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Abstract
In this study, we develop asynchronous probabilistic cell cycle models to quantitatively assess the
effect of ionizing radiation on a human colon cancer cell line. We use both synchronous and
asynchronous cell populations and follow treated cells for up to 2 cell cycle times. The model
outputs quantify the changes in cell cycle dynamics following ionizing radiation treatment,
principally in the duration of both G1 and G2/M phases.

I. Introduction
The study of the cell cycle kinetics using mathematical models provides a quantitative
framework to help identify and develop effective drug targets and multiple drug targeting
strategies [1]. The cell cycle kinetics have been modeled using both top-down and bottom-
up approaches. The mechanistic models that are based on biochemical modeling of protein
dynamics involved in the cell cycle form the bottom-up approaches. The cell cycle kinetics
are modeled using ordinary differential equation models in these bottom-up approaches
[2-4]. The top-down approaches use a probabilistic approach to model the overall cell cycle
kinetics in terms of calculating the distribution of cells among different cell cycle phases
[5-9]. Both deterministic and probabilistic cell cycle models are used to study the effects of
different treatments on the cell cycle kinetics in [2, 5, 6, 8].

In this work we develop an asynchronous probabilistic cell cycle model to quantitatively
analyze cell cycle kinetics of asynchronous cell populations. The model developed here is an
extension of our previous model that was developed for synchronous cell populations [10].
The asynchronous model developed here is the most general modeling framework that is
capable of capturing cell cycle kinetics of both synchronous and asynchronous cell
populations under treatment or no treatment conditions. We have applied the asynchronous
cell cycle models to study the effects of ionizing radiation (IR) treatment on the cell cycle
kinetics of mismatch repair deficient (MMR-) human colorectal carcinoma cell lines. The
DNA mismatch repair system is an important repair mechanism in the cell that ensures
genomic stability by correcting mismatches generated during DNA replication and
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recombination. Mismatch repair deficiencies are known to be associated with certain
cancers. The mismatch repair system also contributes to genomic stability by initiating cell
death through apoptosis in response to certain DNA damaging agents, so the loss of
mismatch repair leads to resistance to chemotherapeutic agents and other types of DNA
stress [11], thereby complicating the cancer treatment process.

The chemotherapy resistance of mismatch repair deficient tumors has led to the design of
selective treatment strategies toward the treatment of such tumors. One such strategy is to
use nucleoside analogs as radiosensitizers in order to increase the sensitivity of deficient
cells to ionizing radiation (IR) [12]. We have studied the effect of the radiosensitizer
iododeoxyuridine on the cell cycle kinetics of synchronized mismatch repair proficient and
deficient cells in [10]. In this work, we have extended the synchronous models such that
they apply to asynchronous cell populations, and used these models to study the effect of IR
on mismatch repair deficient cells. Our long term goal is to use the models to quantitatively
analyze the efficacy of the treatment strategy that combines iododeoxyuridine treatment with
IR treatment. The model structure and equations are given in Section II, followed by the
modeling results in Section III. Section IV concludes the paper.

II. Cell Cycle Model
The cell cycle is the cycle of growth and division of cells. It is comprised of four sequential
phases; namely gap 1 (G1), synthesis (S), gap 2 (G2) and mitosis (M) phases [13]. The gap
phases are the phases where the cell growth occurs. The cells duplicate their protein mass
and organelles during the gap phases. The suitability of internal and external conditions for
S phase and mitosis are also monitored during the G1 and G2 phases respectively. The DNA
duplication occurs in S phase. M phase is when the chromosome segregation and cell
division occurs. The experimental data we have used in this work is the flow cytometry data
that provide the distribution of cells in each cell cycle state for an asynchronous cell
population in terms of percentages.

We have modeled the cell cycle using a finite state automaton where the states of the
automaton correspond to cell cycle phases. We have first developed these models for
synchronous cell populations in [10]. Here, we extend this effort to asynchronous cell
populations which is the most general case. The jumps between the states in the finite state
automaton model represent transitions from one cell cycle phase to another. The
probabilistic jumps are modeled using continuous probability density functions to account
for the time spent in each cell cycle phase. The population behavior is obtained by
aggregating individual cell models. The probability density function fX-Y(tj|ti) represents the
jump from state X to state Y at time tj, given that the jump to state X occurred at time ti. The
model is shown in Fig. 1, together with an example of the probability density function used
in the development of the model. We have used triangular density functions that are defined
by two parameters; the mean (m) and the support (v). We have G2 and M phases lumped
together in the model because the experimental data that comes from flow cytometry
measurements provide data on the lumped phase instead of the individual G2 and M phases.

