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Abstract— This paper addresses the robustness of the filtering
schemes in processing high resolution electroencephalogram
(EEG) data in the context of discriminating two stimuli flick-
ering at a given frequency. The raw data consists of recordings
from a 128-channel HydroCell GSN where the subject was
visually stimulated with two images flickering at 17.5 Hz,
representing two distinct conditions, referred to as Face and
Mock. These signals were then passed through a band pass filter
to only capture the modulation at the flickering frequency, and a
connectivity analysis was performed on the filtered signal using
generalized measure of association, to observe if the network
connectivity changes from one stimulus to the other. In this
paper, we investigate the effect of the bandpass filter on the
discriminability of the stimuli over different filter orders and
quality factors. We observe that the network connectivity is
stable over a significant range of parameter values of the filter,
thus establishing the desired robustness.

I. INTRODUCTION

The problem of determining how different parts of the

human brain connect functionally, has been the focus of

much research in the past decades. Current methods of

studying cognitive interactions vary in their spatial-temporal

resolution depending on the approach used, such as synaptic,

hemodynamic, or nuclear. Recently, fMRI has been the tool

of choice to study brain connectivity as it exhibits a high

spatial resolution. However, its dependence on the blood flow

drastically reduces its temporal resolution (∼ 1 sec). Given

that a rough time estimate for neural communication i.e. the

time for a path completion from a neuron to another ranges

between 1 ms and 100 ms depending on the neurons char-

acteristics [1], fMRI is not suitable for exploring cognitive

tasks where time scales of interest do not exceed 100 ms.

This actually applies to all the currently available MRI based

brain imaging techniques. The high temporal resolution (∼
1 ms) of EEG or MEG (magnetoencephalogram), on the

other hand, makes them particularly useful for studying the

dynamics of the brain. Although combining EEG recordings

with fMRI imaging has also been suggested [2], such method

introduces residual artifacts in the EEG, that is mainly caused

by the cardioballistogram (BCG) and the changing fields

applied during the fMRI image acquisition [3], thus making

the process of analyzing the resulting signals even a harder

task.
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EEG signal, however, suffers from both poor spatial reso-

lution and signal-to-noise ratio. To circumvent the latter, we

exploit the steady state visual evoked potential (ssVEP) i.e.

the modulation created in the visual cortex by the flickering

stimulus in the range of 8 to 20 Hz [4]. The basic idea of

using ssVEP is to concentrate the analysis on the power mod-

ulations at the flickering frequency to study the connectivity

among the visual cortex and the rest of the brain regions,

rather than exploring the entire signal. Therefore, following

this method, the task of exploring the functional connectivity

essentially boils down to two independent subtasks of first,

implementing an appropriate bandpass filter to extract the

desired modulation, and second, to employ an appropriate

dependence measure to analyze the network connectivity.

The acquired connectivity can then be exploited to infer the

flow of information over time or to discriminate between two

different stimuli.

Choosing an appropriate bandpass filter, however, is cru-

cial since depending on the bandwidth of the filter, we can ei-

ther pass a single frequency, thus destroying the modulation,

or the entire signal, thus sending unneccessary information.

Both these situations disrupt the connectivity analysis by

creating artifically high or low dependence, and thus, making

any inference or discrimination difficult. Therefore, it is

natural to question the realiability of this method, and to

investigate if the method produces meaningful dependence

values over a certain range of bandwidths, way from the

two extremes. In this paper, we evaluate the robustness of

this method to the variation in the design of appropriate

bandpass filter, in the context of appropriately discriminating

two stimuli, referred to as Face and Mock. To assess the

allowable variation in the network connectivity, we employ

Kolmogorov-Smirnov (KS) test between the dependence

values induced by Face and Mock stimuli, respectively, over

each pair of channels.

