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Abstract
The equations of the Complete Fourier Direct (CFD) MR model are explicitly derived for
diffusion weighted NMR experiments. The CFD–MR theory is validated by comparing a
biological phantom constructed from nerve bundles and agar gel with its numerical
implementation. The displacement integral distribution function estimated from the experimental
data is in high agreement with the numerical phantom. CFD–MR’s ability to estimate accurately
and fully spin diffusion properties demonstrated here, provides the experimental validation of the
theoretical CFD–MR model.

I. INTRODUCTION
Aside from elucidating chemical and anatomical properties of biological tissue, Nuclear
Magnetic Resonance (NMR) also possesses the ability to report microstructural properties.
The capability of diffusion weighted (DW) NMR to describe statistically the motion of spins
allows inference of the microstructure they move within.

Historically, Stejskal and Tanner’s analysis [1] of the pulsed gradient spin echo sequence
(see Fig. 1) constitutes the foundation of the modern diffusion weighted protocols. Therein,
DW–NMR signal is modeled by combining the Bloch equations with the diffusion partial
differential equation (PDE) with a spatially constant diffusion coefficient. The mathematical
foundation of signal formation is investigated in the seminal book by Callaghan [2] by
blending PDE and particle method perspectives leading to the derivation of the q–space
model. Basically, the q–space methodology establishes a general Fourier relationship
between NMR signal attenuation and statistical description of spin motion via a probability
function that depicts the molecular displacement (see [2, Chap. 6]). However, the modeling
is based on the narrow–pulse approximation “which can never be realized exactly in a real
experiment” as indicated in [2, p. 338]. Later in the book (see [2, Chap. 8]) the methodology
is quickly translated to MRI without providing deeper analysis.

One of the important hindrances encountered in the derivation of the q–space model is the
utilization of the magnitude of the complex valued free induction decay. Consequently, the
properties of Fourier transform always force the q–space analysis to estimate a symmetric
probability function. In addition, a symmetric construct also rises up in different non–
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Fourier approaches inherent to the model infrastructure. For example, diffusion tensor
imaging (DTI) [3], [4] intrinsically estimates ellipsoids and high angular resolution
diffusion-weighted imaging (HARDI) [5] uses spherical harmonics, which are all symmetric
mathematical objects. The only exception is perhaps the generalized DTI (GDTI) model
presented in [6] which utilizes skew–symmetric tensors to expand the Fourier operator.

At a deeper level, existing models are founded on physically unsupported mathematical
assumptions about the molecular motion in biological tissue, such as the Markovian
property. Unlike in a liquid, tissue microstructure makes it impossible to assume that the
displacement of the spins at a given time is independent of their past. In tissue, the future
motion of the spins is dependent on their current distance from the boundaries and the
medium they reside in, so the motion is not Markovian. In fact, it is exactly this dependence
that gives to DW methods the ability to infer microstructure. Using particle methods rather
than PDEs, all of the issues mentioned above are analyzed, discussed and resolved by the
adaptation of the new model, Complete Fourier Direct (CFD) MRI [7], [8]. Therein, it is
shown that the signal that comes out of the MRI scanner is the higher dimensional Fourier
transform of (joint) distribution function of the number of spins at an initial position and
their displacement integral values (rather than the displacements themselves as modeled in
the literature). In a sense, the MR scanner acts as a low–pass filter on the displacements [9].
In CFD–MRI the displacement integrals remove the narrow–pulse approximation, and thus,
they model the signal in a real experiment. The signal is treated as a complex valued
function and therefore does not constraint the distribution function to be symmetric. The
CFD–MRI model relies uniquely on the assumption of continuity of the spin motion in
biological tissue. The Markovian property is not assumed unlike the diffusion spectrum
imaging (DSI) [10]. The distribution function itself is represented ‘as it is’ i.e. expansions
such as spherical harmonics [5], [11] and high order tensors [6], [11] or transforms such as
Funk–Radon [12], [10] and diffusion orientation transform [13] or composite sums [14] are
not used. The experimental demonstration of the CFD–MRI mathematical model has been
accomplished in [8] with an ex–vivo baboon brain. That sample’s geometric properties are
fairly well known in different regions of the brain but there is obviously no exact
description.

Here, the DW–NMR experiments are run for two of their advantages. First, as shown in
Section II the absence of the imaging gradients facilitates the derivation of the model
compared to DW–MRI and the complications originating from them [7], [8] disappear from
the experiments. Second, the data set is simpler allowing a reliable interpretation of a simple
biological phantom with known properties for a deeper understanding of the method.

In light of all of these observations, this manuscript demonstrates that the CFD–MRI is the
unique model that describes DW–MRI signal i.e. the Fourier Transform of the displacement
integral distribution. The validation is provided by the effectively matching results from the
experiments with the biological phantom and the simulations of the numerical phantom.

