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Abstract— The ability to provide sensory feedback is desired
to enhance the functionality of neuroprosthetics. Somatosensory
feedback provides closed-loop control to the motor system,
which is lacking in feedforward neuroprosthetics. In the case
of existing somatosensory function, a template of the natural
response can be used as a template of desired response elicited
by electrical microstimulation. In the case of no initial training
data, microstimulation parameters that produce responses close
to the template must be selected in an online manner. We
propose using reinforcement learning as a framework to balance
the exploration of the parameter space and the continued
selection of promising parameters for further stimulation. This
approach avoids an explicit model of the neural response
from stimulation. We explore a preliminary architecture—
treating the task as a k-armed bandit—using offline data
recorded for natural touch and thalamic microstimulation, and
we examine the methods efficiency in exploring the parameter
space while concentrating on promising parameter forms. The
best matching stimulation parameters, from k = 68 different
forms, are selected by the reinforcement learning algorithm
consistently after 334 realizations.

I. INTRODUCTION

Neuroprosthetics are envisioned to both translate neural
signals to prosthetic operation and to deliver information
back to the nervous system. Electrical microstimulation has
been the primary vehicle for the latter. Microstimulation
in somatosensory cortical regions has been shown to elicit
responses that can be discriminated [1], [2]. In brain-machine
interfaces for motor restoration, somatosensory feedback
(both tactile and proprioceptive) may be useful to enhance a
users performance, where information from sensors would be
delivered to the central nervous system via spatio-temporal
microstimulation. In general, closed-loop feedback provides
context to the user, which may lead to more efficient co-
adaptation. However, if the microstimulation feedback causes
unnatural neural responses, then it is unclear whether this can
convey the proper context. Consequently, our goal is to elicit
a near-natural response for tactile or proprioceptive sensation.

In order to provide realistic feedback, the neural response
elicited by microstimulation should match the response to a
natural stimulus (e.g. cutaneous touch) as closely as possible.
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However, due to the underlying dynamics the neural response
may vary between realizations; thus, multiple realizations
may be needed to fairly evaluate the similarity of the
response to template of the natural response. Explicitly
modeling and inverting a model of the neural response
to microstimulation of varying parameters is alluring if
the model can be adapted online [3]; however, a general
model that encompasses all the parameters of spatio-temporal
stimulation may be ill-posed without sufficient training data.
If the possible stimulation space has many dimensions
it is inefficient to naively sample the space to generate
training data, and without sufficient data the model would
fail to generalize the complex relationships between neural
response and stimulation parameters [4]: making a model-
free approach appealing [5].

A human expert is able to efficiently probe both location
of stimulation and any stimulation parameters such as the
minimum amplitude needed to elicit a neural response. Re-
cent work in stimulation optimization points to the promise
of having automated systems to fine tune these parameters
in a closed-loop. In [6] the authors use nonlinear regression
to optimize the stimulation amplitude at a predetermined
electrode position for a given target potential in closed-loop
operation on multiple animals. The amplitude is selected
given the ongoing local potential at another predetermined
electrode position to increase the reliable control of the
evoked potentials. The authors in [5] use genetic algorithms
to optimize the temporal waveform for deep-brain stimula-
tion on a neural simulator. With microelectrode arrays, there
is the possibility to modify both the spatial and temporal
parameters of the stimulation. An action-selection approach
with binary rewards was used to select spatio-temporal stimu-
lation patterns in [7], but in their in vitro study the goal of the
stimulation was to adjust the underlying network connectivity
through repeated stimulation. A study [8] using simulated
neural circuits showed the ability to control firing rates
treating the stimulation as MIMO control problem. Recent
work described in [3] uses an inverse control architecture to
precisely control spiking on simulated neural circuits.

A. Reinforcement Learning

Along similar lines as the genetic algorithms, a reinforce-
ment learning framework may offer advantages for online
closed-loop operation without explicit models. Reinforce-
ment learning is both intuitive and mathematically sound.
Ultimately, the system must track non-stationarity inherent
in neural environments, explore numerous spatio-temporal



stimulation parameters, modify the stimulation with regard
to current neural activity, and perform well using only
stochastic evaluations of a similarity measure.

In this work, we explore a preliminary step toward this
goal: naive action selection method for choosing both the
electrode(s) (monopole or dipole) from a multi-electrode
array and the current amplitude for a single biphasic sym-
metric rectangular pulse. The objective is to maximize the
average cross-correlation between the stimulation evoked
potentials and the natural touch template recorded as local
field potentials in the somatosensory cortex. As the action
selection is agnostic to the ongoing neural activity, this is a
k-armed bandit problem in a possibly non-stationary envi-
ronment (k is the combinations of electrode configurations
and amplitudes). We test the performance of reinforcement
comparison [9] on an awake resting rat dataset with k =
68 total stimulation parameter forms, 4 amplitudes and 17
electrode configures. The method is able to find stimulation
parameters that elicit neural responses that near the natural
template that was recorded during mechanical thwacking of
a forepaw digit.