The rest of the paper is organized as follows. In section

II, we describe the experimental setting i.e. we discuss

how to clean the raw signal from noisy components via

notch filters, and design a scheme to bandpass this signal

around the flickering frequency using filters of different

orders and quality factors. Here, we also introduce the notion

of generalized measure of association, a novel measure of

dependence [5], to calculate the dependence between the

filtered signals. In section III we apply the Kolmogorov-

Smirnov test as a way to assess the variation in the network

connectivity, and describe a suitable experiment to evaluate

the robustness of the bandpass filters. Finally in section V we

conclude with a summary and suggestions for future work.
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II. METHODS

A. Experimental Setting

The dataset consists of electrode recordings from a 128
Hydro-Cell Geodesic Sensor Net (HCGSN) montage, using

a geodesic tessellation of the head [6]. The subject’s visual

cortex is stimulated with two types of images flickering

at a frequency of 17.5 ± 0.20 Hz, where the uncertainty

arises from the discrepancy of the analog display frequency.

The first condition shows a human face (to which we refer

as “Face”) and the second displays a flickering pattern of

stripes (to which we refer as “Mock”). It is expected from

cognitive studies that the subjects will react differently to

these two types of images since it is well known that the brain

has evolved special circuitry to decode faces [7][8][9][10].

The sampling rate is 1000 Hz with 15 trials performed for

each condition to ensure consistency. The baseline segment

of each channel consists of the first 400 samples, and the

remaining 4200 samples correspond to the condition (Face

or Mock). The recorded datasets can therefore be represented

as spatio-temporal data matrices X
(k) ∈ R

NS×P per trial k
for Face and Mock each, where NS and P denote the number

of channels and number of sampled data points, respectively.

It is well known that there are several factors that interfere

with the process of having a faithful display of brain activity

when recording an EEG signal. The effect of some of these

artifacts can be attenuated (like the subject’s motion during

the recording session and to some extent the blinking of the

eyes), whereas others are uncontrollable such as the electrical

activity of some muscles, electrocardiograms and especially

the effect of volume conduction. To reduce the effect of the

latter, we follow the procedure described in [11], in which the

current source density (CSD) is derived from interpolating

the scalp potentials at sites between electrodes.

B. Signal Processing

We proceed by enhancing the frequency band of interest

(centered at the flickering frequency fo) and attenuating all

other frequencies. Fig. 1 shows the Fourier transform of the

raw recording which contains visible noise components at

odd harmonics of the fundamental 60 Hz line noise. We use

second order Butterworth filters to notch these frequencies.

Note that an implementation with Chebyshev (Type I) filters

is also valid. However, we opt for the former since: (i) we’re

interested in reducing the effect of the phase non-linearity

introduced even if working relatively far from the band of

interest (phase response is more near-linear) and (ii) for the

same order, Butterworth has a better shaping factor than a

Chebyshev Type I filter. Filters are 2nd order, centered at the

odd harmonics with a quality factor defined as Q = fc/∆fc
equal to 20, where fc denotes the filter center frequencies

and ∆fc the corresponding frequency band at 3 dB.

For bandpassing, we need a linear-phase filter since a con-

stant group delay is desired when measuring the dependence

between signals in time domain. We can design such filter

simply by allocating N zeros on the unit circle and using

pairs of conjugate poles to control the filter bandwidth. This
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(c) Magnitude Response
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Fig. 1. (a) 600 samples of the original signal corresponding to 600 ms.
(b) Frequency content of the signal in (a) with huge spikes at line noise
frequencies. (c) Magnitude response of a bandpass filter with Q = 1 and
N = 54. (d) Filtered signal after passing through notch filters and the
bandpass filter in (c).

can be illustrated for the case when N = 40 by setting

the transfer’s function numerator to N(z) = zN − 1 and

setting the center of the filter on n = 3δ with a pass band

of 2δ, where δ = fd/N = fs/(dN) = 250/40 = 6.25 Hz

and d = 4 being the downsampling factor. In this case, the

transfer function would look like:

H(z) =
zN − 1

∏

i∈{n1,...,nα}(z
2 − 2cos(θi) + 1)

where θi = (2π)i/N and {n1, ..., nα} refer to angles of

adjacent zeros from both sides of the center frequency such

that α varies according to whether we want a filter with

low quality factor or not. Fig. 1 illustrates an example on a

sample channel.

Although this design approach works, it does not prove to

be handy in our context since it allows only little flexibility in

varying the quality factor for the same order. Therefore, we

instead use a least-square linear-phase FIR filter for which

the problem can be stated as follows: hN,Q = minh ||Γh−
D||2, where hN,Q = [h(n)] denotes the impulse response

of a Type II (even symmetry) filter of length N + 1 (N
even), D = [D(wr)] is a length R vector containing the

ideal response at a set of frequencies {wr}. D implicitly

defines the quality factor Q and the center frequency fc.