II. The Derivation of the CFD Signal Model
In the case of particle methods, the NMR signal is modeled to be originating from the sum
of the individual spin magnetizations within the sample. Therefore it is necessary to derive
the magnetization of each spin as a function of time and the magnetic field gradients. The
evolution of the transverse magnetization of the ith spin is described by a rotating
magnetization vector:

(1)
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Here, γ is the gyromagnetic ratio, the transverse magnetization vector, mi, is written in
complex number form with mi(t0) denoting the initial magnetization tipped to the transverse
plane at the end of the π/2 radio frequency (RF) pulse at t0,

(2)

describes the phase as a function of the magnetic field gradients G(x, t) ∈ ℝ3, and the
position of the spin xi ∈ ℝ3. Note that the effect of the spin–spin relaxation is neglected
assuming that the pulse sequence time is short compared to the relaxation time.

By (1) and (2) the time dependent position of each spin affects the signal. Therefore it must
be included in the calculations in the most general fashion:

(3)

The function wi(t) ∈ ℝ3 represents the displacement of the spin from its initial position with
wi(t0) = 0, without any assumptions except continuity since a spin cannot disappear at a
given point and reappear at another.

The calculations are carried out using the variables defined in Fig. 1 and assuming that the
gradient amplifiers are ideal. With the ideal amplifiers, the shape of the gradient pulses
treated as rectangular and the evolution of the phase can be described as follows.

In Fig. 1, the π° RF pulse between the diffusion gradients, GD ∈ ℝ3, provides theoretical
sign reversal of the phase. The only magnetic field gradients are the motion sensitizing ones
and when they are turned on G(xi, t) = GD · xi(t). Therefore, at t = td4, (2) and (3) lead to

(4)

(5)

The magnetization is given by:
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(6)

If it is so arranged that the diffusion gradient times are equal, td4 − td3 = td2 − td1 = δ, then
the last expression is equal to zero in (5). In essence, equal gradient pulse times remove the
dependence of the signal on the initial position of each spin. The magnetization is explicitly
written as:

(7)

where

(8)

is defined as the displacement integral of the ith spin. This expression is in fact what is being
detected with DW–MR.

At any given time, t, the NMR signal originates from the total magnetization:

(9)

Specifically for the PGSE sequence, according to (6)–(8), the total magnetization at the echo
time TE is a function of the motion sensitizing magnetic field gradient vector, GD,

(10)

with the initial magnetization, mi(t0) = m0, which becomes real valued after an appropriate
rotation of the transverse frame if necessary. Equation (10) is just the sum over the (finite)
count of spins. At the echo time TE, M(GD) can be also calculated in the (continuous)
displacement integral space using the distribution function of the displacement integrals,

:

(11)

where m0 is absorbed into  for ease of notation. In essence, instead of summing up spin
by spin, the signal is obtained in (11) by integrating over the displacement integral space.

The expression of (11) is exactly the Fourier transform of the CFD–NMR distribution
function, , evaluated at the three dimensional frequency equal to kD ≐ GD:

(12)

It should be carefully noted that this simple Fourier relationship derived for the NMR
experiments is not applicable to the MRI experiments in a straightforward manner. The
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detailed analysis for MRI carried out in [9], [7], [8] exposes the challenges that arise in the
case of imaging.

Since the distribution function  is the count of spins, it is real valued. This fact is the
only information at hand that guides the estimation of  from the DW–MR signal, ,
in (12). In CFD–MR, there are absolutely no other assumptions such as symmetry.
Moreover, the distribution function is not the transition probability of a stochastic process,
therefore it is not tied to the associated properties such as being Markovian.

By the Fourier relationship in (12), the real valued  dictates that  must be Hermitian
symmetric i.e.

(13)

where * denotes the complex conjugation.

As a final remark, note that (8) is the key in clarifying the narrow–pulse approximation. The
narrow–pulse approximation assumes that the interval of integration is so short that wi can
be treated as a constant during the integration in (8) and the integral can be approximated
by:

(14)

resulting in

(15)

which expresses only the displacement and uses δ as a scale factor for the integration.
However, such an approximation is unrealistic even in the simplest case of diffusion in a
liquid because the sample paths of Brownian motion are continuous but nowhere
differentiable. Therefore the constant value assumption cannot be validated no matter how
small the time scale is.

III. Experimental and Numerical Setup
Although the microstructural obstruction of spin motion in biological tissue is reflected in
the CFD distribution function, there does not exist an analytical description of  even in
simple environments. For example, there is no mathematical proof in the literature that when
w is Brownian motion, (i.e. with normally distributed independent increments) the
distribution function of displacement integrals, Wd, is Gaussian. In regard, the numerical
simulations are essential in validating CFD–NMR with biological phantoms of a known
microstructure.

