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Abstract
In this paper, we present a complete and novel workflow for quantitative nuclear feature analysis
of glioblastoma using high-throughput whole-slide microscopy image processing as it relates to
treatment response and patient survival. With a complete suite of computer algorithms, large
numbers of micro-anatomical structures, in this case nuclei, are analyzed and represented
efficiently from whole-slide digitized images with numerical features. With regard to endpoints of
treatment response, the computerized analysis presents a better discrimination than traditional
neuropathologic review. As a result, this analysis method shows potential to facilitate a better
understanding of disease progression and patients’ response to therapy for glioblastoma.

I. INTRODUCTION
The term in silico broadly refers to those experiments carried out on computers for
simulation. The recent availability of high-throughput and high-resolution instruments has
given rise to large sets of imaging data (e.g. microscopy imaging), clinical information (e.g.
patient survival, response to treatment, etc.) and molecular signatures, (e.g., genomics and
proteomics) that can be harnessed for biomedical research. These datasets provide detailed,
multi-dimensional views of biological systems and functions. However, progress on
comprehensive analysis integrating multi-type and multiscale data lags behind the pace of
data generation. As a result, we initiated efforts to develop computerized analysis tools that
can facilitate hypothesis-driven, biomedical translational studies on human gliomas in the
In-Silico Brain Tumor Research Center (ISBTRC) [1].
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Diffuse gliomas are the most common primary brain tumors of the central nervous system.
They are notorious for rapid clinical progression and nearly uniform fatality [2]. Although a
large number of research projects have focused on this disease, understanding of the
biological driving forces and factors that underlie differential response to therapy and
survival remains limited [3]. In an effort to address these issues, we initiated an integrated
exploration of the complementary, multi-modal data on glioblastomas (GBMs) from cohorts
of patients collected in large-scale efforts by The Cancer Genome Atlas (TCGA) project [4].
Due to the large data volume for analysis, traditional analysis by manual labor is replaced
with in silico experiments executed by high throughput computational infrastructure with
specifically designed analysis algorithms. This class of in silico studies, referred to as multi-
scale integrative investigations, aims to measure and quantify biomedical phenomena in a
way that accounts for multiple biological, spatial, and in some cases temporal scales.

In this paper, we describe an exploratory study on whether phenotypic information from
nuclear morphology in digital microscopy images correlates with treatment responses or
survivals for patients with GBMs. We present our methodology for 1) computation of
quantitative features from nuclei in whole-slide microscopy images with a parallel
computational infrastructure; 2) representation and classification of patient slides using
nuclear features; and 3) use of imaging features for therapeutic response and survival. We
demonstrate that computerized analysis of nuclear features derived from imaging data can
discriminate groups with significant survival differences in response to therapy that are not
observed with qualitative visual assessments by human reviewers.

II. IMAGE PROCESSING FOR NUCLEI CHARACTERIZATION
A. Importance of Nuclear Analysis

Based on pathologic criteria of the World Health Organization (WHO), gliomas can be
broadly categorized into three classes: astrocytoma, oligodendroglioma, and mixed
oligoastrocytoma [5]. These tumors behave differently clinically and are treated differently.
Oligodendrogliomas and oligoastrocytomas tend to grow more slowly and have longer
survivals, grade-for-grade, than astrocytomas. Nuclei of these three classes have distinct
characteristics that are relied upon heavily for morphology-based classification. For
example, nuclei that are round in shape, small in size, have negligible cell-to-cell variability
and uniform nuclear texture are typical of oligodendroglioma. By contrast, nuclei of
astrocytoma are elongated and irregular in shape with an uneven, rough nuclear texture due
to the clumping of chromatin. However, many gliomas either contain mixtures of these
nuclei or have intermediate forms. Representative examples of astrocytic and
oligodendroglial nuclei, as well as those from the continuum between the two extremes are
presented in Fig. 1. Nuclei with either variable combinations of oligodendroglioma and
astrocytoma components or with morphologically ambiguous forms make the accurate and
reproducible classification of gliomas challenging. By providing tools to segment, describe
and classify nuclei, not only can we shed light on the morphologic spectrum of the diffuse
gliomas, but also better understand the correlative strength of phenotypic data with response
to therapy and patient survival.

