
 
 

 

  

Abstract—Diabetic retinopathy (DR) is a complication of 
diabetes, which if untreated leads to blindness. DR early 
diagnosis and treatment improve outcomes. Automated 
assessment of single lesions associated with DR has been 
investigated for sometime. To improve on classification, 
especially across different ethnic groups, we present an 
approach using points-of-interest and visual dictionary that 
contains important features required to identify retinal 
pathology. Variation in images of the human retina with 
respect to differences in pigmentation and presence of diverse 
lesions can be analyzed without the necessity of preprocessing 
and utilizing different training sets to account for ethnic 
differences for instance.  

I. INTRODUCTION 
NDIGENOUS populations such as the Australian   

Aborigine, the New Zealand Maori and the Canadian Inui 
all have an increased incidence of diabetes compared to the 
Caucasian population resident in these countries. Diabetes is 
around twice as prevalent in Aboriginal as in non-Aboriginal 
Australians [1]. To optimize screening, detection and 
treatment, mobile screening combined with automated 
classification of disease can be used [2]. 

Automated assessment of pre-proliferative diabetic 
retinopathy has been possible for some time using 
fluorescein-labeled images [3]. Results for color fundus 
analysis identifying microaneurysms, exudates and cotton-
wool spots as well as proliferative retinopathy have only 
been reported more recently [4-6]. 

To optimize automated processing of color images one 
has to consider intra-image variation such as light diffusion, 
the presence of abnormalities, variation in fundus reflectivity 
and fundus thickness and inter-image variation (being the 
result of using different cameras, illumination, acquisition 
angle and retinal pigmentation). Several methods are 
available such as grey world normalization, histogram 
equalization and histogram specification, which were 
compared, indicating that histogram specification performed 
best [7]. Cree et al. have demonstrated that color 
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normalization also increases the discrimination in almost all 
of the color features treated individually [8]. 

This paper proposes a process that does not require 
laborious preprocessing but nevertheless deals with image 
differences of the retinal fundus directly. The approach 
constructs a visual dictionary to represent important features 
that characterize the pathology of interest and uses pattern 
recognition tools to classify the retinal images into disease 
and non-disease. 

II. METHODS 

A. Diabetic Retinopathy Images 
For creating the visual words and training the detectors 

(two-class classifiers), 672 non-DR images, 261 images with 
bright lesions and 246 images with red lesions from the 
Ophthalmology Dept., Federal University of São Paulo, São 
Paulo, Brazil were used. The images came from patients 
with different racial background and were manually graded 
by specialists. The images ranged from 640×640 to 
1,581×1,113 pixels in resolution. All of these images were 
used for creating the dictionaries and for training the two-
class classifiers (normal vs. bright lesions and normal vs. red 
lesions). The aboriginal test images for this study were 
obtained from the Albury Eye Clinic using a Topcon camera 
at 1,200×1,200-pixel resolution. Retinal images contained 
either no pathology, or red lesions (micro aneurysms or 
hemorrhages), and bright lesions (hard exudates) according 
to a specialist.   

B. Detection of Features 
We represent every image in a collection using a large 

number of points of interest (PoI) [9] and calculate a local 
descriptor around each PoI using the Speeded-Up Robust 
Features (SURF) approach [10], which is then stored in an 
indexing data structure. PoIs can be robustly estimated as 
they convey more information than other points in the 
image. A point is considered to be of  “interest” if it shows 
repeatability after several image transformations across 
different scales.  
 

The SURF algorithm has four major stages: 
 

(1) Feature point detection: this stage uses an Hessian 
detector approximation based on low-pass box filters (Haar 
filters) and integral images [11] to speed up the operations. 
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(2) Feature point localization: SURF uses the determinant 
of the Hessian for both location and scale. Given a point 
!   =   (!, !) in an image I, the Hessian matrix !(!,!)   in !  
at scale !  is defined as follows 

! !,! =    !"" !,! !"# !,!
!"# !,! !"" !,!     (1) 

where !""(!,!) is the convolution of the Gaussian second 
order derivative with the image ! in point !. 

The scale-spaces are implemented as image pyramids by 
repeatedly smoothing the images with a Gaussian and 
subsequently sub-sampling to achieve a higher level of the 
pyramid. To localize the PoIs in the image across different 
scales, the method performs non-maximum suppression in a 
3×3×3 neighborhood. The maxima of the determinant of 
the Hessian matrix are then interpolated in scale and image 
space. 
 