II. METHOD

The microstimulation parameter selection algorithm uti-
lizes an action selection function estimated by reinforcement
comparison. The underlying reward in the reinforcement
learning paradigm is based on the similarity between the
natural template and stimulation-elicited neural response.

We test the method on data collected in the somatosensory
cortex during microstimulation in the somatosensory region
of the thalamus. Stimulation earlier in the somatosensory
pathway may be an efficient mechanism in eliciting cortical
responses that match a natural template since intracortical
stimulation artifacts are avoided.

A. Similarity measure

We evaluate the similarity of single realization of the
microstimulation neural response to a template formed from
multiple realizations of a natural stimuli. Let the mean
natural neural response be denoted X̄ ∈ X and Yi,a ∈ X
be the neural response from ith response to microstimula-
tion with parameter form a ∈ A. The set of stimulation
parameter forms A is discrete with cardinality denoted |A|.
The objective is to choose a subset of stimulation forms A?

such that the neural responses Y1,a, Y2,a, . . . of form a ∈ A?
are closer to the natural neural response than the remaining
stimulation forms A \A?. Closeness is judged in terms of a
dissimilarity measure d(X,Y ) that operates in X .

For local field potential data we let X = RM×T be M
channels of local field potential values for T consecutive
samples surrounding the stimulation or natural touch. We
form the dissimilarity measure from the channel-average
cross-correlation,

d(X,Y ) =1−max
τ1,τ2

RX,Y (τ1, τ2)√
RX,X(τ1, τ1)RY,Y (τ2, τ2)

(1)

RX,Y (t, s) =

M∑
i=1

T∑
j=1

X(i, t+j) · Y (i, s+j) (2)

Either τ1 or τ2 is allowed to be nonzero to account for
jitter in the stimulation timing. In addition, samples outside
the window size are assumed to be zero.

B. Reinforcement comparison

In general, a state-action policy defines the probability
of choosing each stimulation form, at iteration n, given
the ongoing neural activity S, i.e. Pr{an=a|S=s}. In our
current treatment, we do not estimate a state variable and
denote this probability πn(a) = Pr{an=a}. Here an ‘action’
determines the parameters of the microstimulation event of
a given iteration, but does not control the relative timing of
the microstimulation.

For reinforcement learning we consider the estimated
reward to be the negative of average dissimilarity measure.
To avoid bias problems we choose each action once to
initialize the estimated reward and action values

ρ0(a) = r0(a) = −d(X̄, Y1,a) ∀a ∈ A. (3)

The probability vector at any iteration n is the normalized
action values

πn(a) =
exp ρn(a)∑
i∈A exp ρn(i)

∀a ∈ A. (4)

After initialization, at each iteration n = 1, . . ., we
draw an action an ∈ A with probability πn−1(an). The
reward for an is updated by averaging all of its realizations
Y1,an , . . . , Ym+1,an where m is the number of iterations
an was selected after initialization; specifically, m is the
cardinality of the set

{
j ∈ {1, . . . , n} : aj=an

}
.

rn(an) =
−
∑m+1
i=1 d(X̄, Yi,an)

m+ 1
(5)

The equation (6) for updating the action value ρ(an) is
called reinforcement comparison [9] since it compares each
reward to the average reward r̄.

ρn(an) =ρn−1(an) + β
(
rn(an)− r̄n−1

)
(6)

r̄n =
1

|A|
∑
i∈A

rn(i)

C. Action set adjustment

In this reinforcement learning framework, it is simple to
adjust A at any iteration: poor performing actions can be
removed and new actions can be added to approach a global
optimal. New actions are assigned an action value equal to
the current maximum. An explicit model trained concurrently
may also be able to extrapolate or interpolate new stimulation
forms not in the original set.



D. Data collection

Animal procedures were approved by SUNY Downstate
Medical Center IACUC and conformed to National Institutes
of Health guidelines. A single female Long-Evans rat was
implanted with two microarrays (16 contacts each in a 2 ×
8 grid Neuronexus). The electrodes covered somatosensory
areas of the cortex, S1, and the VPL nucleus of the thalamus
[10]. The neural activity on all channels was recorded using a
multi-acquisition processing system (Plexon, Inc.). Multiple
channels of both arrays had multiunit activity responsive to
cutaneous touch of forepaw digit.

Microstimulation was administered on single electrodes
(monopolar) or adjacent pairs (dipoles) of the thalamic
array. The stimulation waveforms were single symmetric
biphasic rectangular current pulses; for monopolar con-
figurations the first phase was negative. Each rectangular
pulse was 200µs long and had an amplitude from the set
{10µA, 20µA, 30µA, 40µA}. Inter-stimulus intervals were
exponentially distributed with mean interval of 500ms. Stim-
ulus isolation used a custom built switching headstage.

