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Abstract
Neurological disease is often associated with changes in firing activity in specific brain areas.
Accurate statistical models of neural spiking can provide insight into the mechanisms by which
the disease develops and clinical symptoms manifest. Point process theory provides a powerful
framework for constructing, fitting, and evaluating the quality of neural spiking models. We
illustrate an application of point process modeling to the problem of characterizing abnormal
oscillatory firing patterns of neurons in the subthalamic nucleus (STN) of patients with Parkinson's
disease (PD). We characterize the firing properties of these neurons by constructing conditional
intensity models using spline basis functions that relate the spiking of each neuron to movement
variables and the neuron's past firing history, both at short and long time scales. By calculating
maximum likelihood estimators for all of the parameters and their significance levels, we are able
to describe the relative propensity of aberrant STN spiking in terms of factors associated with
voluntary movements, with intrinsic properties of the neurons, and factors that may be related to
dysregulated network dynamics.

I. Introduction
Abnormal neural firing in the subthalamic nucleus (STN) of patients with Parkinson’s
disease (PD) is postulated to play a role in the pathogenesis of the tremor, rigidity, and
akinesia that characterize the disorder [1]–[3]. Modifying neuronal firing patterns in the
STN using deep brain stimulation (DBS) significantly reduces the severity of these
symptoms [4]–[5]. However, the mechanisms by which DBS achieves its effects remain
unclear.

Analyses of spike train data from STN typically employ separate descriptive statistical
techniques to characterize distinct features of the data. Short-term history dependence is
often analyzed with interspike interval histograms [6], while long-term history dependence
related to neural oscillations is often analyzed using spectral estimators [7]. Separately,
tuning curves are often estimated to relate STN spiking rates to features of voluntary
movements, such as the direction of an arm reach [8]–[10].

An alternate approach to characterizing the statistical properties of neural spike train data is
the construction of point process probability models [11]–[13]. Point process models have
been used successfully to model and decode neural firing in rat hippocampus during a
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spatial navigation task [14], [15], in primate hippocampus during learning tasks [16], [17],
and in primate motor cortex during arm reaching tasks [13], [18], among others.

A central component of point process neural modeling is the specification of the conditional
intensity function, which defines the probability of a spike in any small time interval as a
function of the biological covariates to which neural firing is tuned and as a function of the
neuron’s past firing history [11]. Here, we present a point process generalized linear model
(GLM) for characterizing the spiking activity of STN neurons, recorded from PD patients,
that relates spiking probability simultaneously to factors such as the time course of
movement planning and execution, directional selectivity, refractoriness, bursting and
oscillatory dynamics. We illustrate the application of this model to a sample dataset
recorded from STN during a voluntary movement task.

II. Methods
We constructed conditional intensity models for neurons in the STN that describe the
probability of spiking at each instant as a function of the time relative to the start of a
reaching movement and of the recent spiking history of the neuron in the past 150 ms. Given
the observation interval, [0,T], let Ni(t) be a counting process signifying the total number of
spikes fired by the ith neuron in the recorded population in the interval [0,t], for t ≤ T. The
conditional intensity for this neuron is defined as:

(1)

where Ht is the past spiking history of all observed neurons up to time t.

To analyze the spiking propensity of the STN neurons, we specify the spiking intensity
function at each time t as a function of the time relative to the start of a voluntary arm
movement and the neuron’s spiking history in the preceding 150 ms as follows.

Here, gl,d(t) is a basis function for a cardinal spline for the movement direction d, na:b is the

number of spikes observed in the interval (a,b] and  are a set
of unknown parameters which relate movement time course and the neuron’s spiking history
to current spike rate. Cardinal splines are locally defined third order polynomials that can
approximate any continuous function [19], making them a flexible class of basis functions
for relating movement variables to spiking activity. The times tstart and tend are the analysis
start and stop times respectively.

It follows from the definition of the conditional intensity function that the probability of a
spike in a small time interval [t,t+Δ) is approximately:

(2)

Hence, the intensity function defines the spiking probability in any small time interval [t,t

+Δ). The  parameters measure the effect of movement planning and execution on
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the spiking probability. The  parameters measure the effects of spiking history in the
previous 10 ms to capture the effects of refractoriness and bursting on the spiking

probability. The  parameters measure the effects of the spiking history in the previous
10 to 150 ms, which are most likely associated with both the neuron’s individual spiking
activity and also that of its local network.

This spiking intensity function defines a point process GLM for the observed spike train
data. Such models have concave likelihood surfaces, which allow us to compute maximum
likelihood estimates for the model parameters in a straightforward manner [13]. We
examined the model fits to the data separately prior to movement onset (tstart = −1000 ms,
tend= −500 ms) and during movement (tstart = 0 ms, tend= 500 ms). In order to compare the
temporal spiking properties prior to and during movement, we constructed an additional

model encompassing the entire trial (tstart = −1500 ms, tend= 1500 ms) where the 

and  parameters were fit separately for these two intervals. Significantly different
parameter estimates between these intervals suggest that the temporal neural firing
properties change as a function of movement.