(3) Orientation assignment: SURF calculates the Haar-
wavelet responses in ! and ! directions using a circular 
neighborhood of radius 6! around the interest point, where 
!   =   ! is the scale at which the interest point was detected. 
Fast filtering, in each scale !, the method calculates wavelet 
responses using integral images. The dominant orientation is 
estimated by calculating the sum of all responses within a 
sliding orientation window covering an angle of !. The point 
of interest gets the orientation from the longest vector. 
 
(4) PoI characterization: SURF creates a square region 
centered on the PoI, and oriented along the orientation 
selected in Step (3). The region is split up regularly into 
smaller 4  ×4 square sub-regions. For each sub-region, the 
method computes some simple features at 5×5 regularly 
spaced sample points. 
 
Basically, Stages (1) and (2) gives the points of interest 
(PoIs) while Stage (3) assigns the orientation of each PoI 
and Stage (4) performs the description of each PoI.  

C. Visual Vocabulary 
The creation of the dictionary is outlined in Fig. 1. SURF 

is a good low-level representative feature detector with 
several applications in computer vision. However, SURF-
based approaches are often designed to provide exact 
matching and they do not translate directly into good results 
for image classification in broad or even constrained 
domains. Therefore, we use the concept of visual 
vocabularies [12] to capture the high-distinctiveness of PoIs 
while using such discrimination for image classification,.  

In the construction of a visual vocabulary, each region of 
PoIs becomes a visual “word” of a “dictionary”. In the 
following, we consider the problem of exudate detection for 
the sake of explanation. The approach we discuss in this 
paper is general enough to detect other DR-related 
anomalies as we show in Section IV and V.  

To solve the problem of detecting bright lesions in ocular-
fundus images, we select and create a database of training 

examples comprising training positive images with exudates 
and negative images considered normal by specialists. In this 
training stage, we perform the localization of the interest 
points in all available images using SURF. In this work, we 
do not perform any preprocessing on the images. 

 
Fig. 1.General pipeline of the proposed approach.  
 

Each image in the training generates a series of points of 
interest. After finding the PoIs, the dictionary or codebook 
was created, which represents distinctive regions of the 
images with bright lesions as well as images tagged as 
normal by specialists. Our objective when creating a visual 
dictionary is to learn, from a training set of examples, a 
model that selects the more representative regions for our 
problem. The size of our dictionary must be large enough to 
distinguish relevant changes in the images and disregard 
irrelevant features.  

To create the “dictionary”, we need to choose its size !, or 
number of representative words. During training, the 
specialists select regions of interest in the analyzed images 
and creating masks for candidate regions more likely to 
contain the DR anomaly of interest. The points of interest 
are then considered in these more likely DR regions. To 
create the dictionary, we can then perform clustering such as 
k-means for finding representative centers for the cloud of 
PoIs or simply pick PoIs within the specialist marked 
regions as we indeed do in this paper.  

A good dictionary is the one that captures properties of 
the DR anomaly of interest as well as properties of normal 
images. Therefore, we create the dictionary using 50 
“words” representing the DR anomaly of interest (e.g., 
bright lesion) and 50 “words” representing normal retinas 
(non-DR) [12]. Note that in the training stage we used 
common images and not specific indigenous images.  

D.   Training and Classification 
 The visual dictionary was created from the training 
images, using the fine selection of candidate regions in 
normal and abnormal images, which the specialists marked. 
Then we selected only feature points lying within these 
regions. Note that the selection process is only performed in 
the training stage. Once the dictionary was created, each of 
PoIs from the training set was assigned to the closest visual 
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word of the dictionary. This step is known as quantization. 
At the end of the quantization process, a set of feature 
vectors representing the histogram of the selected visual 
words for each image are obtained. The final classification 
procedure was performed using the Support Vector Machine 
(SVM) algorithm. The classifier was trained by adding the 
feature vectors calculated from the training images 
containing positive (e.g., images containing pathology) and 
negative (normal images) examples.  The parameters for the 
SVM were settled during training using SVM grid search. 

To analyze multiple pathologies, we can create different 
dictionaries (normal vs. bright lesions, normal vs. red 
lesions, etc.) and train different two-class classifiers that can 
be combined later using state-of-the-art machine learning 
classifier fusion techniques.  