The state variables of the model (ni's) are the flow of cells into each cell cycle state per unit
time. The update equations for each ni are as follows:

(1)
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For the equations given in (1), n1 is the flow into G1 phase, n2 is the flow into S phase, and
n3 is the flow into G2/M phase. The flow into a particular cell cycle phase is calculated as
the convolution (denoted by the symbol * on the right hand side of the equations) between
the flow into the previous cell cycle phase and the probability density function that
represents the jump from this previous cell cycle phase. The equations represent the flow of
cells that have left the previous cell cycle phase and have entered the next cell cycle phase.
The factor 2 in the equation for n1 is due to the doubling of the cells leaving the G2/M phase
and entering the G1 phase.

The total number of cells in each cell cycle phase is calculated as the integral of the
difference between the flow of cells into a particular cell cycle phase and the flow of cells
leaving that cell cycle phase. The equations for the total cell numbers in each cell cycle
phase are given below:

(2)

For the equations given in (2), N1 is the total number of cells in G1 at time t, N2 is the total
number of cells in S phase, and N3 is the total number of cells in G2/M phase. The
distributions of cells in each cell cycle phase given as percentages are calculated using the
formulas as follows:

(3)

The initial conditions for the flows n1, n2, and n3 are required to simulate the response of the
asynchronous probabilistic cell cycle model given by the Equations 1 – 3. The initial
conditions for the treatment cases are calculated from the experimental data for the untreated
asynchronous cell populations that are in steady state. The steady state equations for the
flows n1, n2, and n3 for the untreated (i.e. no IR) asynchronous cell population are:

(4)

For the equations given in (4), x1, x2, and x3 are the initial flows at time t=0, and tc is the
cell cycle time for the untreated cell population. The steady state flows are substituted into
the equations given in (2), and these equations are then substituted into equations given in
(3) to obtain the percentages in each state at steady state as:

(5)
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The percentages given in (5) correspond to the steady state percentages measured by flow
cytometry for the untreated asynchronous cell populations. The initial flows x1, x2, and x3
can be calculated by comparing the equations given in (5) to the experimental data.

The other parameter that is needed to evaluate steady state equations for the flows n1, n2,
and n3 using (4) is the cell cycle time (tc) for the untreated asynchronous cell population at
steady state. This cell cycle time can be calculated from the model parameters for the
untreated case. The model development for the untreated case requires that the cells are
perturbed from their steady state. This perturbation is obtained by synchronizing the cells by
serum starvation for the experimental data presented in this work. The flow cytometry data
obtained from the perturbed untreated cell population are then used to estimate the
parameters of the model for the untreated asynchronous population. The model equations for
the untreated case are the same as the treatment cases, and as given by the equations in (1) –
(3). The untreated asynchronous data are used for model initialization, and the initial flows
are calculated using the equations given in (4) and (5). The cell cycle time for the untreated
cell population model is also estimated during the parameter estimation process.

The model parameters (means and supports) are iteratively estimated using flow cytometry
measurements. The cost function used for the model fitting is defined as:

(6)

In equation (6), d1, d2 and d3 are the flow cytometry measurements of the percentages of the
cells in G1, S and G2/M phases, respectively. The corresponding model outputs for these
percentages are represented by y1, y2 and y3, respectively. The inner summation runs for all
the experimental time points from the initial time t0 to the final time tf. The “fmincon”
function of Matlab® (The MathWorks, Inc, Natick, MA) is used for parameter optimization.
The parameters are constrained such that the probability density functions have zero value
for negative values of time and integrate to one.

III. Results
We have developed asynchronous cell cycle models to quantitatively analyze the cell cycle
kinetics of the mismatch repair deficient human colon cancer cell lines. The models are used
to analyze the effect of ionizing radiation treatment on cell cycle kinetics of these cancer
cells. The experiments were performed on HCT116 cell line. The cells were first
synchronized by serum starvation. These untreated cells became less synchronous
(asynchronous) within 10 – 12 hrs following release (t=0 hr) into fresh medium. The
asynchronous cell populations were then treated with IR (5 Gy) at 13, 16 and 21 hrs
following release. IR was delivered using a 137Cs γ-irradiator at 370 cGy/min. Cell cycle
profiles for both synchronous untreated cells and IR treated cells were measured using flow
cytometry.

