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Abstract—For patients with Type 1 Diabetes Mellitus,
hypoglycemia is a very common but dangerous compétion
which can lead to unconsciousness, coma and everatifie The
variety of hypoglycemia symptoms is originated fromthe
inadequate supply of glucose to the brain. In thistudy, we
explored the connection between hypoglycemia episesl and
the electrical activity of neurons within the brain or EEG
signals. By analyzing EEG signals from a clinicaltady of five
children with T1DM, associated with hypoglycemia anight, we
found that under hypoglycemia conditions, some EEG
parameters changed significantly. Based on these s@ts, we
proposed a method of detecting hypoglycemic episalaising
EEG signals, including a feed-forward multi-layer reural
network algorithm for classifying. The classificaton results are
72% sensitivity and 55% specificity when using thesignals
from 2 electrodes C3 and O2. We also used signalsor
different channels to see the contribution of eachto
performance of classifying. The results of the stud show the
potentiality of our method and will be improved anddeveloped
in the near future.

I. INTRODUCTION

chronic anxiety about
episodes [4].

One of the most dangerous effects of hypoglycemia i
hypoglycemia unawareness. This effect is cause@dusec
frequent episodes of hypoglycemia can cause toggsim
the response of patients’ bodies. In unawarenésatisins,
patients’ bodies do not release the hormone epiireph
which is the origin of early warnings signs for ipats like
sweating, hunger, anxiety [3, 5]. Because of nonsig
patients normally cannot realize the occurrence of
hypoglycemia until it becomes severe and could teddtal
damage. Nocturnal hypoglycemia is especially fdafbu
T1DM patients as sleep can make the symptoms umclea
Because of its severity, a large number of stubés been
conducted to develop a system that can detect hygmmic
episodes and give an alarm in time for patienth WitDM.

Currently there are some devices using different
techniques to detect hypoglycemia available in riferket.
Some of them require gradually taking patients’ oblo
samples to determine the blood glucose level. Tifeshod

future potential hypoglycemic

CORRDING to the Diabetes Control and Compllcanonscan give relatively exact information about hypaglia

Trial Research Group [1], intensive insulin therapy
an effective treatment for Type 1 diabetes mell{fUsDM)
patients which can significantly delay the appeegaas well
as reduce the risk of acute diabetic complicatidike
retinopathy, nephropathy and neuropathy. HoweveaJsio
increases threefold the incidence of hypoglycentaoreg

T1DM patients over conventional therapy. Hypogly@m

which is the medical term of the state of low blagdcose

state. However, taking blood is uncomfortable fatignts
and continuous monitoring is very inconvenient, eesally
during night. Obviously, non-invasive techniquettie best
solution for these disadvantages.

Recently, we have successfully developed anctiie
and sensitive system to monitor hypoglycemia non-
invasively using physiological parameters like heate,
skin impedance and ECG parameters [6, 7]. However,

level (BGL) is the most dangerous complication fo%lthough hypoglycemia can produce a large number of

individuals with TIDM and an important barrier whic
limits the application of glycemic control therapidor
diabetes patients.

symptoms, like sweating or increased cardiac outthe
principal problems arise from an inadequate supply
glucose, which is the primary metabolic fuel to brain [5].

Hypoglycemia can produce a variety of symptomsmfro Since the electroencephalogram (EEG) signal isctijre

mild to severe episodes [2, 3]. Mild hypoglycemauses
sweating, nervousness, heart plumping, confusioriety,
etc. It can be fixed by eating or drinking glucaogsd food.
If left untreated, hypoglycemia can become sevectlaad
to seizures, coma, and even death. Hypoglycemiace=d
the quality of life for patients as well as carbss causing
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related to the metabolism of brain cells, hypogiyie is
believed to cause early changes in EEG that candoe
invasively detected.

Previous studies have attempted to find out EEGigbs
caused by hypoglycemia [8-10]. Nevertheless, mb#ham
stopped at pointing out some spontaneous changisgdu
hypoglycemic episodes as well as permanent chaafjes
hypoglycemia without proposing a method of detertin
hypoglycemia in real-time.

The recent study developed a portable apparatrectyd
EEG and a methodology using digital signal processind
artificial neural network to detect hypoglycemial]1This



study led to the result of 49.2% accuracy, 76% iteitg
and 32.5% specificity when the neural network waied
and validated with different subject groups. In ecent

subdivided into 3 frequency bands: theta 8.5-7.5Hz),
alpha (: 8-13 Hz) and betd3( 13.5-30Hz).
The final extracted feature set includes 6 pararseie

study, EEG was used as the physiological parameters each electrode position or channel. The powerl eithin

detect hypoglycemia [12]. Although this study hasduced
a real-time system that can detect hypoglycemiajsed
implanted electrodes to record EEG signals. Regemte

each band at each channel is calculated using @&neah
integration technique (the trapezoidal rule). Thentoid
frequency is defined as the center gravity of daguency

proposed a Bayesian neural network algorithm foe thband which subdivides the area under the speatrakdnto

detection of hypoglycemia using EEG signals andaser
EEG electrodes [13].