To attain discriminating morphologic data on nuclei, we developed a computerized analysis
workflow for identifying, characterizing, and classifying nuclei in microscopic images of
Haematoxylin and Eosin (H&E) stained gliomas. The resulting nuclear analysis is then used
for further correlation with treatment response and patient survival. In Fig. 2, we illustrate
this analysis framework with its individual steps discussed below in detail.
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B. Parallel Image Processing
Each whole-slide image included in the TCGA dataset can exceed 2GB in size. Due to large
image size, data structures and intermediate results computed during whole slide image
analysis may exceed available main memory on a machine. Moreover, processing a large
image slide on a single machine can be slow. For these reasons, we partition each whole
slide image into non-overlapping regions to permit parallel analysis. After careful study of
hardware specifications and image properties, we selected an appropriate region tile size of
4096×4096 pixels. Meanwhile, the spin-off of whole-slide tiling makes it possible for us to
leverage parallel computation power to its full extent. We process images on a high-
performance computation infrastructure with a cluster of computer nodes that is used for
executing jobs simultaneously. This infrastructure configuration currently consists of seven
Dell 1950 1U rack mount units. Each unit is configured with Dual Xeon E5420 CPUs
running with four cores at 2.5Ghz for a total of eight cores per node.

C. Nuclei Detection
The first stage of nuclear analysis is the identification and segmentation of all brain tumor
nuclei present in digital slides [6]. In an effort to solve issues mostly arising from variations
in image intensity, color, texture, and data scale, we employ a method that accommodates
the identification of nuclei with distinct characteristics. The first module in this method is
the recognition of non-tissue and red blood cell regions. The percentage of areas occupied
either by blank spaces or red blood cells is computed to determine whether a given tile
contains sufficient material for analysis. We then apply mathematical morphology
operations to the tile for normalizing background regions degraded by artifacts arising from
tissue preparation and the scanning process. This operation makes it possible to separate the
foreground substantially from the normalized background with straightforward user-defined
threshold mechanisms. Clumped nuclei are subsequently segregated using the watershed
technique [7]. Finally, detected objects not satisfying either area or shape constraints are
filtered out from the identified nuclei set, making the resulting nuclei set more uniform.

D. Nuclei Characterization and Representation
A diverse, yet complementary set of nuclear features is computed to characterize the
segmented nuclei. Each individual nucleus is described using features from four broad
categories: nuclear morphometry, region texture, intensity, and gradient statistics. As
nuclear morphology is informative for distinguishing astrocytic and oligodendroglial cell
differentiation, morphometric features such as the degree of elongation, size, and regularity
are included. Nuclear texture information is also captured using multiple texture descriptors,
as there is significant variation in texture across nuclei of distinct categories due to the
clumping of chromatin. A complete list of features is presented in [6]. Additionally, we
apply the same set of texture and gradient features to neighboring areas surrounding nuclear
regions and use these features derived from “cytoplasm” regions to strengthen the
representation power.

E. Nuclei Classification
Since it is critical to capture the full spectrum of glioma nuclei both within each tumor and
from all disease types, we classify by their feature descriptors with a 10-class classification
process. Since diffuse gliomas can be viewed as mixtures of oligodrengroglioma,
astrocytoma, and intermediate morphology elements with variable weights, we assigned to
each nucleus a score, i.e. a class label, defined as an integer ranging from 1 to 10, with 1
representing a classic oligodendroglioma and 10 a classic astrocytoma. The values in-
between represent nuclei exhibiting nuclear features across the oligodrengroglioma-
astrocytoma continuum. Since we define 10 different nuclear classes for recognition, it is
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ideal when the regression analysis, in which a large body of techniques closely tied to
machine learning can be utilized for nuclear score computation [8].