III. Results
We illustrate the point process model fit to spiking data from a STN neuron obtained from a
patient undergoing DBS implantation surgery. During electrode placement, patients
performed a cued joystick movement task. Each trial began with the presentation of a small
central fixation point. After a brief delay (250 ms), four small gray targets appeared, arrayed
in a circular fashion around the fixation point. After a 1500 ms delay a randomly selected
target turned green. At this point the subject used the joystick to guide a cursor from the
center of the monitor towards the green target. The methods associated with intraoperative
microelectrode recordings and data preprocessing are described in [20].

Figure 1 shows the model parameters and their uncertainty for the maximum likelihood fit to
this data. Figure 1A shows the spline estimates and 95% confidence bounds of the stimulus
related component as a function of time relative to movement onset, with the splines for the
four directions plotted in separate colors. In each case, the firing intensity is initially low and
begins to increase about 500 ms prior to movement onset. The intensity reaches a peak
between 200 ms prior to movement onset to 400 ms after movement onset, and eventually
returns to initial firing levels. The shaded areas surrounding each estimate represent 95%
confidence regions about the firing rate, which can be used to determine when the estimated
rate in one direction is statistically different from another. For example, in the direction
indicated by the red line at movement onset, the firing rate is significantly lower that in the
directions indicated by the blue and green lines.

Figures 1B and 1C show the short term history components of the model using the data 1500
ms to 1000 ms prior to movement onset and from movement onset to 500 ms into the
movement, respectively. In both cases, the value of exp (β0) is approximately 0.5 and is
significantly smaller than one, indicating that the probability of observing a spike in a 1 ms
bin is reduced if a spike was observed in the previous 1 ms bin. The values of exp (β1) and
exp (β2) are significantly larger than one, indicating that the probability of firing increases
2–4 ms after a spike. The temporal spiking properties within the first 10 ms are not
significantly different before and during movements.

Figures 1D and 1E show the model parameter estimates related to long-term history effects
before and during movement, respectively. In the period prior to movement onset, these
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parameters have a distinctive shape. exp (γ2), the parameter relating to interspike intervals
(ISIs) between 20 and 30 ms, is significantly smaller than one while exp (γ4) and exp (γ5),
relating to ISIs between 40 and 60 ms are significantly larger than one. This pattern
consisting of a significantly decreased probability of firing 20–40 ms after the previous
spike and a significantly increased probability 40–90 ms after a spike was present in the
majority of neurons we examined. During movement, the values of the long-term history
parameters indicate virtually no significant effect of past spiking beyond 10 ms, with only
exp (γ2) significantly different from one. Although there is still some inhibition 20–30 ms
after a spike during movement, this effect is significantly reduced from the period prior to
movement initiation.

III. Discussion
By calculating maximum likelihood estimators for all of the parameters and their
significance levels, we were able to simultaneously characterize multiple features previously
associated with these neurons such as increased firing as a function of movement planning
and execution, directional selectivity, refractoriness, bursting, and oscillatory spiking that is
attenuated during movement. We also found that in nearly all of the recorded neurons, the
probability of firing a spike was significantly reduced 20–30 ms after a previous spike,
suggesting that the previously described oscillatory firing of these neurons is composed of
an initial period of inhibition followed by a period of increased firing probability. This
model is able to capture the relative propensity of aberrant STN spiking in terms of
movement associated factors, factors associated with intrinsic properties of the neurons, and
factors that may be related to dysregulated network dynamics.

The mechanism for the oscillatory behavior of STN neurons is not fully understood. The
pattern of inhibition and excitation we observed from 20–100 ms after a previous spike
suggests possible network mechanisms. One hypothesis is that synchronized firing in the
STN feeds back to the globus pallidus pars externa (GPe), which then provides a wave of
inhibition back to STN [21]. The timing of the oscillatory spike patterns would therefore be
determined by the time course of excitation and inhibition within this recurrent loop.

Point-process analyses provide an elegant approach to determining the contributions of
intrinsic dynamics and external stimuli to the propensity of neurons to fire. Future work will
focus on characterizing these effects in large, simultaneously recorded populations, on
quantifying the relative contributions of these effects in driving neural rhythms, and on
developing models for how these aberrant oscillations lead to the observed pathology in
Parkinson’s disease.
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Fig. 1.
A) Stimulus related firing intensity estimates in each of four movement directions. B) Short
term history (0–10ms) parameters prior to movement. Blue line represents parameter
estimates, black dots represent confidence intervals. C) Short term history parameters during
movement. D) Long-term history parameters (10–150ms) prior to movement. E) Long-term
history parameters during movement.
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