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Abstract— In this paper we present the first results of users
with disabilities in mentally controlling a telepresence robot, a
rather complex task as the robot is continuously moving and
the user must control it for a long period of time (over 6
minutes) to go along the whole path. These two users drove
the telepresence robot from their clinic more than 100 km
away. Remarkably, although the patients had never visited
the location where the telepresence robot was operating, they
achieve similar performances to a group of four healthy users
who were familiar with the environment. In particular, the
experimental results reported in this paper demonstrate the
benefits of shared control for brain-controlled telepresence
robots. It allows all subjects (including novel BMI subjects as
our users with disabilities) to complete a complex task in similar
time and with similar number of commands to those required
by manual control.

I. INTRODUCTION

Brain-machine interfaces (or brain-computer interfaces) is
a growing field of research that has witnessed rapid progress
over the last years. In this respect, one of the most challeng-
ing areas is neuroprosthetics, or controlling robotic and pros-
thetic devices directly from brain signals, where, in addition
to high accuracy in the decoding of mental commands, fast
decision-making is critical [1], [2]. Demonstrations of such
brain-controlled robots and prostheses range from robot arms
[3], [4], to hand orthosis [5], [6], to mobile robots [1], [7],
and to wheelchairs [2], [8], [9], [10]. Most of these works
are based on asynchronous spontaneous approaches, where
the subject voluntarily modulates sensorimotor brain activity,
which seems to be the most natural and suitable way to
control neuroprosthetic devices.

Noninvasive electroencephalogram (EEG) is a convenient,
safe, and inexpensive recording method that is ideal to
bring brain-machine interface (BMI) technology to a large
population. However, because of the inherent properties of
EEG, BMIs based on such a kind of signals are limited by a
low information transfer rate. Nonetheless, researchers have
demonstrated the feasibility of mentally controlling complex
robotic devices from EEG. A key factor to do so is the use
of smart interaction designs, which in the field of robotics
corresponds to shared control [11], [12], [13]. In the case
of neuroprosthetics, Millán’s group has pioneered the use of
shared control that takes the continuous estimation of the
operator’s mental intent and provides assistance to achieve
tasks [1], [2], [7], [9]. A critical aspect of shared control for
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BMI is coherent feedback —the behavior of the robot should
be intuitive to the user and the robot should unambiguously
understand the user’s mental commands. Otherwise, people
find it difficult to form mental models of the neuropros-
thetic device. Furthermore, thanks to the principle of mutual
learning, where the user and the BMI are coupled together
and adapt to each other, humans learn to operate the brain-
actuated device very rapidly, in a few hours normally split
between a few days [14].

Although the whole field of neuroprosthetics target dis-
abled people with motor impairments as end-users, all suc-
cessful demonstrations of brain-controlled robots mentioned
above, except [5], have been actually carried out with either
healthy human subjects or monkeys. In this paper, we report
the results with two patients who mentally drove a telep-
resence robot from their clinic more than 100 km away and
compare their performances to a set of healthy users carrying
out the same tasks. Remarkably, although the patients had
never visited the location where the telepresence robot was
operating, they achieve similar performances to healthy users
who were familiar with the environment. The results with
some of the healthy users were previously reported in [7].

In the following sections we will describe our BMI ap-
proach, the mobile robot and our shared control implemen-
tation. Then, we will present the experimental setup and the
results achieved.

II. METHODS
A. Asynchronous BMI Approach

To drive our telepresence robot, subjects use an asyn-
chronous spontaneous BMI where mental commands are
delivered at any moment without the need for any external
stimulation and/or cue [1], [14]. To do so the users learn to
voluntary modulate EEG oscillatory rhythms by executing
two motor imagery tasks (i.e., imagination of movements
such as either right hand vs. left hand, or feet vs. left hand).
Each of these mental tasks is associated to a steering com-
mand, either right or left. Furthermore, the robot executes a
third driving command, forward, when no mental command
is delivered.

For our experiments, EEG was recorded with a portable
16-channel g.tec amplifier, with a sampling rate of 512
Hz and band-pass filtered between 0.1 Hz and 100 Hz.
Each channel was then spatially filtered with a Laplacian
derivation before estimating its power spectral density (PSD)
in the band 4-48 Hz with 2 Hz resolution over the last second.
The PSD was computed every 62.5 ms (i.e., 16 times per
second) using the Welch method with 5 overlapped (25%)
Hanning windows of 500 ms.



The input to the classifier embedded in the BMI is a subset
of those features (16 channels x 23 frequencies). We use the
algorithm described in [9] to estimate the relevance of the
features for discriminating the mental commands delivered
to the robot. This algorithm is run on EEG data recorded
during several calibration sessions separately (3 sessions for
the experiments reported here) and we then select the features
with discriminant values consistently high in all sessions.
This ensures that we choose features that are discriminant
and stable over time. These initial features are those that the
user can naturally modulate, what facilitates and accelerates
user training.

