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Joint Angle Estimation in Rehabilitation with Inertial Sensors
and its Integration with Kinect

Antonio Padilha Lanari B6, Mitsuhiro Hayashibe, Philippe Poignet

Abstract—In this paper, we explore the combined
use of inertial sensors and the Kinect for applications
on rehabilitation robotics and assistive devices. In
view of the deficiencies of each individual system, a
new method based on Kalman filtering was developed
in order to perform online calibration of sensor errors
automatically whenever measurements from Kinect
are available. The method was evaluated on experi-
ments involving healthy subjects performing multiple
DOF tasks.

I. INTRODUCTION

Different applications on rehabilitation and assistive
technologies require quantitative assessment of the per-
formed task, such as the measurement of joint motion.
Traditionally, depending on the specifications of each
particular situation, distinct sensing systems are applied.

Within the clinical or research settings, for instance,
optical systems, which normally provide precise esti-
mates, are often used for that purpose. However, these
are expensive systems that can only be used to assess the
activities performed inside the laboratory environment.
Furthermore, they often require the placement of markers
on the subject. Recently, however, a inexpensive mark-
erless new system which enables measurements of joint
motion without markers has been released, the Kinect
system.

On the other hand, for long-term recording of human
motion outside clinical facilities, portable sensors that
do not rely on external references are an interesting
alternative [1]. Among those devices, some of the most
popular are inertial sensors, such as accelerometers and
gyrometers [2], particularly if assembled as wireless units.
Those systems may provide high bandwidth information,
but the provided estimates may be corrupted by different
types of errors [3].

In order to minimize the effect of those errors, some
approaches rely on precise placement of those sensors
on the body segments [4], which may be a limiting
factor for some applications. Another approach then is to
rely on the complimentary features of both system and
compute the best estimate using sensor fusion. Indeed,
other portable sensors, such as magnetometers, may be
included in the integration in order to improve the overall
quality [5].
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Based on this scenario, the motivation of the current
paper is the exploration of the combined use of inertial
systems and the Kinect to estimate human motion. This
integration has the potential of minimizing the draw-
backs of both individual systems by enabling faster sys-
tem initialization, better visualization of the estimated
motion, increasing the bandwidth and improving the
overall precision.

In this work, we have used simple motion sensing
units composed of a 3-axis accelerometer and a 2-axis
gyrometer to estimate joint angles in different tasks that
illustrate common rehabilitation applications. Data from
both sensors are integrated using a Kalman Filter (KF),
for which we propose a new method for taking into
account errors in the accelerometers estimates. Further-
more, a method based on the same KF framework is
proposed to use the joint angles provided by the Kinect
to correct temporarily the overall estimate and calibrate
the inertial sensors to enable long-term operation with-
out the optical system. The complete method was then
evaluated on tests conducted on healthy subjects.

II. METHOD
A. Sensors

1) Inertial sensors: Two types of inertial sensors were
used in this work, accelerometers and gyrometers. Both
devices present the clear advantage of reduced size,
weight and cost, but often at the price of providing
measurements corrupted with different types of sensing
inaccuracy, such as sensitivity errors and time-varying
bias.

The term accelerometer usually refers to sensors whose
output depend on both the inertial acceleration and
the gravitational acceleration onto the device sensitive
axis. Here we are mainly interested in using the gravity
component measured by accelerometers to estimate the
joint angle. For that reason, we wish to neglect the
measured inertial acceleration, which may be seen as a
disturbance in this case.

Concerning the gyrometers, these devices measure the
angular rate with respect to an inertial frame. Hence,
the main problem when using gyrometers to compute
rotational displacement is that small errors on the sen-
sor reading propagate in time, since the estimates are
obtained using numeric integration.

2) Kinect: Microsoft’s Kinect is a low-cost device for
human-computer interface composed by a RGB camera
and a depth sensor based on an infrared camera. Using



Fig. 1. Estimation of 3D joint positions using Kinect. The white
ellipse indicated a typical error originated from the depth-based
skeleton reconstruction. Also, it may be observed that the chair is
recognized as the part of left leg.

appropriate software, such as the Primesensor NITE
Middleware, the system computes useful high-level mea-
surements related to the user and her motion.

