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Abstract

High resolution electrical mapping of slow waves on the stomach serosa has improved our

understanding of gastric electrical activity in normal and diseased states. In order to assess the

signals acquired from high resolution mapping, a robust framework is required. Our framework is

semi-automated and allows for rapid processing, analysis and interpretation of slow waves via

qualitative and quantitative measures including isochronal activation time mapping, and velocity

and amplitude mapping. Noise removal techniques were validated for raw recorded signals, where

three filters were evaluated for baseline drift removal and three filters for removal of high

frequency interference. For baseline drift removal, the Gaussian moving median filter was most

effective, while for eliminating high frequency interference the Savitzky Golay filter was the most

effective. Methods for assessing slow wave velocity and amplitude were investigated. To estimate

slow wave velocity, a finite difference approach with interpolation and smoothing was used. To

evaluate the slow wave amplitude and width, a peak and trough method based on Savitzky Golay

derivative filters was used. Together, these methods constitute a significantly improved framework

for analyzing gastric high resolution mapping data.

I. Introduction

The motility of the stomach is governed by an underlying rhythmic electrical activity,

termed the slow wave (SW). In the normal human these slow waves (SWs) occur at three

NIH Public Access
Author Manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 June 26.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2011 ; 2011: 1737–1740. doi:10.1109/IEMBS.2011.6090497.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cycles per minute (cpm) and are generated and propagated by the interstitial cells of Cajal

(ICC), which are coupled to smooth muscle cells [1].

Traditionally sparse electrodes were used to record SWs, and frequency analysis was mainly

performed but propagation patterns could not be accurately determined [2]. With the

development of high resolution (HR) techniques in gastric SW mapping (up to 256 channels

of simultaneous recording) [3], manual analysis of the data has been common practice [4].

‘SmoothMap’ is a software which was developed for HR mapping purposes which uses a

manual method for marking and analysis of gastrointestinal signals [5]. This software

currently only allows for sequential wave analysis, and does not have any noise removal

filters. Due to the large number of signals that needed to be processed and analyzed from

HR gastric SW mapping, a significant amount of time was spent manually marking and

clustering SWs and thereafter sequentially calculating amplitudes and velocities of SWs.

This method of manual analysis is time consuming, labour intensive and is an ineffective

approach if a number of subject recordings are to be made, thus limiting the progress in the

field. Effective methods for visualization of isochronal time maps, velocity and amplitude

fields were also lacking. To this end we have developed a semi-automated framework and

related processing techniques for analyzing and interpreting HR gastric SWs.

The framework for analyzing HR gastric SWs is shown in Fig. 1, where the raw data was

first downsampled after which the prevailing baseline and high frequency noise was

removed. The SWs were then automatically detected using a variable threshold algorithm

[6], and clustered into their propagating waves using a polynomial based region growing

method [7]. Detection and clustering of SWs were then visually assessed and manually

corrected if necessary. The velocity of the propagating SWs and their signal amplitudes

were then computed and visualized along with the isochronal activation time maps. The

methods for detection and clustering of the SWs have been described in detail in [6] and [7].

Here we describe the noise present in the signals along with validation of noise removal

techniques on realistic synthetic gastric SWs. This is followed by a description of improved

methods for estimating velocity of propagating SWs and its signal amplitude and width.

II. Noise removal

During bio-electrical recordings, noise is ubiquitous and is recorded along with the signals

of interest. The noise inherent in HR gastric serosal recordings has been classified as a

combination of baseline drift and high frequency interference. The baseline drift may be due

to the alternating electrodeserosa impedance and body movements. The high frequency

interference may be generated by the ventilator, other electronic systems, and possibly the

electrical or mechanical activity of the heart or both. Unlike the electrocardiology field,

where there are standards about the use of filter settings from professional societies [8],

there are no recommended filter settings for use in gastrointestinal electrical recordings.

To eliminate the baseline drift in the signals, three filters were evaluated; High pass

Butterworth filter, Gaussian moving median filter [9], and Discrete Wavelet filter [10]. To

eliminate high frequency interference in the signals, three filters were evaluated; Low pass

Butterworth filter; Savitzky Golay filter [11], and Discrete Wavelet filter using a soft
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threshold [12]. These filters were chosen based on reported effectiveness and computational

efficiency. The parameters for the filters (as shown in Table I) were chosen based on the

fundamental and harmonic frequencies of SWs.