Regression analysis is typically used for exploring the relationship between a dependent
variable and a set of independent variables [9]. Meanwhile, it is also widely used for
predicting a response variable from a set of explanatory variables, given the regression
function. In our study, the generalized linear regression function is used because of the
following: First, linear models are straightforward and therefore appropriate for revealing
the dominant patterns between nuclear score and features. Second, linear models are less
subject to over-fitting problems than non-linear ones, since they do not take into account the
sensitive effects of cross-terms. However, it is well known that linear least-square estimates
are heavily subject to either outliers or heavy-tailed error distribution. Therefore, we use the
iteratively reweighted least-square criterion (IRLS) as the remedy to mitigate the influence
from outlier data [10]. With this approach, we now aim to minimize the following cost
function:

(1)

where  is a vector of predictors from the i-th observation, yi is
the response to xi, and β is the set of p+1 coefficients to be determined; f (·) is a function that
evaluates the contribution of each residual to the overall cost function. In our study, we
choose f (·) to be the bi-square objective function, as the associated weight function
decreases sharply when residual departs off 0. The final solution can be produced by an
iterative computation process described as follows:

(2)

where  is the response vector;WB is a diagonal matrix determined by
residuals that, in turn, depend on the estimated parameters. Circularly, the parameters rely
on the weight functions. As a result, an iterative computation process gradually yields a
stabilized coefficient vector.

III. EXPERIMENTAL RESULTS
Our dataset is drawn from TCGA project on GBMs. GBMs are considered to be grade IV
astrocytic neoplasms, but they may contain a variable degree of oligodendroglioma as well.
These GBMs have digitized pathology images with a rich set of annotations generated by
seven TCGA consortium neuropatholgists. These annotations describe, among many
features, the degree of oligodendroglioma present as 0 (none), 1+ (present) or 2+ (abundant).
All digitized slides included in the dataset are the H&E stained sections of GBMs that were
formalin-fixed and paraffin-embedded. In aggregate, more than 22 million neoplastic nuclei
in 428 whole slides scanned at 20x magnification from 162 patients were analyzed with the
aforementioned image processing pipeline. With the aforementioned computer cluster, the
execution time cost is less than 36 hours. A typical slide region overlaid with analyzed
nuclear boundaries and score ranges is presented in Fig. 3.

In order to find the best set of feature descriptors for nuclear representation, an experienced
neuropathologist assigns nuclear scores to a set of nuclei selected in a way such that they
cover the entire oligo-astro spectrum. With this set of scores, we begin the discovery of
discriminating features by computing correlation of each feature and the score. The top eight
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features exhibiting high correlation with the nuclear score are selected as candidates for
further selection. This is followed by a greedy search on all possible combinations of k
features from this feature subset, where k = 1, 2, …, 8. This yields 255 distinct combinations
of features to search with. The best feature subset is identified by minimizing the following
cost function:

(3)

where ω is a set of selected features; N is the number of nuclei with scores from the
neuropathologist; s and ŝ are the human-assigned and computer-estimated nuclear score,
respectively.

Using the best feature subset, we find the best linear regression model with equation (2).
With the best linear regression model, we can compute the nuclear scores for all nuclei
identified in 428 slides, in turn. To follow the same way TCGA glioma slides were visually
classified by a panel of seven TCGA certified neuropathologists in terms of the degree of
oligo-component present, we compute the ratio of the number of oligo-nuclei (with nuclear
score in [1~3]) to that of astro-nuclei (with nuclear score [5~10]) from slides for each patient
and cluster with k-means algorithm the patient oligo-to-astro ratios into three oligo-
component clusters: namely, oligo-0, (i.e. lack of oligo-component), oligo-1+, (i.e.
intermediate level of oligo-component), and oligo-2+, (i.e. abundant oligo-component). In
Fig. 4 (a), we present the resulting scatter plots and the heuristic Gaussian probability
density functions of the oligo-to-astro ratios associated with 162 patients grouped by the
three oligo-component categories visually reviewed by the TCGA neuropathologists. With
oligo-0 and oligo-2+ populations, the resulting p-value for the two-sample t-test is 7.78e–3.
In Fig. 4 (b), populations of patients are categorized with the oligo-component group labels
from the unsupervised k-means algorithm. With oligo-0 and oligo-2+ populations, the
resulting p-value for the two-sample t-test is 3.75e–7.