In this work, the device is considered as a sensor
which provides directly the preprocessed data required
for integration with other sensors. More specifically, two
types of information are retrieved from the system. First,
3D joint positions of the user (illustrated in Fig. 1) are
used to compute the angles of the joints of interest. For
instance, in order to compute the relative angle 6 between
two vectors measured by Kinect, such as p; and p2, we

may simply do
P1 - P2
T |- (1)
[p1ll |P2|)

Secondly, the information from Kinect is used to pro-
vide 3D visualization of the results obtained with the
sensing systems. This feature indeed is particularly useful
for studying human motion for rehabilitation purposes,
since it gives an intuitive interface to validate if motion
estimation with inertial sensors is correctly performed
in the physical space from different points of view. The
3D joint position reconstruction with Kinect is based on
the module developed by Primesense. We have developed
the environment to integrate the spaces of inertial sen-
sors and Kinect/normal video camera with the camera
calibration using OpenCV.

The technology which the device is based on was
originally developed by Primesense, which also developed
the software used in this work. However, since the system
has been more commonly referred to as Kinect, this is the
designation that has been adopted in this work.

0 = arccos (

B. Motion sensing and rehabilitation tasks

The different tasks that are often conducted during
physical therapy, research on posture and gait, and other
related situations impose distinct requirements for the
sensing systems used for measuring joint motion. For
instancem one of the most important requirements for

such systems concerns the subject’s safety. Indeed, in
the case of close interaction between rehabilitation or
assistive devices with the subject, such a system must
guarantee a high level of confidence of those estimates.
For instance, if gyrometers are used to estimate joint
motion, this normally indicates then that the operation
time of the device will be rather limited, due to the drift
in time of the estimates provided by such systems.

Furthermore, those systems must also be easy to setup,
since long initialization or calibration procedures may
lead to less successful therapies when compared to ”plug-
and-play” devices. With respect to that specification,
portable sensors are less practical comparing to the
Kinect, for instance. Indeed, not only those portable
systems must be placed on the corresponding body parts,
but also a re-calibration procedure must be performed,
since changes on the attachment of the devices on the
segments are inevitable.

On the other hand, considering the use of those sys-
tems for different daily tasks, the advantages of using
inertial systems for measuring human motion are evident,
since valuable information may be retrieved using data
acquired during real life activities on long-term record-
ings outside the laboratory environment. Systems such
as the Kinect also presents irregular performance on non-
structured environments, as illustrated in Fig. 1.

Based on that discussion on sensing systems for re-
habilitation tasks, the benefits of the combined use of
inertial sensors and the Kinect become more clear. In-
ertial sensors are indeed quite useful for rehabilitation
purposes, but the difficulties concerning initialization and
the constant need to re-calibrate the readings prevent a
broader use. In this scenario, Kinect may be a valuable
calibration tool which stays at home and/or in the
clinical setting. In order to evaluate that integration we
have chosen the following tasks:

e Sit to stand (knee, 1 DOF, and ankle, 1 DOF)

e Squat (knee, 1 DOF, and ankle, 1 DOF)

« Shoulder abduction/adduction (1 DOF)

C. Integrating inertial sensors measurements

The integration of inertial sensors and the Kinect
in this work is described in subsequent steps, and we
start by presenting the fusion of accelerometers and
gyrometers. Indeed, for joint motion estimation, these
two sensors have complimentary roles. Gyrometers esti-
mates are affected by the accumulated effect of sensor
errors, but the sensor readings are seldom affected by
other disturbances. On the other hand, the estimates
provided by the accelerometers do not present any drift in
time, but they are highly sensitive to disturbances, such
as inertial accelerations of the device. Moreover, joint
motion estimates using accelerometers from rotations
around gravity are impossible to obtain.

In this scenario, a well-known method to improve
the quality of the overall estimate is to fuse the in-
formation obtained from both sensors using stochastic



filters. In this work, a Kalman filter (KF) has been used
for that purpose. As an example, we will describe the
integration concerning a 1 DOF task, such as shoulder
abduction/adduction.

For this motion, the joint angle estimates obtained
using inertial sensors are given by

%:/%ﬁ (2)
6, = a arccos (lfgx”> + (1 — a) arcsin < IE > . (3)

gl

where g is the magnitude of the local gravity field, g
and a refers respectively to gyrometer and accelerome-
ter, and « is related to the relative confidence on the
measurements provided by the x and z axes of the 3-axis
accelerometer.

Within the KF framework, the estimation is organized
in prediction and correction phases [6]. In the present
case, the initial a prior: estimate is computed according
to Eq. (2), while the correction is given by the estimate
provided by the accelerometer (Eq. (3)). We have chosen
to apply a loosely coupled integration scheme, i.e., the
data applied to the filter is previously processed, such
that minimal changes have to be made to the filter in
order to represent different tasks.