In this study, we aim to explore the effects of tnogal
hypoglycemia on different EEG parameters as welthas
responses from different positions of the brain. Yhen
propose a method including spectral analysis udtagt
Fourier Transform (FFT) and classification usingunag
network to detect hypoglycemia from EEG signalsctide
Il provides an overview of the methodology usedoimr
study. Results of the study will be mentioned irctioa 111,
Section IV provides a conclusion for this study agides
some suggestions to improve the results in futugiss.

Il. METHODS

A. Sudy

Five T1DM adolescents (between the ages of 12 &d
year old) volunteered for the overnight hypoglycersiudy
at the Princess Margaret Hospital for Children iertR,
Australia. During the study, EEG signals were gardgusly

two identical parts.

The Student’d-test was then applied to every feature to
estimate the differences between pre-hypoglycermmd a
hypoglycemic conditions. Probability values lesartt0.05
were considered to be significant. The statistycall
significant features will be used as inputs for the
classification. Moreover, in our study, we also lexgd the
differences between electrode positions to find wiether
the responses to hypoglycemia of different chanrets
similar or not.

C. Classification

Artificial neural networks [15, 16] have been emyld
popularly in biomedical area as a powerful tool
classification and pattern recognition. It has besrognized
that the use of neural networks is a very successéthod
ih classifying complex situations in which neuratworks
can model non-linear relationships between inputsl a
outputs effectively.

In this study, for classification purposes, we deped a

of

recorded and stored using a Compumedics systemtiaéth neural network with the feed-forward multi-layerusture.
sampling rate of 128 Hz. The EEG electrodes werthis neural network was trained using the Levenberg
positioned at O1, O2, C3 and C4 according to th®larquardt algorithm which is a popular and effeetiv
international 10/20 system, referenced to Cz. \§e placed training algorithm for feed-forward neural networkt
2 electrodes at patient’s chin to acquire the mdegtyogram consists of one input layer which includes the (fesg
(EMG) signal and 2 electrodes near patients's elyes extracted from EEG signals, one hidden layer areartput
measure the electro-oculogram (EOG) signal. Thaiahct layer. The output layer has one node which ind&abe
blood glucose levels (BGL) were routinely collectiedbe state of hypoglycemia or non-hypoglycemia. In otuds,
used as reference using Yellow Spring Instrumeritis the  the BGL threshold for defining hypoglycemia stateset at
general sampling period of 5 minutes. Data werdectdd 3.3mmol/l. We used 30 data points from each patfent
with the approval of the Women’s and Children’s lHea comparison and classification, corresponding tobtmeinute
Service, Department of Health, Government of Westerduration of each blood glucose assessment poinieash

Australia, and with informed consent.

B. Feature extraction

After finalizing the signal acquiring step,
EEGLAB, EEG signals from patients were filteredngsan
IIR highpass filter with a cut-off frequency of ZHkb get rid
of low frequency artifacts and a notch filter atHz0to
remove power noise. The data after pre-processinighwv

consist of two phases (normal and hypoglycemia) was

segmented into 5-second epochs. A visual artifejeiction

method was used to exclude epochs contaminated wit

artifacts. Segments containing significant artdactvere
dicarded based on EMG and EOG signals. Finally htve
artifact signals were transformed into the freqyedomain
using Fast Fourier Transform (FFT). This transfaioma
resulted in the power spectral dendiff) which then was

signal
processing was carried out using EEGLAB [14]. In

blood sampling point, a 30-second non-artifact aign
fragment was used and divided into six 5-secondlepdor
the feature extraction. The overall data were geduipto a
training set, a validation set and a test set. fitk@ neural
etwork was obtained from the training set witht@pping
procedure determined by the validation set. Thegetswas
then used to test the generalization of the derinedral
network.

Ill. RESULTS

nThe responses of five patients show significantngea
during the hypoglycemia state against pre-hypoghiae
state. The actual BGL profiles used in the studysdiown in
Fig. 1.
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Fig. 1. Actual blood glucose level profilesaii1DM children

Statistical results at each channel are presentddbles
I-IV. Significant features are reported in bold.caase the
power levels are very different between patients,
appropriate normalization strategy was used to aedhe
variability of this feature and to enable group gamison.
To do this, we normalize each patient’'s power Ilewagainst
their corresponding values at time zero. There some
slight changes in alpha power and theta power atrd O1
and O2. The beta power levels at all channels éx¢8pdo
not change significantly between normal and hypoceyia
states. Because these responses are not consistierdll
patients, possibly they are caused by the changeseep
stages of patients during night. The study shoved the
centroid alpha frequency is the most significardtdiee.
Under hypoglycemic conditions,
frequency of 5 patients reduces significantly dt faur

channelsf < 0.0001). The results also show an increase In

the centroid alphacgg

TABLE lI
CHANGES UNDER HYPOGLYCEMIA CONDITION- CHANNEL C4

Feature Normal State Hypoglycemia State p-value
Power6 1.3392+ 0.7256 1.317% 0.7793 p=0.691
Powera 1.1012+ 0.4812 1.098% 0.4117 p=0.928
Powerp 0.8907+ 0.2827 0.930% 0.3601 p=0.078
CF 6 5.2318+ 0.2128 5.275%& 0.2377 p=0.006
CFa 10.2688+ 0.3136 10.161% 0.3221 p<0.0001
CFp 20.0541+ 0.8664 20.1644 0.8197 p=0.074

