 0. Positive definite tensors are contained to the half-
space ac - b2 > 0. Fig. 1 shows the surface traced out by the PSD cone faces. To evaluate our
method, an indefinite tensor with eigenvalues σ(D) = {2,-1.5} and random eigenvectors was
generated (diamond point). Diffusion weighted values have been obtained according to the
model given by Eq. (1). Figs. 1a and 1b show the projections into the PSD cone achieved by
the proposed method and the Frobenius norm approach as well as the the iterative solution
obtained through the gradient descent given by Eq. 5. The gradient descent optimization is
initialized by using a random tensor inside the cone. The 2-norm of the difference between the
indefinite tensor D and the tensors of the PSD cone faces is shown as a colormap on the cone
surface. One can see how the proposed solution lies on the minima line corresponding to the
2-norm solutions. While the Frobenius norm lies on the crest of minima values, the proposed
solution is the only one that also fits the data best. Fig. 1b show the projection of the previous
result in the a - b plane. The continuous and dashed contours represent the isolines on the cone
of the 2-norm and the fitting error E respectively. It is clear to see how the proposed approach
minimizes both metrics at the same time.

B. Real Case
This Section presents results of the proposed estimation method as applied to a real human
brain dataset. The data corresponds to an LSDI (Line Scan Diffusion Imaging) acquisition
acquired at Brigham’s and Women’s Hospital on a 1.5T GE scanner. A 6 gradient direction
protocol with 2 baseline images was employed. The gradients are uniformly spaced fulfilling
the conditions given by Eq. (8). Tensors have been estimated using the standard and the
constrained Least Squares methods. Standard tensor estimation resulted in indefinite tensors
in several isolated areas inside highly anisotropic structures like the corpus callosum as shown
in Fig. 2. The proposed method leads to tensor estimations more consistent with the underlying
data, as shown in Fig. 2 (the planar measure [9], cp = (λ2 - λ3)/λ1, is more consistent along the
corpus callosum for the proposed method).

VI. CONCLUSIONS
This paper investigated the estimation of symmetric positive semidefinite tensors. A gradient
descent scheme for tensor estimation working within the manifold of symmetric positive
semidefinite tensors was proposed. Further, an analytic solution was given for the special case
of six rotationally invariant gradient directions in three dimensions and its optimality in the 2-
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norm sense was demonstrated. The analytic solution removes the need for iterative solution
strategies and is computationally very efficient.
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Appendix
Proof: Substituting Eq. (6) into Eq. (7) yields the minimization

With V = D - Dpsd, σ(V) = {λi} and ei the corresponding eigenvectors, the gradients may be
decomposed as

Thus

Assuming that the gradients (in three dimensions) are rotationally invariant, then

(8)

where . Using the gradient relations (8), it follows

If , λ2 ≥ 0, λ3 ≥ 0, D is positive semidefinite and thus Dpsd = D. For the case of one
negative eigenvalue of D assume without loss of generality that . Thus  and .
With
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and

it follows that the global minimum is attained at 

for the optimal λ1, λ2, . Thus the solution is a minimizer in the 2-norm. However,
the global minimum is only valid, if it results in a positive semidefinite tensor Dpsd, i.e., if

 and . Define

Then, if  and , the global minimum can be attained and , .

Assume, , then  and  is known. Then ,

(9)

From Eq. (9) it follows that  if  and in particular if  and . Similarly,

for  it follows

(10)

From Eq. (10) it follows that  if  and in particular if  and . Assume

without loss of generality that , then it follows (from )
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(11)

From Eqs. (9), (10), and (11) it follows that |λ2| dominates all eigenvalues and thus the optimal
solution is always optimal in the 2-norm sense. This proofs the theorem and its corollary.
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Fig. 1.
Indefinite tensor projection onto the PSD cone. (a) 3D representation of the space of symmetric
tensors. The trajectory shows the gradient-descent solution starting from a random tensor inside
the cone. Both the Frobenius norm and the proposed analytic solution are located at the bottom
of the minima valley of the 2-norm solutions. (b) Contour plots corresponding to the projection
onto the a-b plane. Solid lines represent the fitting error isocontours. The dashed lines are the
isocontours for the 2-norm.
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Fig. 2.
Coronal slice of a real human brain. Indefinite tensors appear in the corpus callosum and yield
higher than expected planar measures (see circles). The proposed method leads to a visibly
smoother estimation of the planar measure within the highly anisotropic corpus callosum.
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