Regarding the parameters that may be used to tune
the behavior of the algorithm, the most important pa-
rameters are the process variance ¢ (or the process
covariance matrix Q for motions with multiple DOF)
and the measurement variance r (or, similarly, the mea-
surement covariance matrix R). Process variance, which
in this case represents the uncertainties related to the
gyrometer, is chosen based on the sensor noise. Likewise,
r is chosen based on the accelerometer noise. Concerning
the accelerometer, however, since measurements of the
gravitational field are affected by inertial accelerations
performed by the device, its estimates may contain incor-
rect information. In order to minimize this effect, instead
of using a fixed value of r, we have applied a variable
variance r which depends on the overall measured accel-
eration. It is given by

NﬁZr+A<“MﬂH®m—l>7 "

exp(p)

where 8 and A are tuning constants, and

e gl = IIEN
ri(f) = el (5)

D. Online calibration using inertial sensors and Kinect

Although the integration described in the previous
section may highly improve the quality of the overall
estimate, significant errors on the motion computed may
still occur. Here we propose to include the Kinect as
an additional correction within the filter, in order to
minimize some of these undesirable effects.

One of those typical problems refers to the definition
of the initial conditions of the algorithm, i.e., the initial

states and covariances related to each sensor or device.
This problem is directly and easily solved using Kinect.
In the experiments described in this work, for instance,
the estimates provided by the Kinect were used to ini-
tialize the integration filter.

Another problem that demands further attention, how-
ever, refers to the errors in the sensors readings, an issue
that is partially solved by the filter described in Sec. II-C.
However, if sensor errors increase, unsatisfactory results
will be inevitably produced. Furthermore, often those
devices need to be constantly calibrated, particularly
if low-cost devices are used. For those reasons, in this
work we propose to use the Kinect to perform online
calibration of inertial sensors, whenever its measurements
are available.

In order to perform this online calibration, we consider
that the main source of error on angle estimation using
inertial sensors is the bias b, which is assumed to be a
random walk process. Then, estimation of the gyrometer
bias may be performed by including the corresponding
bias within the state vector, thus extending the filter
described in the previous section. This augmentation
will result on the following extended model for joint
estimation using a gyrometer:

Ok) = O(k—1) + (O(k—1) — by, (k—1))Ts, (6)

where T is the sampling period.

This simple extension to the filter is capable of com-
pensating typical undesirable phenomena related to gy-
rometers, such as time-varying bias caused by small
sensor displacements. Hence, if both the measurements
of the accelerometer and the Kinect become unavailable
during the trial, the estimates from the gyrometer solely
will provide a better performance when compared to the
uncalibrated device.

Concerning the accelerometer, a different approach
with respect to the gyrometer is adopted in order to
simplify the design. Since the model for joint estimation
using a accelerometer (Eq. (3)) is considerably more
complex than its analogous using a gyrometer (Eq. (2)),
the strategy is to estimate the offset between the angle
estimated by the Kinect, 0, and 6,. This value ey is then
modeled as a random walk process and its value is then
estimated from within the filter, resulting in an extended
state vector of size 3, i.e., [Hg(k) b (k) eg(k)}T. The
value of ey is then used to correct the angle estimate
from the accelerometer (Eq. (3)), considerably improving
the system performance once the Kinect measurements
become unavailable.

III. EXPERIMENTS
A. Setup
Series of experiments were designed to evaluate the

methods discussed in this work!. The trials involved

1A video from the experiments illustrating the method and the
3D visualization using Kinect is available online at http://www.
lirmm.fr/~hayashibe/IMU/embc2011.wmv.
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Fig. 3. Sit-to-stand estimation using gyrometers and accelerome-
ters only.

healthy subjects performing tasks described in Sec. II-
B. The subjects were allowed to move freely within the
task limits. In Fig. 2 a subject performing the sit-to-stand
task is illustrated.

The hardware used in the experiments is composed by:

¢ Inertial motion sensing units composed by 2-axis
gyrometers, such as the IDG-300 and the IDG-
500, angular rate sensors from Invensense, and
the MMAT7260QT, a 3-axis accelerometers from
Freescale. Measurements from both sensors are ac-
quired using a National Instruments acquisition
card.

o Microsoft’s Kinect system for human-computer in-
terface using the Primesensor NITE Middleware
provided by Primesense.

B. Results

The first tests conducted in this work were performed
to validate the basic algorithm presented in Sec. II-
C for multiple DOF movements. Figure 3 illustrates a
sit-to-stand experiment, which clearly exemplifies the
individual errors from both gyrometers (accumulated
error due to bias) and accelerometers (noise and inertial
acceleration peaks) and also shows the improvements in
performance obtained fusing both estimates.