The untreated cell populations are synchronized, and the synchronous models we developed
previously are adapted for these populations [10]. The IR treatment was applied at later
experimental times (t=13, 16 and 21 hrs) when the cells are already asynchronous, so the
asynchronous models are used for these cases. The synchronous model equations are
essentially the same as the asynchronous model equations just described in (1) – (3) in the
manuscript. The primary difference between the synchronous and asynchronous models
comes from the definition of the initial flows for n1, n2, and n3. The initial flow derivations
for the asynchronous models are discussed above. For the synchronous case, all the cells are

Gurkan-Cavusoglu et al. Page 4

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 January 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assumed to start in G1 at t = 0 hr, once they are released into complete media. All the other
flows are initially assumed to be zero.

The experimental data measures the distributions of the cells for the first and second cell
cycles making it possible to estimate the parameters for a second cell cycle. We have two
different parameter sets for the first and second cell cycles. Having a second set of
parameters for the second and consecutive cell cycles is biologically meaningful since we
observed that the cells have a longer first cell cycle time due to recovery from the stress
induced by serum starvation, independent of subsequent treatment.

The initial flows for the cell cycle models for IR treatment are obtained from model
simulations of the synchronous models developed for the untreated case. The IR is applied at
three different time points, i.e. 13, 16 and 21 hrs, and the data from all these three scenarios
are combined together for parameter estimation. The results of the model outputs and the
model parameters are given in Fig. 2 and Table I respectively. The models successfully
captured the dynamics of the cell cycles of the untreated and IR treated cells. The IR treated
cells show a G1 delay in their first cell cycle. IR-treated cells remain in G1 phase 2 hours
longer than the untreated cells. IR-treated cells also show a marked G2 arrest in their first
cell cycle. The parameters for the second cell cycle are not compared due to very low
sensitivity values for the IR treated case.

The sensitivity analysis is carried out for each model developed in this work. The parameters
of each model are either increased or decreased by 10% one at a time, and the corresponding
change in the cost function given in equation (6) is calculated as percent change with respect
to the original cost value calculated using the original model parameters. The parameters
that have changed the cost more than 4% on average for a 10% increase or decrease are
reported as the parameters that are estimated effectively, and marked as boldface in Table I.
The experimental data are sampled every hour, and this affects the sensitivity and estimation
of the supports with values less than one hour. The sensitivity analysis is performed by
decreasing or increasing the parameters by 10%. This also affects the sensitivity values of
the supports due to the fact that changes in the parameters are usually less than an hour, and
shorter (< 1 hour) sampling times are required in future experiments to increase the
sensitivity to such small changes in the support values.

The synchronous model parameters for the untreated cells are effectively estimated. The
model for IR treatment is sensitive to first cycle parameters. These models are not very
sensitive to the parameters for the second cell cycle parameters. The reason is that IR
treatment causes both a G1 and G2 arrest in the first cycle, and the first cycle becomes
longer. The data are taken for up to 28 hours, and because of the longer first cell cycles, the
28 hours data allow for effective estimation of only the first cell cycle parameters.

IV. Conclusion
The asynchronous cell cycle models developed in this work can be used to quantify the cell
cycle kinetics of various cell types under no treatment and treatment conditions. The use of
such models allows for the analysis of the effects of different treatments on cell cycle
dynamics. These analyses can further be used to guide the design of effective treatment
strategies that specifically target the cell cycle kinetics.
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Fig. 1.
Probabilistic mathematical model of the cell cycle (panel A) and an example of the
probability density function (panel B).
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Fig. 2.
Asynchronous models for MMR- cells treated with IR. G1 model (△), G1 experimental data
(−); S-phase model (◇), S-phase experimental data (−); and G2 model (○), G2 experimental
data (−).
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TABLE I

MODEL PARAMETERS (m AND v ARE MEASURED IN HOURS)

MMR-Untreated MMR-IR

First Cell Cycle

G1

m1 13.19 15.23

v1 7.47 5.97

S
m2 8.66 8.61

v2 5.53 8.10

G2/M
m3 3.47 11.06

v3 0.57 11.06

Second Cell Cycle

G1

m1 3.85 4.65

v1 3.85 0.58

S
m2 6.24 29.92

v2 0.74 29.82

G2/M
m3 2.32 36.14

v3 2.32 26.27
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