Row t of Γ is given by [1, 2 cos(wt), . . . , 2 cos(wt(N − 1))]
where t ∈ [0, . . . , N − 1]. This expression of Γ can be

obtained by expressing the filter as H(wr) = hN,Q(0) +

2
∑N/2

n=0 hN,Q(n) cos(wrn) with r ∈ [0, . . . , N − 1] as of

even symmetry and shifting by L/2 samples. The prob-

lem reduces to a least-square optimization where ĥN,Q =
argminhN,Q

||ΓhN,Q −D||, hence:

ĥN,Q = [(ΓT
Γ)−1

Γ
T ]D (1)

This ideal response estimate is used to test several bandpass-

ing schemes with different orders and quality factors.

C. Generalized Measure of Association

We propose to compute the dependence between the

filtered signals for both conditions using the generalized
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Algorithm 1: Generalized Measure of Association

Input: Bivariate time series {xt, yt}
n
t=1

assuming values in the joint space X × Y
Output: Estimated dependence d ∈ [0 : 1]
for i ∈ {1...n} do

Find xj∗ closest to xi, i.e.

j∗ = argminj 6=i δx(xi, xj), where δx denotes

Euclidean distance in X .

Find the rank ri of yj∗ in terms of δy so that

ri = count{j : j 6= i, δy(yj , yi) ≤ δy(yj∗ , yi)}.

Compute C as the empirical CDF of {r1, . . . , rn}.

d is the area under C normalized by (n− 1)

measure of association (GMA) [5]. We choose this measure

since, unlike correlation, it is capable of capturing nonlinear

structure, and unlike mutual information (MI), it can be eas-

ily estimated without any free parameters such as kernel size.

The description of computing GMA is given in Algorithm 1.

When the time series are independent then the ranks ri are

uniformly distributed over {1, . . . , n−1} and therefore GMA

is closer to 0.5, whereas when the time series are almost the

same, then the ranks are close to 1 and therefore GMA is

closer to 1.

III. TESTING

It is easy to observe that decreasing the filter’s bandwidth,

or alternatively increasing its quality factor, increases the

dependence between two channels of filtered signals, since

both this signal become close to a single frequency sinusoid

with a specific frequency i.e. the flickering frequency. On

the other hand, filters with low quality factors are more

affected by noise because of the larger bandwidth, and as

a result, the dependences between the filtered channels drop.

Therefore, to ensure robustness it should be established

that there exists a sufficiently large set of parameter values

where the dependences captured among the filtered signals

are meaningful and stable. Moreover since our goal is to

maximize the separability between the two conditions, Face

and Mock, we consider it to be a criteria to judge the

robustness of the effect of filter variation.

Since working with all pairs of channels is computa-

tionally expensive, we select a subset S from the initial

128-electrode setting to compute the pairwise dependence

values per condition, per trial and per filter, and then apply

statistical tests to see how effectively we can differentiate

the two conditions for each filter. In this paper, we use

the two-sample Kolmogorov-Smirnov (KS) test, which is

a non-parametric test to compare two sample vectors. The

KS test tries to estimate the distance between the empirical

distribution functions of the two sets of samples. The null

hypothesis is that both samples are drawn from the same

distribution. Assuming γ1(x) and γ2(x) to be the sample

vectors, the KS statistic can be calculated as:

KSγ
1
,γ

2
= max

x
|Fγ

2
(x)− Fγ

1
(x)|
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Fig. 2. GMA vs. quality factor plot for 3 different filter orders.
(a) Two channels expected to have high dependence (81, 88). (b)
and (c) Two channels expected to have low dependence, respectively
(81, 27) and (88, 27).

where Fγ
1
(x) and Fγ

2
(x) denote the empirical cumu-

lative distribution functions for the n iid observations:

F{X1,...,Xn}(x) = 1
n

∑n
i=1 IXi≤x where Ik denotes the

indicator function. The null hypothesis is rejected at the α-

level if
√

(n1n2)/(n1 + n2)KSγ
1
,γ

2
> Kα, where n1 and

n2 denote the number of samples from each observation

vector and K refers to the Kolmogorov distribution [12].