In the experiment illustrated in Fig. 3, it was con-
sidered that the subjects started the task in a resting
position, from where changes in angle were computed. In
Fig. 4, which refers to a squat movement, the the system
initialization was performed using the Kinect. Also, the
angles estimated with the Kinect may also be used to
validate the estimates obtained using the inertial sensors,
which illustrates the coherence of the angles computed
from the inertial sensors.

Finally, in Fig. 5 we illustrate the performance ob-
tained when both the Kinect and the inertial sensors are
used, and online calibration of the sensors is performed.
In order to enable a better visualization of the benefits
of the method, online calibration is performed only in
the first half of the data. By doing so, we emulate the
situation where the measurements from the Kinect are
no longer available. On the top figure, the improvements
on the estimates from the gyrometer are shown, while

Kinect Accel
Integrated — Gyro

150
100

Angle [deg]

Time [s]

Fig. 4. Squat motion estimation using gyrometers and accelerome-
ters only compared with the estimates provided by the Kinect. The
consistency of the integrated estimate may be observed, as well as
the effect of large bias error in the gyrometer (knee angle).

the bottom figure illustrates the differences between the
uncalibrated accelerometer and the one calibrated online.

C. Discussion

The results shown in Figs. 3 and 4 indicate that
fusing the estimates of gyrometers and accelerometers
may provide sufficient high performance without further
need of precise calibration. However, in order to obtain
such satisfactory response when larger sensor errors are
present, suitable calibration is required. The minimiza-
tion of such errors may be difficult, since low-cost sensors
often present time-varying parameters and also because
the sensing units frequently displace from their initial
position on the body. Additionally, in some cases joints
of interest may be not observable using accelerometers,
a case in which solely the estimation from gyrometers
would be considered.

For both types of errors, the use of external systems
such as the Kinect may be extremely helpful for con-
ducting brief online calibration periods, as illustrated in
Fig. 5. Indeed, interesting feature of the method enables
the following experimental flow for experiments requiring
joint motion estimation, which may be of great interest
for applications on rehabilitation:

[ay

install portable sensors
perform preliminary movements in front of Kinect,
if an initial calibration is required
while sensing system is on do
if Kinect is present then
‘ online calibration is performed
else
‘ estimate from inertial sensors only
end
end

N
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On the other hand, there are still some issues con-
cerning the use of the Kinect in the form it was used
in our trials. Firstly, clear errors on the joint positions
provided by the Kinect were observed on several occa-
sions, as illustrated in Fig. 1. These errors occurred even
in situations where no occlusions were present or complex



Fig. 2. Angles estimated using inertial sensors in a sit-to-stand task.
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Fig. 5. Shoulder abduction/adduction estimation using gyrometers, accelerometers and the Kinect. In the first half of the trial, the Kinect
was used to calibrate online the inertial sensors. For the second half, the values obtained in this initial calibration were kept constant. In
both figures, the Kinect data (black) and the integrated estimate (blue) are the same. The remaining data (green and red) represent the
effect of online calibration on the gyrometer (top) and the accelerometer (bottom).

movements were performed. Secondly, the periods be-
tween the provided measurements were seldom constant
and difficult to control, which complicates the design of
integration algorithms. These issues are related to the
combination of driver and middleware used in this work.
Future software versions may reduce those effects on the
system performance.

IV. CONCLUSION AND FUTURE WORKS

The potential of the combined use of portable sensors
(such as accelerometers, gyrometers and magnetometers)
and the Kinect for measuring human motion for reha-
bilitation purposes is tremendous. The Kinect enables
simpler initialization procedures, a better visualization
of the estimated angles, and the possibility of calibrating
the inertial sensors in real-time. On the other hand,
the Kinect also presents limitations, such as the limited
workspace, estimation errors due to occlusions and other
situations (e.g., Fig. 1), and the current sampling fre-
quency obtained from the device, which is inadequate
for faster movements.

In this scenario, in this work firstly the Kinect was
employed as a reference for the inertial system initial-
ization and for improving the visualization of motion
in 3D. Afterwards, we explored the problems related to
measurement errors from inertial sensors and proposed
a new method based on Kalman filtering to integrate
the available information in order to improve the overall

estimated motion. The method was evaluated on experi-
ments involving healthy subjects and satisfactory results
were obtained.

Further work will focus on improving extend the online
calibration filter to include further semsor errors, such
as scaling, and evaluating integration of Kinect and
portable sensors for motion capture system with more
DOF. Moreover, the system will be applied in long-term
clinical trials to evaluate acceptance and performance.
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