III. RESULTS AND DISCUSSION 
In this section, we present the results for our classification 

techniques based on points of interest and visual words. 
Fig. 2 shows typical signatures for normal images vs. bright 
lesions. The plot depicts 100 “words” and their frequency in 
the training set. For this research we chose to use 100 words 
as this number was found to be most efficient and effective 
for identification of lesions. Increasing the number of words 
normally gives higher responses and also increases the 
computational time. Thus positions 1-50 represent anomaly-
based words (e.g., exudates in this case) while positions 51-
100 represent words for normal regions (non-DR).  For 
positions 1-50, it is expected that the abnormal words 
dominate the normal words while the contrary should 
happen for positions 51-100.  

 
Fig. 2.Typical signatures for normal patients vs. patients 
with exudates. DR patients have higher frequencies for 
abnormal words (positions 1-50) while the contrary should 
happen for positions 51-100.  

 
 

The typical signatures for bright and red lesions are 
calculated based on the training images. Given an unseen 
aboriginal image for testing, the process consists of 
calculating the points of interest in this image, and mapping 
such points to the proper visual dictionary (normal and with 
anomalies). Fig. 3 depicts two aboriginal images for bright 
lesions detection/classification.  

Fig. 3 (top) shows an example of a good characterization 
of an aboriginal image in which traces of bright lesions can 
clearly be seen. This is due to the dominance of the tested 
signatures with respected to the typical signature of a DR 
patient with bright lesions (higher frequencies in positions 1-
50). On the other hand, Fig. 3 (bottom) shows a bad 
characterization in which it is not possible to differentiate 
between a DR candidate for bright lesion since the signature 
found in the tested image does not dominate the typical 
signature for DR or normal patients.  

Fig. 4 presents similar results for red lesions. From Fig. 4 
(top) indicates that the tested image is a DR candidate for 
red lesion since its signature for positions 1-50 dominates 
the typical red lesions signature while for positions 51-100 
the typical normal signature dominates. Fig. 4 (bottom) 
depicts an example in which the red lesions characterization 
is not as good and no clear conclusion can be drawn.  

While this kind of analysis is very important to visualize 
what is happening in the feature level characterization of the 
analyzed images, it may be difficult to automate. Therefore, 
use is made of a typical machine learning classifier to learn 
such typical behaviors and test unknown images. For this we 
selected an operational point in which false negatives, for 
instance, were penalized. 

 

 

 
Fig. 3. Two examples of visual words characterization for 
DR aborigine bright lesions detection. Best characterization 
results (top) against worse characterization results (bottom).  
 

The classification then achieved promising results, 
correctly classifying about 80% of the aboriginal images 



 
 

 

from a training set of non-aboriginal images. The two-class 
Support Vector Machine classifier with a radial basis kernel 
was used with class weighting during training to balance 
differences in the number of examples for normal, bright, 
and red-lesion images, and at the ROC operational point of 
90% sensitivity and 80% specificity.  

This is an important result as it indicates not only that the 
method works on indigenous images but also that cross 
training has not reduced the accuracy of the procedure. It 
would be ideal to use aboriginal images for training. 
However, often it might be difficult to get enough training 
samples besides it’s cumbersome to develop different 
methods for different races. Having a common approach 
which is robust to cross-training as the one we discuss in this 
paper and also one that reduces the specialists’ required 
technical effort during image grading can be an important 
milestone in DR pathology detection research.  

 
 
Fig. 4. Two examples of visual words characterization for 
DR aborigine red lesions detection. Best characterization 
results (top) against worse characterization results (bottom).  

IV. CONCLUSION 
The use of the visual dictionary is a robust method to learn 
and represent important features of a given anomaly even in 
the presence of noise such as image distortion. In addition, 
such representation is robust against differences in color 
background of the retinal fundus.  

We were able to classify whether an ocular-fundus image 
is normal or a DR candidate using a cross-training 

methodology that was robust against differences in retinal 
fundus color due to racial differences and therefore easy to 
implement worldwide.  

In addition, the unified proposed approach allows us to 
develop different detectors under the same simple 
underlying characterization procedure allowing more than 
one lesion to be identified at a time therefore yielding better 
differentiation in terms of DR disease progression.  

As a future direction, we aim at investigating machine 
learning feature and classifier fusion techniques in order to 
combine different anomaly detectors toward more 
discriminative DR vs. Non-DR classifiers.  
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