The classifier is a statistical Gaussian classifier that com-
putes the probability distribution over the mental commands
of an EEG sample [1]. The BMI integrates over time the
outputs of the classifier until it accumulates enough evidence
about the user’s mental intent. To do so, the BCI first rejects
classifier decisions that are below a confidence probability
threshold. Then, the BCI accumulates the surviving deci-
sions using an exponential smoothing probability integration
framework Eq. 1:

p(yt) = α× p(yt|xt) + (1− α)× p(yt−1) (1)

where p(yt|xt) is the probability distribution, p(yt−1) the
previous distribution and α the integration parameter. That
is, probabilities are integrated until a class reaches a certainty
threshold about the subject’s intent to change the robot’s
direction. At this moment the mental command is delivered
and the probabilities are reset to uniform distribution. Such
an evidence accumulation (or integration) framework yields
smooth and predictable feedback, thus helping user training
by avoiding confusing and frustrating fluctuations.

This evidence accumulation framework plays also a crucial
role in preventing users from delivering arbitrary commands
when their attention is shifted temporarily to some other task,
thanks to the smooth convergence to the users intention. This
property has another benefit, namely supporting intentional
non-control —i.e., the ability not to intentionally deliver any
mental command if the user doesn’t want to change the
behavior of the neuroprosthesis. For our telepresence robot,
this means that if no mental command is delivered, it will
continue moving forward or stay still (in case it is stopped
in front of a target). As mentioned above, intentional non-
control translates into a third driving command that doesn’t
require extra cognitive effort to the subject.

B. Telepresence Robot

Our telepresence robot is RobotinoTM by FESTO, a small
circular mobile platform (diameter 38 cm, height 23 cm) with
three holonomic wheels (Fig. 1). It is equipped with nine
infrared sensors capable to detect obstacles up to ∼15 cm
(depending on light condition) and a webcam that can also
be used for obstacle detection, although for the experiments
reported in this paper we only rely on the infrared sensors.
For telepresence purposes, we have added a notebook with
an integrated camera: the BMI user can see the environment
through the notebook camera and can be seen by others in the

Fig. 1. The telepresence robot.

notebook screen. The video/audio communication between
the telepresence robot and the subject’s PC is done by means
of commercial VoIP (Skype). This configuration allows the
BMI user to interact remotely with people. For the sake of
safety, the robot stops automatically in the case it loses the
network connection with the BMI.

C. Shared Control

Driving a mobile platform remotely in a natural environ-
ment might be a complex and frustrating task. The user has
to deal with many difficulties starting from the variability
of an unknown remote environment to the reduced vision
field through the control camera. In this scenario, shared
control facilitates navigation in two ways. On one hand, by
taking care of the low-level details (i.e., obstacle detection
and avoidance for safety reasons). On the other hand, trying
to interpret the user’s intentions to reach possible targets. In
any case shared control decides autonomously the direction
of travel. This way the subject keeps full control of the
driving of the robot.

However, the concept of obstacles or targets is not abso-
lute, it changes according to the user’s will. For instance, a
chair in the path has to be considered an obstacle if the user
manifests the intent of avoiding it. Conversely, it might be
the target if the goal is to talk to somebody sitting on it. It
is the task of the shared control to deal with these kinds of
situations by weighting possible targets or obstacle.

Our implementation of shared control is based on the
dynamical system concept coming from the fields of robotics
and control theory [15]. Two dynamical systems have been
created which control two independent motion parameters:
the angular and translation velocities of the robot. The
systems can be perturbed by adding attractors or repellors
in order to generate the desired behaviours. The dynamical
system implements the following navigation modality. The
default device behaviour is to move forward at a constant
speed. If repellors or attractors are added to the system,
the motion of the device changes in order to avoid the
obstacles or reach the targets. At the same time, the velocity



Fig. 2. The experimental environment. The figure shows the four target
positions (T1, T2, T3, T4), and the robot start position (R). Lines P1, P2,
P3 indicate the three possible paths.

is determined according to the proximity of the repellors
surrounding the robot.

In this framework, if shared control is disabled, no repellor
or attractor is added. The robot then changes direction only
according to the user commands. If an obstacle is detected
in the close vicinity of the robot, the device will stop in front
of it, waiting for the next mental command. Otherwise, if the
shared control is enabled, its role is to to decide what has
to be considered an attractor or a repellor according to the
commands delivered by the user.

D. Subjects and Task

Two users with motor disabilities (d1, female, and d2,
male; both suffering from myopathy) and four healthy
subjects (s1-s4, all males) volunteer to participate in our
experiments. All subjects were previously trained with the
BMI, although only subjects s2 and s3 were BMI experts.
However, none of the subjects had previously work with the
telepresence robot. Unfortunately, subject d2 could not finish
all the experiments.

The experimental environment was a natural working
space with different rooms and corridors (Fig. 2). The robot
started from position R, and there were four target positions
T1, T2, T3, T4. The subject’s task was to drive the robot
along one of three possible paths P1, P2, P3, each consisting
of two targets and driving back to the start position. The
experimental space contains natural obstacles (i.e., desks,
chairs, furniture, and people) and six additional objects in
the middle of the paths (small squares with a circle).