A. Validation of filters with synthetic signals

To evaluate the effectiveness of the chosen filters, realistic synthetic signals were created

from experimental signals. To include various morphologies of the SWs, fifteen signals

were created from three representative porcine serosal gastric recordings. Five electrode

signals were then chosen from each of these sets, with a time period ranging from three to

ten minutes. For each of the electrodes, the SWs were detected [6], and stacked. An average

SW morphology for each electrode was then defined by the first principal component from

the singular value decomposition of the stacked SWs [13]. The morphology was amplitude

scaled and placed into its original position on an uniform vector. Artificial baseline and high

frequency noise in sinusoidal form were added to the synthetic signals to represent raw

experimental recordings, as seen in Fig. 2. The following measures were used to test for the

effectiveness of the filters,

(1)

(2)

(3)

where bo is the artificial baseline, be is the estimated baseline, no is the artificial noise, ne is

the estimated noise, so is the synthetic signal, se is the signal after application of the filter,

and ‖·‖2 is the Euclidean norm. Ideally BCR, NCR and SDR will be 0.

1) Synthetic Test Case Results—Effective noise removal techniques are required in

order to reveal the SW morphology without significant distortion. This step is critical

because a clean signal will yield a better detection rate of SWs [6]. From the results (as

shaded in Table II), to eliminate baseline wander, the Gaussian moving median filter was

most suitable, and for high frequency noise removal, the Savitzky Golay (SG) filter was

most suitable.

III. Velocity Estimation

Once the noise has been eliminated from the raw signal, the fiducial point of the SWs can be

detected and clustered to form an isochronal time map [7]. Velocity fields can be

constructed from these time maps, to provide a quantitative measure of the underlying SW

activity in the stomach.

The definition of velocity in two dimensions is as follows,
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(4)

where Tx = ∂T/∂x and Ty = ∂T/∂y are the gradients of the isochronal time map with respect to

the x and y directions. The simplest approach to estimate velocity is to take the finite

difference (one sided difference for the edges and central difference for the internal array) of

the time map. This finite difference approach is used by the ‘SmoothMap’ software and has

been applied in several studies [14], [3], however it has two main disadvantages. First, any

noise in the activation time map would be amplified by the finite difference process, and

secondly regions of missing data will increase the area where velocity cannot be estimated.

Noise can be present in the time maps due to misalignment of recording arrays or incorrect

fiducial detection or clustering of SWs. Regions of missing data may be due to electrodes

not being in contact with the serosa or the underlying serosa being non-conductive and

having no SW activity.

To circumvent these problems a finite difference approach with interpolation and smoothing

is introduced. After applying a finite difference approach, the edges of the grid were padded

by two electrodes, and all of the values were interpolated using an inverse distance squared

interpolation as in 5 [15],

(5)

where Y is the unknown value to be interpolated, Xi is the known value at point i, Di is

distance between the known and unknown value, and n is the number of the known values in

the grid. Vx and Vy were then smoothed using a Gaussian filter (defined in (6)), to reduce

any noise amplification by the finite difference approach, after which the vectors were

normalized for plotting.

(6)

In (6), Gfilt is the Gaussian filter,  and  defines the size of the filter and σ is the standard

deviation of the filter. The values for the Gaussian filter were empirically chosen to be as

 in steps of 1 and σ as 0.75.

Fig. 3 shows the velocity field of an isochronal SW propagation map, where the velocity

was estimated using the finite difference method with interpolation and smoothing. The

corresponding amplitude map of the SWs is also shown.

IV. Amplitude Estimation

The amplitude of the SW was estimated as the difference in peak and trough values of the

event. A simple method to calculate amplitude would be to place a window around the
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fiducial point of the SW and take the maximum and minimum values of the window. This

method is used by the ‘SmoothMap’ software to estimate SW amplitude. The assumption

with this method is that the signal is noise free. In experimental recording, this is not always

the case, as SWs are superimposed on noise or have physiological electrogram fractionation

[4].