TABLE lll
CHANGES UNDER HYPOGLYCEMIA CONDITION- CHANNEL O1

Feature Normal State Hypoglycemia State p-value
Power @ 1.66064 0.9692 1.509& 0.8384 p=0.025
Powera 0.70804+ 0.4129 0.795@ 0.5205 p=0.008

a powerp 0.7866+ 0.3459 0.8348& 0.4015 p=0.069
CFo 5.25864+ 0.2260 5.289F 0.2375 p=0.095
CFa 10.2369+ 0.3046 10.083% 0.3160 p <0.0001
CFB 19.8029+ 0.8032 19.8078 0.7550 p=0.932

TABLE IV

CHANGES UNDER HYPOGLYCEMIA CONDITION- CHANNEL O2

Feature Normal State Hypoglycemia State p-value
Power @ 1.624% 0.9068 1.444% 0.7043 p =0.003
Powera 0.77174 0.3769 0.883& 0.4971 p<0.001
Powerf 0.7659+ 0.3246 0.808% 0.3617 p=0.084
CFo 5.25924 0.2077 5.294& 0.2433 p =0.026

10.21104 0.2929 10.088% 0.3224 p<0.0001
CFB 19.7804+ 0.7880 19.795% 0.6643 p=0.779

centroid theta frequency at all channghs= 0.026 at 02,
0.007 at C3 and 0.006 at C4). There is no sigmifichange yalidation set and a test set, with ratio of 2:Aa2ients. The

in the centroid beta frequency across all four det p =

demonstrate that during the hypoglycemia onsetsiplys

there is a power shift to the border area betwégiasband point is selected as the threshold to distinguistwben the
and theta band in the power spectra of EEG Slgfﬁhis. can hypog|ycemia and normal states. To make the Comri

be an important sign that will be explored morefuture
studies to find other features that can enhance thgsult of 70% sensitivity for the training/validati set.

performance of our method.

The overall data were grouped into a training <set,

corresponding Receive Operating Characteristic (ROC
0.037 at channel C3 amml> 0.05 at others). These resultscurve for the combined training/validation dataseshown

in Fig. 2. Based on this ROC curve, the most slétaht-off

between cases easier, we choose the point thas dgine

After training, the test set is used to find thassévity and

Based on these statistical results, we choose thst Mgpecificity of the neural network. All results aeported in

significant features to use as inputs of clasdifice The Taple V. The reported number of hidden nodes iscsed! as

final set has 8 features including the centroidtahe the one that gives best classification results.
frequency, the centroid alpha frequency at eacmrala A
neural network is developed using these featurésgpass.

TABLE |
CHANGES UNDER HYPOGLYCEMIA CONDITION- CHANNEL C3

Feature Normal State Hypoglycemia State p-value
Power@ 1.54354+ 0.7411 1.410% 0.6309 p=0.01
Powera 0.8802+ 0.3596 0.851& 0.3147 p=0.242
Power 0.76944 0.1965 0.8284 +0.4013 p=0.011
CF 6 5.23474 0.2304 5.2800 + 0.2323 p=0.007
CFa 10.29104 0.3107 10.1531 £0.3415 p<0.0001
CFp 19.8080+ 0.7664 19.943& 0.8253 p=0.037

In this study, we also aim to find out how the @sges of

different channels contribute to the performance
classification. To do this, we develop differentura
networks with inputs corresponding to data fromyoohe
EEG channel or from two EEG channels separately tt®
consideration of the results from two EEG channals,
evaluate the results from various two channelsiférdnt
sides and different areas of the brain (C3 and ©2.and
01).

of



TABLE V
CLASSIFICATION RESULTS

sensitivity and specificity would need to be impedvTo do

— — this, a post-classification stage which involvesmeo
Inputs Number of "ROC Cutoff - Sensitivity Specificity  ggto 4y e trending strategies could be developed.tHe
Hidden node area  point (%) (%) . o :

01.02.C3.C4 P 072 -03537 70 55 future, with the applications of more advanced
o1 10 0.64 -0.3370 74 49 computational intelligence algorithms, the reswitalld be
02 7 0.69 -0.3494 70 51 improved significantly.
C3 7 0.66 -0.3343 78 37
c4 8 061 -0.3422 75 36 REFERENCES
02,C3 9 071 -0.3133 72 55 [1] D. R. Group, "The effect of intensive treatmaitdiabetes on the
01,C4 9 0.68 -0.4072 71 47 development and progression of long-term compbeetiin insulin-
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