In the case of subjects d1 and d2, they mentally drove
a telepresence robot from their clinic more than 100 km
away from the experimental environment. Healthy subjects,
however, were seating at position S facing back to the
environment. During a trial, the subject needed to drive the
robot along one of the paths. Subjects were asked to perform
the task as fast as possible. A trial was considered successful
if the robot travelled to the two target positions and back to
the start position within a limited amount of time (12 min).

(a) Time

(b) Commands

Fig. 3. Time required (panel a) and number of commands delivered (panel
b) to complete the task for the three paths using BMI with shared control
as compared to manual without shared control. For each subject the bars
show the percentage increase (above 100) or decrease (below 100).

Since in a previous study with a pool of these healthy
subjects we could already determined the beneficial role
of shared control for a brain-control telepresence robot [7],
which yields significant improvements in performance, here
we only focus on two conditions of the experiment: either
BMI with shared control or manual without shared control.
In the case of manual control the subject drove the robot by
delivering manual commands through a keyboard or buttons
and travelled each path once. In the case of BMI control
the subjects drove the robot along each path twice. Paths
were chosen in pseudorandom order and BMI control always
preceded manual control to avoid any learning effect. For
each trial we recorded the total time and the number of
commands sent by the user (manual or mental). Subjects
were instructed to generate paths as fast and short as possible.

III. EXPERIMENTAL RESULTS

The first striking result of our experiments is that all
subjects succeeded in all the trials for both conditions,
even those with a short BMI experience. As an indication
of the challenge to drive the telepresence robot along the
desired paths, the average duration of a trajectory over all
the subjects while delivering manual commands is 264 s.
This time can be considered as the reference baseline.



But the most important result of our experiments is that
shared control allowed all the subjects to drive mentally the
telepresence robot almost as fast as when they did the task
delivering manual commands without shared control. Figure
3(a) shows the time needed for all six subjects to drive the
robot along the three paths using BMI with shared control as
a percentage increase (or decrease) with respect to manual
without shared control. The ratio of the average time for all
paths of BMI (with shared control) vs. manual commands
(without shared control) is: s1, 1.22; s2, 1.11; s3, 1.08; s4:
1.19; d1, 1.57; d2, 0.94. The only exception to the similarity
of performances between BMI and manual is subject d1 in
the second path. During the experiment the subject delivered
some wrong mental commands, believing that the target was
elsewhere, and it took some time and additional commands
before bringing the robot to the correct target. If that second
path is not consider, the ratio of the average time for subject
d2 is 1.10 in line with all other subjects.

Shared control also helped subjects in reducing the cog-
nitive workload as measured by the number of commands
(manual or mental) they needed to deliver to achieve the
task (Fig. 3(b)). In the case of BMI, shared control led for
some users to significant decreases. Again, subject d2 in the
second path is the exception for the reasons mentioned above.
On average, and excluding this second path of subject d1,
the required number of mental commands is essentially the
same than the manual commands, the ratio being 1.01.

Finally, when comparing the performance of users with
disabilities against healthy users, it appears that the average
percentage increase of time to complete the paths is 1.07
for the former and 1.12 for the latter. Again, very similar
performances for both kind of subjects. In this calculation,
we have not considered the second path of subject d1.

IV. CONCLUSIONS

In this paper we present the first results of users with
disabilities in mentally controlling a telepresence robot, a
rather complex task as the robot is continuously moving and
the user must control it for a long period of time (well over 6
minutes) to go along the whole path. These two users drove
the telepresence robot from their clinic more than 100 km
away. Remarkably, although the patients had never visited
the location where the telepresence robot was operating, they
achieve similar performances to a group of four healthy users
who were familiar with the environment.

In particular, the experimental results reported in this
paper demonstrate the benefits of shared control for brain-
controlled telepresence robots. It allows all subjects (includ-
ing novel BMI subjects as our users with disabilities) to
complete a rather complex task in similar time and with
similar number of commands to those required by manual
commands without shared control. Thus, we argue that
shared control reduces subjects’ cognitive workload as it:
(i) assists them in coping with low-level navigation issues
(such as obstacle avoidance) and (ii) helps BMI users to
keep attention for longer periods of time.

We also observed that, to drive a brain-controlled robot,
subjects do not only need to have a rather good BMI
performance, but they also need to be fast in delivering the
appropriate mental command at the correct time —otherwise
they will miss key maneuvers to achieve the task efficiently.
In our experience, fast decision making is critical and it
depends on the proficiency of the subject as well as on
his/her attention level. Along the same line, another critical
ability that BMI subjects must exhibit is intentional non-
control, which allows them to rest while the neuroprosthesis
is in a state they don’t want to change (e.g., moving straight
along a corridor). Our evidence accumulation framework
implicitly support it. Nevertheless, we will continue working
on principled approaches to handle intentional non-control
in combination with shared control so that users can deliver
commands only when they wish to do so, thus enlarging
subjects’ telepresence experience.
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