In order to allow for precise detection of the peak and trough of the SW, the derivatives of

the signal were computed to detect the maxima, minima, and inflection points. Fig. 4 shows

the use of the first derivative of the signal, where its zero crossing positions corresponding

to the peak and trough position on the slow wave signal. Due to the existence of noise in the

signal, the SWs were differentiated using SG derivative filters, to moderate noise

amplification in the derivative of the signal [16]. The derivative of the signal becomes

smoother when the length of the SG derivative filters is increased or by decreasing the

polynomial order and vice versa. The zeros crossings of the first and second derivative were

found, and the closest point to the fiducial SW was chosen as the peak and trough positions

of the event. The SW width and amplitude was subsequently computed.

V. Conclusion

We have presented improved signal processing techniques to process and analyze high

resolution recordings of gastric slow waves. Noise removal is an essential step in data

analysis of bio-electrical activity, and the filters applied have been validated against realistic

slow wave synthetic signals to give confidence for use in experimental signals. Qualitative

and quantitative measures of slow wave activity are then computed using automated

methods for interpretation of the underlying electrical activity in the stomach.

To eliminate noise in the signals, a Gaussian moving median filter was used to estimate and

remove the baseline drift, and a Savitzky Golay filter was used to eliminate the high

frequency interference. The accuracy of the velocity and amplitude estimation greatly

depended on the noise levels present in the signals and the precise alignment of electrode

arrays. To calculate velocity, the finite difference approach was interpolated and smoothed

to moderate the noise level present in the recorded signals and electrode array. In order to

calculate the amplitude and width of slow waves a Savitzky Golay derivative method was

employed to find the peaks and troughs of the bio-electrical event.

The assumption with the velocity estimation procedure was that the recording electrode

array was a regular grid. Other methods such as polynomial fitting may be needed if the

spatial configuration of the recording electrode array is irregular [17].

The methods and processing techniques described here are for the analysis of serosal gastric

slow wave signals. Nonetheless, this approach can be adapted for other gastrointestinal

signals, such as in high resolution intestinal electrical recordings.
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Fig. 1.
Methods used to analyze gastric serosal electrical recordings. FEVT stands for falling edge

variable threshold, and it is the algorithm used to detect slow wave (SW) events.

REGROUPS stands for a region growing procedure and uses a polynomial surface estimate

to cluster SW events into SW cycles.
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Fig. 2.
Synthetic slow wave porcine signal with artificial baseline wander and high frequency noise.
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Fig. 3.
Propagation of porcine gastric slow wave A) isochronal activation time map and its B)

associated velocity and C) amplitude field map. The velocity fields were computed using a

finite difference method with interpolation and smoothing and displayed as a velocity map,

with arrows showing propagation direction. Amplitude of slow waves at the activation times

were calculated using a peak and trough method. The red dots denote electrodes that did not

yield any information in the particular wave, while the black dots are electrodes that
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detected an activation time. The data for which red circles are plotted were interpolated

using an inverse distance squared interpolation with a radius of two electrodes.
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Fig. 4.
Amplitude estimation via a peak and trough method. The peaks and troughs are found using

the zero crossing of the first and second derivative. Here the first derivative (dV/dT) is

shown along with the slow wave. The zero crossing position (marked in red dots) of the first

derivative corresponded to the peak and trough on the slow wave. The closest zero crossing

position to the slow wave fiducial point was chosen as the peak and trough position of the

slow wave.
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TABLE I

Noise removal techniques, and specifications.

Filter type: Baseline drift Parameters

High Pass Butterworth filter Filter Order: 2,
Cutt Off: 1 cpm

Gaussian moving median filter [9] Window width: 20 seconds

Discrete Wavelet filter [10] Wavelet: Symlet,
Decomposition level: 11

Filter type: High Frequency Parameters

Low Pass Butterworth filter Filter Order: 2,
Cutt Off: 60 cpm

Savitzky Golay (SG) filter [11] Polynomial order: 9,
Window width - 1.7 seconds

Discrete Wavelet filter [12] Wavelet: Symlet,
Soft threshold: BayesShrink
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TABLE II

Noise removal results. HP is high pass, LP is low pass, HF is high frequency interference, while BCR is the

baseline correction ratio, NCR is the noise correction ratio, and SDR is the signal distortion ratio.

Baseline HP Butterworth Median [9] Wavelet [10]

BCR 1.99 0.0016 0.012

HF Noise LP Butterworth Savitzky Golay [11] Wavelet [12]

NCR 0.80 0.78 0.92

SDR 0.23 0.17 0.48
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