The biological phantom investigated in this work consisted of two fixed trigeminal nerves
from normal male C57BL/6 mouse (The Jackson Laboratory, Bar Harbor, ME, USA)
isolated after fixation. The nerve bundles were placed on each side of a triangular shaped
2% agarose water gel, which provided the set of isotropically diffusing spins (see Fig. 2).
The diameter of the nerve bundles varied between 0.5–1 mm along their length. Both
bundles were approximately 7 mm long and the agar isosceles straight triangle block had
sides of 3.5 mm and thickness equal to 0.5 mm.
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The numerical phantom was implemented to mimic the biological phantom as two fiber
bundles of length corresponding to 7 mm and containing fibers (mimicking the axons) of
diameter 1.25 µm with closed ends. The bundles were oriented by a 53° angle with respect
to each other and contained 1024 parallel fibers each. The numerical agar gel, which was in
the shape of a straight isosceles triangle, had a thickness equal to 0.5 mm and side length
equal to 3.5 mm. In each tube 13312 particles and in the agar gel 4000 particles were
initially uniformly distributed (see Fig. 2).

The equations (11) and (12) show that DW–NMR provides the Fourier transform of the
CFD distribution function, , of the spin displacement integrals, Wd. Accordingly, the
numerical simulations consisted of

1. calculating the ith spin displacement wi,

2. evaluating numerically the displacement integral (8),

3. repeating the first two steps for all of the spins and

4. finally computing the distribution of the displacement integral values, , in the
three dimensional space.

The motion of the particles was simulated using a random walk with normally distributed
increments with zero mean. The step size, thus the standard deviation of the increments, was
fixed. In the instances when the path crossed the boundaries, it was readjusted by an elastic
collision. There were 3000 steps executed for each of the particles with Δsim = 1000 steps
and Δsim = 2000 steps. This resulted in step time = δ/δsim = Δ/Δsim = 15 × 10−6 s. The step
size of the random walk was calculated based on the diffusion coefficient of the water,

. Free diffusion coefficient for the nerve bundles 2.025 × 10−3 mm2/s
and the diffusion coefficient for the water in agar 1.8 × 10−3 mm2/s were used [15], yielding
respectively to the step sizes 0.427 µm (0.64 µm in the direction of the fibers) and 0.402 µm.
In–house Matlab® (Mathworks, Natick, MA USA) programs were used for all of the
computations and to display the graphics and maps.

The experiments were carried out on a 4.7 Tesla MR scanner (Varian NMR Systems, Palo
Alto, CA, USA) with a 12 cm inner diameter gradient system, 60 Gauss/cm maximum
gradient strength and 0.27 ms rise time. The repetition time TR = 2 s, echo time TE = 60.9
ms, diffusion pulse time offset Δ = 30 ms and diffusion pulse duration δ = 15 ms were used.
The kD–space was sampled in a uniformly spaced Cartesian grid in a cube [−45G/cm, 45G/
cm]3 with 11 × 11 × 11 points, i.e. ΔGD = 9G/cm sampling intervals at each dimension
resulting in a field of view for the displacement integral space equal to π/(γΔGD) = 0.13048
µm × s in each direction. The acquisition time is so arranged that the echo time takes place
in the middle of the read–out period. Six sample points from each side of the echo time are
averaged to obtain the signal.

IV. Conclusion
Note that the measurements only report the displacement integrals which are affected by the
relative position of each spin with respect to the nearby microstructure. As long as the
relative position of the components of the phantom, e.g. the angle between the nerves, is
unchanged, the isosurface will always have the same shape: two crossing cylinders and an
ellipsoidal component in the middle corresponding to the isotropic gel sample.

It is clear from Fig. 3 that the angle between the nerves in the experimental  isosurface
matches the physical phantom as well as the isotropic component. The distribution function
estimated from the experimental data is in high agreement with the numerical phantom.
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CFD–MR’s ability to estimate accurately and fully spin diffusion properties, demonstrated
here, is unprecedented in the literature. In conclusion, this work provides the experimental
validation for the theoretical CFD–MR model.
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Fig. 1.
The Pulsed Gradient Spin–Echo (PGSE) NMR pulse sequence and the definition of the
variables used in the calculations. The sampling starts before the echo time TE to capture the
peak value of the free induction decay which is attenuated according to the motion
sensitizing magnetic field gradients.
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Fig. 2.
On the left, the initial (shown in black) and final points (red) of the simulated particles are
shown. On the right, the spin–echo MR image of the biological phantom.
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Fig. 3.
The isosurfaces of the distribution function of the displacement integrals from numerical
(top row) results and the experimental results (bottom row) are shown from two different
viewpoints to appreciate the three dimensional structure. The isotropic components, mostly
originating from the gel, are located near the origin. The angle between the nerve bundles,
53°, is apparent in both numerical and experimental results.
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