In our case, we are interested in applying the KS test on

the Face and Mock data so n1 = n2. α is set to 0.1. The

complete procedure is detailed in Algorithm 2.

Before proceeding, we check the dependence values for

two pairs of channels that we expect to be highly and

less dependent, respectively. Fig. 2 shows the GMA values

between a pair of channels in the occipital, and a pair having

one channel in the occipital and the other in the frontal.

Results were averaged over 15 trials to ensure consistency.

As expected, we observe that GMA increases with the quality

factor for the channels likely to be dependent since the effect

of noise fades with the reduction of the passband. For the

channels less likely to be dependent, the reduction of the

noise level is masked by the differences between the two

signals in the passband.

IV. RESULTS AND DISCUSSION

Following the procedure described in Algorithm 2 with

NS = 32, we obtain the plot shown in Fig. 3. We present the

results for only 3 different filter orders out of 20 between 10

and 300, since the effect of the filter order on the shape of the

curve is minimal. GMA was evaluated for 250 quality factors

in the range ∼0.1 and 175. Again, results were averaged

over trials. The region corresponding to Q < 18 is of

special interest because a filter’s bandwidth drops below 1 Hz

afterwards. Since the readings of any two pair of channels

is affected by the delay in signal propagation, we embed

the signal in τ = 8 dimension before computing the GMA

values. τ = 8 corresponds to 32 ms.

The curve starts with relatively low values corresponding

to quality factors in the range (Q < 0.4), then stays almost

stable in the range Q ∈ [0.6, 1.5], and then decreases again.

This is inline with our expectations since for a low quality

factor, the dependence level is reduced due to the presence

of noise and the method looses discriminability, whereas on

the other hand, for a high quality factor the dependence

values are usually high, and therefore the method again
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Algorithm 2: Testing Procedure

Input: S is a subset of size NS of the original electrode set, fo the flickering frequency, O is a vector of M filter

orders, f is a vector of N filter bandwidths, τ is the embedding dimension

Output: An M ×N matrix R of pairwise KS test decisions per filter order per quality factor

for m ∈ {1, . . . ,M} do

for n ∈ {1, . . . , N} do
Compute hO(m),f(n) as in (1).

for i ∈ {1...NS} do

for j ∈ {1...NS} do

for cond ∈ {Mock,Face} do

for k ∈ {1...T} do

Compute Y
(k)(cond)
m,n,i,(·) = hO(m),f(n) ⋆X

(k)(cond)
i,(·) and

Y
(k)(cond)
m,n,j,(·) = hO(m),f(n) ⋆X

(k)(cond)
j,(·) , where ⋆ denotes convolution.

Embed filtered series Y
(k)(cond)
m,n,i,(·) and Y

(k)(cond)
m,n,j,(·) in τ dimension to get ξ1 and ξ2

Set D
(k)(cond)
m,n,i,j = GMA(ξ1, ξ2)

Compute Rm,n as
∑

i

∑

j KS
(

D
(·),face
m,n,i,j ,D

(·),mock
m,n,i,j

)

.
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Fig. 3. Results obtained from Algorithm 2. The values of R(i, j) in-
crease with the quality factor j, reaches a plateau and then decreases
as the quality factor goes up, clearly showing that there is indeed a
region where the estimated dependence values are robust.

perform worse. The stable performance of the method in the

range Q ∈ [0.6, 1.5] can be justified since for this range of

quality factors the bandwidth range becomes [∼ 11,∼ 29].
It is possible that this particular bandwidth range covers the

modulation of the flickering frequency well, thus extracting

the essential information for discriminating the stimuli.

V. CONCLUSION AND FURTHER RESEARCH

In this paper, we have discussed the issue of robustness in

discriminability of stimuli for variations in the filter design

in the context of processing ssVEP signal. We have evalu-

ated several filter parameters in the context of maximizing

separation between the two conditions of interest, which was

obtained by applying the KS test on the dependence values

induced by these two stimuli over pairs of channels. We

observe that the method is indeed robust in terms of the

variation in the filter design, producing stable discriminabil-

ity over a wide range of parameter values.
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