Field potential data from each of the 16 cortical channels
was amplified and filtered with an active bandpass filter with
cutoffs at 0.7Hz and 8.8kHz and sampled at 20kHz (National
Instruments PCI-6701E). Offline stimulation artifact cancel-
lation was performed using recursive least squares to predict
the potential using a causal finite impulse response filter on
the stimulation pulses; the residual approximates the artifact-
less signal. After cancellation, the signal was digitally filtered
with a Butterworth band-pass filter with cutoffs at (5Hz,
200Hz) and resampled at 0.8kHz.

During physiological recording, the rat was awake resting
in a box with a suspended mesh floor. Manual stimulation
was performed on the forepaw digit with a tactor when the
digit was not obscured by the mesh.

E. Test set

Each local field potential sample consists of 720 samples
(300ms) on the 16 cortical channels (see Fig. 1). Of these
samples 72 (30ms) precede the event timestamp (stimulation
or thwack onset), and the offsets τ1, τ2 from (1) are used
to best align the stimulation response to the natural touch
template. The results presented are from a singe recording
session. The natural template, X̄ in (5), was formed from
over 100 responses to mechanical thwacking, short light
touch with tactor, of a forepaw digit while the animal was
awake.

The microstimulation set, A, consisted of single biphasic
pulse waveforms with 68 parameter forms, 4 amplitudes
{10µA, 20µA, 30µA, 40µA} and 17 electrode configuration
(a combination of single electrodes and adjacent pairs). Each
form had 75 realizations in the full dataset. All 75 × 4
realizations for a given electrode configuration were done
consecutively, but the amplitudes were pseudo-randomly
arranged.

The quantitative results used offline analysis with 8 Monte
Carlo runs through the dataset. In each run the order of
realizations for each stimulation was permuted, and the first

realization from each of the 68 parameter forms was used
to initialize the reward estimates (3). An additional 500
realizations were sampled based on the update equations
(4), (5), and (6). The comparison gain in (6) was limited to
β = 0.1 in this analysis. This gain is linked to the cardinality
of the parameter set, A; for higher values of β the probability
vector will converge quickly, and for low values of β, actions
are explored more often before convergence.

(A) Averaged responses for all 16 cortical channels
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(B) 5 Realizations for a single cortical channel
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Fig. 1. Local field potential means (A) and realizations (B) for thwacking
(mean only) and a subset of microstimulation (after artifact cancellation).
For microstimulation the responses are shown for parameters with the best
fit response, the worst fit, and the reinforcement learning selected response.
Even the best fitting microstimulation evoked potential differs in shape from
the natural response; obtaining a better fit requires moving beyond single
pulse waveforms.

III. OFFLINE ANALYSIS

To assess the performance of the paradigm the 8 Monte
Carlo runs using the action selection algorithm were com-
pared to results obtained using the full dataset. Optimality
is assessed using the cross-correlation, 1 − d(X,Y ) from
(1), of all 75 samples from each parameter form. Cross-
correlation across the full range of parameter forms is shown
in Fig. 2. The relatively low results for cross-correlation show
the evoked potentials differ from naturally evoked potentials.
This is not surprising since this test set is limited to single
pulse waveforms on single or adjacent electrodes; more
natural responses may be possible through spatio-temporal
patterns.



The selection rates for the top 64 parameter forms are
shown in Fig. 3, where color indicates the ranking based
on the full data. It is clear that after 250 iterations the
stimulation forms with the best matching responses are
consistently selected with increasing probability. This results
shows the promise of the method to explore the space while
concentrating on near optimal solutions. The average reward
for each stimulation form at the end of the 500 iterations is
comparable to the reward after sampling from the full dataset
in Fig. 4.
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Fig. 2. Normalized cross-correlation across stimulation configurations
(different monopoles and dipole pairs of thalamic channels) and stimulation
amplitudes. Error bars show standard deviation over 500 bootstrap resam-
pling.
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Fig. 3. Selection traces for the top 64 parameter forms. Color indicates
rank where smaller is indicated by blue and is better, the best-matching
form is bolded.

IV. CONCLUSION

In this work we propose using reinforcement learning
as a framework for online selection of microstimulation
parameters to elicit an evoked response close to a natural
template. This is a primarily step toward optimization of
feedback to the brain for somatosensory neuroprosthetics,
which can augment such brain-machine interfaces. Ideally,
microstimulation that elicits a near-natural neural response
may be well suited to provide contextual feedback in a
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Fig. 4. Reward for each parameter form using all (5100 = 68 × 74)
realizations versus average reward after 500 iterations (568 realizations).

neuroprosthesis, but for brain-machine interfaces the results
must be gauged by behavior experiments or improvements
in task performance.

We treated stimulation parameter selection as a k-armed
bandit problem, whereas future work can couple state esti-
mation into the action selection such as [6] and also spatio-
temporal waveform selection. The results from offline anal-
ysis of neural data show reinforcement learning algorithms
can efficiently sample from promising microstimulation pa-
rameter forms, while still exploring the parameter space.
The next step is testing this paradigm online with more
complex spatio-temporal patterns that may be able to elicit
more naturalistic responses.
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