With these two different oligo-component classification results, we further investigate the
clinical significance of the oligo-component by correlating with the response to therapy and
survivals. In Table 1, we present the p-values of the Log-Rank test [11] with the patient
survival data of different oligo-component groups determined by 1) the TCGA
neuropathologists’ visual assessment, and 2) the unsupervised clustering process on the
oligo-to-astro ratios. The result shown in Table I suggests that no Log-Rank test yields
statistical significance with the survival data. Additionally, the p-values associated with
human-reviewed and algorithm-produced oligo-component groups are very similar in most
cases. In Table II, we summarize the p-values of the Log-Rank test with the survival
outcomes of patients of different oligo-component groups that are treated with different
therapies, i.e. aggressive vs. normal. It is noted that patients in oligo-0 group classified both
by neuropathologists’ visual assessments and by machine-based clustering process present
significant survival difference in response to different therapies, while patients in oligo-2+
cluster show significance in neither case. When patients only from either (oligo-1+) or
(oligo-1+ and oligo-2+) group are studied, computer-based analysis shows significantly
favorable response to aggressive therapy as compared to standard therapy. However, human-
based grouping analysis fails to present such a separation of treatment response to these
therapies. This finding suggests that the quantitative analysis does present more
discrimination power than its qualitative counterpart. This is partly due to the fact that the
quantitative analysis can be easily scaled-up without contaminating performance. As the
training samples annotated by human experts are limited when compared with the total
number of neoplastic nuclei in whole-slide images, human experts could identify oligo-astro
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nuclei in the small training set with high accuracy. However, neuropathologists’
performance could be substantially devastated when the scope of analysis is expanded to
include all nuclei in whole-slide images. As opposed to neuropathologists, the compute-
based process is not affected by the scale of the nuclear quantity. As a result, it is not
surprising to see the computerized analysis achieves better discrimination power than
neuropathologists, even though it were neuropatholgists who provided the annotated data
with which computer-based algorithms were trained.

IV. CONCLUSIONS
This paper presents a correlative analysis of the degree of oligo-component in GBMs with
treatment response and patient survival. As opposed to human visual reviewing process for
classifying gliomas, we used quantitative nuclear features computed from imaging data with
high-throughput microscopy image processing executed on a parallel computational
infrastructure. In aggregate, more than 22 million nuclei were analyzed by the computer
algorithms and used for oligo-component classification. When compared with a panel of
neuropathologists, the computerized analysis results in better discrimination between GBMs
with differing degrees of oligo-component, at least with regard to predicting response to
therapy. This suggests that the in silico analysis method presented here is a promising
approach to facilitate a better understanding of glioma progression and patient response to
therapy.
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Fig. 1.
The spectrum of nuclear features in glioma tumors is presented. Between the pure
oligodendroglial and astrocytic nuclei there exists a spectrum of nuclei with mixed
characteristics.
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Fig. 2.
The nuclei analysis schema, consisting of image tiling, segmentation, feature computation,
and classification, is presented.
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Fig. 3.
A typical image region is presented with overlaid nuclear boundaries in blue, green and red,
representing nuclear score intervals of [1~3], [4~6], and [7~10], respectively.
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Fig. 4.
Scatter plots and estimated Gaussian PDFs are presented with oligo-astro ratios of patients
classified as oligo-0 (blue), oligo-1 (red), and oligo-2+ (green), by (a) TCGA
neuropathologists; (b) K-means clustering method.
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TABLE I

WE PRESENT P-VALUES OF LOG-RANK TEST WITH SURVIVAL DATA FROM PATIENTS OF
DIFFERENT OLIGO-COMPONENT GROUPS DETERMINED BY HUMAN VISUAL REVIEW AND K-
MEANS CLUSTERINGMETHOD.

Oligo-Group Oligo-Group Visual Assessment Unsupervised Clustering

0 (1, 2) 2.55e – 1 2.92e – 1

1 (0, 2) 1.64e – 1 2.41e – 1

2 (0, 1) 4.61e – 1 4.54e – 1

0 1 1.80e – 1 2.55e – 1

0 2 4.57e – 1 4.90e – 1

1 2 2.09e – 1 4.17e – 1

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 March 2.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kong et al. Page 12

TABLE II

WE PRESENT P-VALUES OF LOG-RANK TEST WITH SURVIVAL DATA FROM PATIENTS
RECEIVING DIFFERENT TREATMENTS AND PRESENTING DIFFERENT OLIGO-COMPONENTS
DETERMINED BY HUMAN VISUAL REVIEW AND K-MEANS CLUSTERING METHOD.

Oligo-Group Visual Assessment Unsupervised Clustering

0 5.40e – 5 3.02e – 3

1 2.79e – 1 6.41e – 3

2 6.06e – 2 5.37e – 2

(1, 2) 1.03e – 1 1.24e – 3
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